On a holistic variational formulation for material modeling including dissipative evolution

verfasst von
Philipp Junker, Tobias Bode, Klaus Hackl
Abstract

Based on Hamilton's principle of stationary action, we present a holistic variational formulation for material modeling including dissipative evolution. To this end, we recall the definition of the action as path integral of the momentum vector. Reformulation of the action and inserting the 1st and 2nd Law of Thermodynamics yield an extended Hamilton functional. We show that the stationarity conditions yield well-known expressions as well as new conditions in an extended nested time domain. Introducing an asymptotic two-scale approach transforms the expressions in the nested time domain back to the physical time. Hereby, we receive usual differential equations, e.g., heat conductivity equation, diffusion equation, and Biot equation, and the constitutive laws for, e.g., temperature, entropy, and chemical potential, all from one holistic stationarity principle. Moreover, the formulation in the nested time domain produces additional, virtual conditions that naturally lead to the concept of dissipation distances. Due to its variational origin, our approach yields in a consistent manner a coupled space–time formulation.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Ruhr-Universität Bochum
Typ
Artikel
Journal
Journal of the Mechanics and Physics of Solids
Band
200
ISSN
0022-5096
Publikationsdatum
07.04.2025
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik der kondensierten Materie, Werkstoffmechanik, Maschinenbau
Elektronische Version(en)
https://doi.org/10.1016/j.jmps.2025.106133 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“