Large strain analysis of soft biological membranes

Formulation and finite element analysis

verfasst von
Gerhard A. Holzapfel, Robert Eberlein, Peter Wriggers, Hans W. Weizsäcker
Abstract

This paper presents a general formulation of thin incompressible membranes and investigates the behavior of soft biotissues using the finite element method. In particular the underlying hyperelastic model is chosen to examine the highly non-linear constitutive relation of blood vessels which are considered to be perfectly elastic, homogeneous and (nearly) incompressible. First, the stress-deformation relation and the elastic tangent moduli are derived in a very general material setting which is subsequently specified for blood vessels in terms of Green-Lagrangian strains. Based on the principle of virtual work the finite element equations are provided and briefly discussed. Consistent linearization of the weak form of equilibrium and the external pressure term ensures a quadratic convergence rate of the iterative solution procedure. On the computational side of this work an effort was undertaken to show a novel approach on the investigation of soft tissue biomechanics. Representative numerical analyses of problems in vascular mechanics are discussed that show isochoric finite deformations (large rotations and large strains). In particular, a numerical simulation of the interaction between an inflated balloon catheter and a plaque deposit on the wall of a blood vessel is presented.

Externe Organisation(en)
Stanford University
Technische Universität Graz
Technische Universität Darmstadt
Universität Graz
Typ
Artikel
Journal
Computer Methods in Applied Mechanics and Engineering
Band
132
Seiten
45-61
Anzahl der Seiten
17
ISSN
0045-7825
Publikationsdatum
15.05.1996
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Werkstoffmechanik, Maschinenbau, Physik und Astronomie (insg.), Angewandte Informatik
Elektronische Version(en)
https://doi.org/10.1016/0045-7825(96)00999-1 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“