Bayesian inversion for unified ductile phase-field fracture

verfasst von
Nima Noii, Amirreza Khodadadian, Jacinto Ulloa, Fadi Aldakheel, Thomas Wick, Stijn François, Peter Wriggers
Abstract

The prediction of crack initiation and propagation in ductile failure processes are challenging tasks for the design and fabrication of metallic materials and structures on a large scale. Numerical aspects of ductile failure dictate a sub-optimal calibration of plasticity- and fracture-related parameters for a large number of material properties. These parameters enter the system of partial differential equations as a forward model. In this work, we develop a step-wise Bayesian inversion framework for ductile fracture to provide accurate knowledge regarding the effective mechanical parameters. To this end, synthetic and experimental observations are used to estimate the posterior density of the unknowns. To model the ductile failure behavior of solid materials, we rely on the phase-field approach to fracture, for which we present a unified formulation that allows recovering different models on a variational basis. In the variational framework, incremental minimization principles for a class of gradient-type dissipative materials are used to derive the governing equations. The overall formulation is revisited and extended to the case of anisotropic ductile fracture. Three different models are subsequently recovered by certain choices of parameters and constitutive functions, which are later assessed through Bayesian inversion techniques. To estimate the posterior density function of ductile material parameters, three common Markov chain Monte Carlo (MCMC) techniques are employed: (i) the Metropolis-Hastings algorithm, (ii) delayed-rejection adaptive Metropolis, and (iii) ensemble Kalman filter combined with MCMC. To examine the computational efficiency of the MCMC methods, we employ the R-convergence tool.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Institut für Angewandte Mathematik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Externe Organisation(en)
KU Leuven
Typ
Artikel
Journal
Computational mechanics
Band
68
Seiten
943-980
Anzahl der Seiten
38
ISSN
0178-7675
Publikationsdatum
10.2021
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Meerestechnik, Maschinenbau, Theoretische Informatik und Mathematik, Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
http://arxiv.org/abs/2104.11114v1 (Zugang: Offen)
https://doi.org/10.1007/s00466-021-02054-w (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“