First order finite element formulations for third medium contact

verfasst von
P. Wriggers, J. Korelc, Ph Junker
Abstract

Third medium contact can be applied in situations where large deformations occur and self-contact is possible. This specific discretization technique has the advantage that the inequality constraint, inherent in contact formulations, is circumvented. The approach has several applications, like soft robotic or topology optimization. Recent approaches have been explored, using the gradient of the deformation measure to improve algorithmic performance. However, these methods typically require quadrilateral or hexahedral finite elements with quadratic shape functions, adding to their complexity. Also, the computation of second order gradients using quadratic triangular or tetrahedral elements does not lead to reasonable results since these gradients are constant at element level. In this paper, we apply a new regularization technique to triangular and tetrahedral finite elements of lowest ansatz order that approximates the gradient computations and thus reduces computational complexity.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
University of Ljubljana
Typ
Artikel
Journal
Computational mechanics
ISSN
0178-7675
Publikationsdatum
2025
Publikationsstatus
Angenommen/Im Druck
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Meerestechnik, Maschinenbau, Theoretische Informatik und Mathematik, Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1007/s00466-025-02628-y (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“