Application of Taylor series combined with the weighted least square method to thermodynamic topology optimization

verfasst von
Mischa Blaszczyk, Dustin Roman Jantos, Philipp Junker
Abstract

In our previous works, we established the method of thermodynamic topology optimization based on Hamilton's principle. With the use of a gradient-enhanced regularization and the formulation of the resulting differential equation in the strong form, it is necessary to calculate the Laplacian of the design function. Also, a Neumann boundary condition needs to be accounted for. As the values of the design function are only known in discrete points, both of these problems require a numerical approximation. Previous approaches fail depending on the type of the used finite element mesh. In this contribution, we show how the Taylor series can be combined with the weighted least square method to obtain approximations for these problems when the values of the design function are given in arbitrary point clouds. We show simulation results for common benchmark problems for various types of meshes proving the mesh independence, versatility and reliability of the novel method.

Organisationseinheit(en)
Institut für Kontinuumsmechanik
Externe Organisation(en)
Ruhr-Universität Bochum
Typ
Artikel
Journal
Computer Methods in Applied Mechanics and Engineering
Band
393
ISSN
0045-7825
Publikationsdatum
01.04.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mechanik, Werkstoffmechanik, Maschinenbau, Physik und Astronomie (insg.), Angewandte Informatik
Elektronische Version(en)
https://doi.org/10.1016/j.cma.2022.114698 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“