Dr.-Ing. Tobias Bode


30823 Garbsen


-
Forschungsprojekte
Improving Accuracy and Performance of Meshfree Methods
-
Peridynamic Galerkin MethodsSimulation-driven product development is nowadays an essential part in the industrial digitalization. Notably, there is an increasing interest in realistic high-fidelity simulation methods in the fast-growing field of additive and ablative manufacturing processes. Thanks to their flexibility, meshfree solution methods are particularly suitable for simulating the stated processes, often accompanied by large deformations, variable discontinuities, or phase changes. Furthermore, in the industrial domain, the meshing of complex geometries represents a significant workload, which is usually minor for meshfree methods. Over the years, several meshfree schemes have been developed. Nevertheless, along with their flexibility in discretization, meshfree methods often endure a decrease in accuracy, efficiency and stability or suffer from a significantly increased computation time. Peridynamics is an alternative theory to local continuum mechanics for describing partial differential equations in a non-local integro-differential form. The combination of the so-called peridynamic correspondence formulation with a particle discretization yields a flexible meshfree simulation method, though does not lead to reliable results without further treatment. In order to develop a reliable, robust and still flexible meshfree simulation method, the classical correspondence formulation is generalized into the Peridynamic Galerkin (PG) methods in this project. On this basis, conditions on the meshfree shape functions of virtual and actual displacement are presented, which allow an accurate imposition of force and displacement boundary conditions and lead to stability and optimal convergence rates. Based on Taylor expansions moving with the evaluation point, special shape functions are introduced that satisfy all the previously mentioned requirements employing correction schemes. In addition to displacement-based formulations, a variety of stabilized, mixed and enriched variants are developed, which are tailored in their application to the nearly incompressible and elasto-plastic finite deformation of solids, highlighting the broad design scope within the PG methods. Compared to related Finite Element formulations, the PG methods exhibit similar convergence properties. Furthermore, an increased computation time due to non-locality is counterbalanced by a considerably improved robustness against poorly meshed discretizations.Leitung: Christian Weißenfels, Peter WriggersTeam:Jahr: 2019
-
Process Simulation for Selective Laser MeltingA phase change model for solution with the meshfree Galerkin OTM method is developed.Leitung: Christian Weißenfels, Peter WriggersTeam:Jahr: 2016
-
-
Publikationen
PEER-REVIEWED ARTICLES
A consistent peridynamic formulation for arbitrary particle distributions. / Bode, T.; Weißenfels, C.; Wriggers, P.
in: Computer Methods in Applied Mechanics and Engineering, Jahrgang 374, 113605, 01.02.2021.Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
Peridynamic Galerkin methods for nonlinear solid mechanics. / Bode, Tobias.
2021.Publikation: Qualifikations-/Studienabschlussarbeit › Dissertation
Mixed peridynamic formulations for compressible and incompressible finite deformations. / Bode, Tobias; Weißenfels, Christian; Wriggers, Peter.
in: Computational mechanics, Jahrgang 65, Nr. 5, 07.02.2020, S. 1365-1376.Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
Peridynamic Petrov–Galerkin method : A generalization of the peridynamic theory of correspondence materials. / Bode, T.; Weißenfels, C.; Wriggers, P.
in: Computer Methods in Applied Mechanics and Engineering, Jahrgang 358, 112636, 24.09.2019.Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
Investigation of heat source modeling for selective laser melting. / Wessels, H.; Bode, T.; Weißenfels, C.; Wriggers, P.; Zohdi, T. I.
in: Computational mechanics, Jahrgang 63, Nr. 5, 27.09.2018, S. 949-970.Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
Entwicklung einer netzfreien Simulationsmethode auf Basis der flexiblen Elemente. / Bode, Tobias.
2017.Publikation: Qualifikations-/Studienabschlussarbeit › Sonstige Qualifikationsarbeit
Simulation of the Particle Distribution and Resulting Laser Processing of Selective Laser Melting Processes. / Bode, Tobias.
2017.Publikation: Qualifikations-/Studienabschlussarbeit › Masterarbeit
-
Vorträge
-
(2020): Mixed peridynamic approaches for incompressible materials and finite plasticity, 91th Annual Meeting of the International Association of Applied Mathematics and Mechanics in Kassel (GAMM 2020, online)
-
(2020): Variationally consistent Peridynamic Petrov-Galerkin method in an implicit finite deformation framework, 14th World Congress in Computational Mechanics and ECCOMAS Congress in Paris in July 2020 (online)
-
(2019): Peridynamic Petrov-Galerkin for Finite Elasticity, Thematic Conference of the European Community in Computational Methods in Applied Sciences on eXtended Discretization MethodS for partial differential equations on complex and evolving domains (X-DMS 2019), Lugano, Switzerland 03-05 July 2019
-
(2019): Peridynamic Petrov-Galerkin method: A generalization of the peridynamic theory of correspondence materials, 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2019), Vienna, Austria, 18-22 February 2019
-
(2019): The Peridynamic Petrov Galerkin Method-A Generalized Peridynamic Correspondence Formulation for Finite Elasticity and Fluid Flows, VI International Conference on Particle-Based Methods (Particles 2019), Barcelona, Spain, 28-30 October 2019
-
(2018): Metal Particle Melting Analysis for Additive Manufacturing Using the Stabilized Optimal Transportation Method, 89th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2018), Munich, Germany, 19-23 March 2018
-
(2018): Künstliche Intelligenz, Cyber-physische Systeme und der Digitale Zwilling, VDI-Spezialtag "Künstliche Intelligenz und Digitaler Zwilling in der Fahrzeugberechnung", Baden-Baden, Germany, 19 November 2018
-
WERDEGANG
seit 2022 | Postdoc am Institut für Kontinuumsmechanik |
2021 | Promotion (Dr.-Ing.), "mit Auszeichnung" |
2018 | Verleihung des Ernst-Blickle-Studienpreis der SEW-EURODRIVE-Stiftung |
2017-2021 | Wissenschaftlicher Mitarbeiter am Institut für Kontinuumsmechanik |
2017 | Master of Science, "mit Auszeichnung" |
2017 | Masterarbeit "Simulation of the Particle Distribution and Resulting Laser Processing of Selective Laser Melting Processes" in der Gruppe von Prof. Zohdi, UC Berkeley |
2016 | Verleihung des Dr.-Jürgen-Ulderup-Preises für herausragende Leistungen im Bachelor |
2015 | Bachelor of Science, "mit Auszeichnung" |
2013-2016 | Deutschlandstipendiat |
2012 | Niedersachsenstipendiat |
2012-2017 | Studium Maschinenbau an der Leibniz Universität Hannover |
2012 | Verleihung des DPG- und DMV-Abiturpreises |
1994 | Geboren in Hannover |
LEHRVERANSTALTUNGEN
- Sommersemester 2022: Kontinuumsmechanik II (Hörsaalübung)
- Wintersemester 2021/2022: Kontinuumsmechanik I (Hörsaalübung)
- Sommersemester 2021: Bachelorprojekt: Konstruktion einer Crashstruktur
- Wintersemester 2020/21: Bachelorprojekt: Konstruktion einer Crashstruktur
- Wintersemester 2018/19: Technische Mechanik I (Statik) für Maschinenbau (Hörsaalübung & Leitung der Gruppenübungen)