Bayesian Inversion with Open-Source Codes for Various One-Dimensional Model Problems in Computational Mechanics

verfasst von
Nima Noii, Amirreza Khodadadian, Jacinto Ulloa, Fadi Aldakheel, Thomas Wick, Stijn François, Peter Wriggers
Abstract

The complexity of many problems in computational mechanics calls for reliable programming codes and accurate simulation systems. Typically, simulation responses strongly depend on material and model parameters, where one distinguishes between backward and forward models. Providing reliable information for the material/model parameters, enables us to calibrate the forward model (e.g., a system of PDEs). Markov chain Monte Carlo methods are efficient computational techniques to estimate the posterior density of the parameters. In the present study, we employ Bayesian inversion for several mechanical problems and study its applicability to enhance the model accuracy. Seven different boundary value problems in coupled multi-field (and multi-physics) systems are presented. To provide a comprehensive study, both rate-dependent and rate-independent equations are considered. Moreover, open source codes (https://doi.org/10.5281/zenodo.6451942) are provided, constituting a convenient platform for future developments for, e.g., multi-field coupled problems. The developed package is written in MATLAB and provides useful information about mechanical model problems and the backward Bayesian inversion setting.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Institut für Angewandte Mathematik
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Externe Organisation(en)
KU Leuven
Swansea University
Universität Paris-Saclay
Typ
Artikel
Journal
Archives of Computational Methods in Engineering
Band
29
Seiten
4285-4318
Anzahl der Seiten
34
ISSN
1134-3060
Publikationsdatum
10.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Angewandte Informatik, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1007/s11831-022-09751-6 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“