Modeling tensile failure of concrete considering multivariate correlated random fields of material parameters

verfasst von
Lu Hai, Meng Ze Lyu
Abstract

This paper presents a novel approach for modeling the tensile failure of quasi-brittle materials by incorporating a multivariate random field to represent material parameters in the phase field model. The aim is to characterize and propagate uncertainties in the behaviors of materials, taking into account the spatial variability and probabilistic dependence. Copula theory is employed to investigate the probability distributions and dependence configuration of the parameters. The proposed framework combines the generation approach for the multivariate random field with the phase field model, resulting in a complete numerical analysis methodology. The governing equations of the deterministic phase field model for quasi-brittle solids are outlined, followed by a description of the multivariate random field for quasi-brittle media and its uncertainty characterization procedure using copula theory. A numerical approach for generating samples of the multivariate random field is introduced. The numerical analysis procedure for the tensile fracture of concrete is presented, and the effects of material uncertainties on failure patterns and macroscopic responses are discussed. The results demonstrate that the developed methodology effectively captures the random damage and fracture processes in concrete specimens. The interaction between the correlation length of the random field and the characteristic length scale of the phase field significantly influences the probabilistic characteristics of the random responses. The research findings emphasize the importance of determining the correlation length values accurately. This study contributes to the field of structural reliability analysis by providing a comprehensive framework for modeling the stochastic behavior of quasi-brittle materials. The integration of a multivariate random field and copula theory allows for the realistic representation of material uncertainties and their probabilistic dependence. The proposed methodology, combined with the probability density evolution method (PDEM), offers a powerful tool for analyzing and predicting the probabilistic evolution of material behaviors under tensile loading conditions.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Ocean University of China
Tongji University
Typ
Artikel
Journal
Probabilistic Engineering Mechanics
Band
74
ISSN
0266-8920
Publikationsdatum
10.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Statistische und nichtlineare Physik, Tief- und Ingenieurbau, Kernenergie und Kernkraftwerkstechnik, Physik der kondensierten Materie, Luft- und Raumfahrttechnik, Meerestechnik, Maschinenbau
Elektronische Version(en)
https://doi.org/10.1016/j.probengmech.2023.103529 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“