Unser InstitutTeam
Dustin Jantos

Dr.-Ing. Dustin Roman Jantos

Dr.-Ing. Dustin Roman Jantos
Adresse
An der Universität 1
30823 Garbsen
Gebäude
Raum
308
Dr.-Ing. Dustin Roman Jantos
Adresse
An der Universität 1
30823 Garbsen
Gebäude
Raum
308
  • Forschungsprojekte
    • Topologie- und Materialoptimierung mit faserverstärkten Materialien, zug- und druck affinen Materialien (Stahl/Beton)
    • Numerisch effiziente gradientenbasierte Regularisierungstechniken für FEM und Netzfreie Methoden
    • Additive Fertigung
    • The neighbored element method for damage processes
      Damage processes are modeled by a softening behavior in a stress/strain diagram. This reveals that the stiffness loses its ellipticity and the energy is thus not coercive. The underlying partial differental equation wouldn't have a unique solution and the numerical implementation of such an ill-posed problem yields results that are strongly dependent on the chosen spatial discretization. Consequently, regularization strategies have to be employed that render the problem well-posed. A prominent method for regularization is a gradient enhancement of the free energy. This, however, results in field equations that have to be solved in parallel to the Euler-Lagrange equation for the displacement field. Therefore the number of degrees of freedom (unknowns) would increase and the system solution using a finite element approach would be cumbersome and numerically demanding. A gradient-enhanced material model for brittle damage using Hamilton’s principle for nonconservative continua was developed. The model is based on an improved algorithm, combining the finite element with strategies from meshless methods, for a fast update of the damage field function. This numerical treatment is referred to as neighbored element method (NEM). The model proves to be numerically stable and fast, with simulation times close to purely elastic problems. In addition, the model provides mesh-independent results.
      Leitung: P. Junker, D. R. Jantos
      Jahr: 2018
    • Thermodynamic topology optimization
      For the optimization of the topology, the local material density is defined as design variable within a given design space. The design space describes the geometrical bounds of the structure and to which the (mechanical) boundary value problem is applied. In each point of the design space, the density indicates whether material should be applied in that region or not. For mathematical relaxation, the density variable is continuous allowing intermediate densities during the optimization process, i.e. porous material. Intermediate densities are penalized so that the final topology contains approximately only full and void material (SIMP-approach). The underlying mathematical problem is ill-posed and according regularization techniques have to be applied. A gradient-enhanced regularization is added for the density field and the evolution equation is formulated in its strong form. With the backward Euler scheme and an internal loop for numerical stability, no additional equation systems besides the FEM have to be solved within the optimization process. The second spacial derivatives in the strong form are computed via the neighbored element method. Herein, only the minimum number of neighboring points are used to calculate the required second spatial derivatives to reduce the calculation effort even further. The formulation is independent of the spacial discretization of the design variable: only data on the close neighborhood between points is required. Therefore, the method is suitable for mesh-based as well as for mesh-free methods. The minimum member size, i.e. the minimum cross section width of a structure feature, can be directly controlled by a user-given parameter. Furthermore, the regularization technique can also be applied to regularization in other material models, as for example damage, wherein the width of the damaged zone can be controlled directly.
      Leitung: D. R. Jantos, P. Junker
      Jahr: 2021
    • Plasticity
      Plastic deformation or plastic zones can weaken the structure drastically or are also planned into the design of structure. Usual approaches for optimization with plastic material require the calculation of a full plasticity analysis with multiple load steps until convergence for each design optimization step, which results in a large number of mechanical analysis steps and therefore large calculation efforts. In the novel approach, a dissipation-free plasticity model is developed, whose evolution is path-independent, so that only one mechanical analysis step is required for each optimization step. In combination with the operator split, the calculation effort for the optimization with plastic material is negligible higher than for an optimization with pure elastic material.
      Leitung: P. Junker, D. R. Jantos
      Team: M. Kick
      Jahr: 2021
    • Anisotropic materials
      High performance materials, as for example carbon fiber reinforced polymers but also structures produced with additive manufacturing inhere anisotropic material properties, which can be influenced during the production process, i.e. the applied direction of fibers or print path within 3D printing. Since the material orientation has a major influence on the structure performance, the local material orientation should also be considered as design variable for the optimization process. With the thermodynamic optimization approach, evolution equations for the optimal material direction described by Euler angles can be found and are combined with a simultaneous topology optimization, which results in significantly different varying optimal typologies in comparison to a topology optimization with isotropic material. For some production processes, as for example reinforcement with long fibers, or simply for a smoother fiber path design, the maximum fiber curvature can be constrained via a filtering technique with the filter radius R given by the user.
      Leitung: D. R. Jantos, P. Junker
      Jahr: 2021
    • Tension and compression affine materials
      Concrete is economical but rather weak under tension load, whereas steel may bear tension and compression very well, but is much less economical. Therefore, an simplified approach for economical steel-concrete structures is to apply concrete only in regions predominant to compression loading and steel under tension loading. By introducing an energetic penalization, this approach can be implemented into an topology optimization with two elastic materials, in which one material is affine to compression (e.g. concrete) and one is affine to tension (e.g. steel). Due to different elastic properties of the both materials, i.e. Young's modulus an Poisson's ratio, the resulting optimization depends strongly on the load direction.
      Leitung: D. R. Jantos, P. Junker
      Jahr: 2021
    • Optimization and additve manufacturing
      The results from the topology optimization are usually very difficult or even impossible to manufacture with conventional methods. However by use of additive manufacturing, as for example 3D printing, the production becomes not only feasible but most optimized structures can be directly produced without modification. However, the material characteristics and also bounds of the additive manufacturing processes, as for example material anisotropy, print directions, overhangs, thermo-mechanical properties should be considered as constraints for the optimization. Those effects strongly depend on the chosen additive manufacturing process and are considered in future projects.
      Leitung: D. R. Jantos, P. Junker
      Jahr: 2021
  • Publikationen

    2022


    Application of Taylor series combined with the weighted least square method to thermodynamic topology optimization. / Blaszczyk, Mischa; Jantos, Dustin Roman; Junker, Philipp.

    in: Computer Methods in Applied Mechanics and Engineering, Jahrgang 393, 114698, 01.04.2022.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

    Thermodynamic Topology Optimization of Layered Anisotropic Materials. / Jantos, Dustin R.; Junker, Philipp.

    Current Trends and Open Problems in Computational Mechanics. Cham : Springer, 2022. S. 217-238.

    Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschung

    Untersuchung des Potenzials der Topologieoptimierung in der additiven Fertigung am Beispiel von biegebeanspruchten Bauteilen. / Jantos, D. R.; Röttger, A.; Junker, P.

    in: Materialwissenschaft und Werkstofftechnik, Jahrgang 53, Nr. 10, 05.10.2022, S. 1298-1310.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

    Thermodynamic topology optimization for sequential additive manufacturing including structural self‐weight. / Kick, Miriam; Jantos, Dustin R.; Junker, Philipp.

    in: civil engineering design, Jahrgang 4, Nr. 5-6, 28.12.2022, S. 162 - 173.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review


    2020


    Topology optimization with anisotropic materials, including a filter to smooth fiber pathways. / Jantos, Dustin Roman; Hackl, Klaus; Junker, Philipp.

    in: Structural and Multidisciplinary Optimization, Jahrgang 61, Nr. 5, 05.2020, S. 2135-2154.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review


    2019


    Tension/compression anisotropy enhanced topology design. / Gaganelis, Georgios; Jantos, Dustin Roman; Mark, Peter et al.

    in: Structural and Multidisciplinary Optimization, Jahrgang 59, Nr. 6, 15.02.2019, S. 2227-2255.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

    An accurate and fast regularization approach to thermodynamic topology optimization. / Jantos, Dustin Roman; Hackl, Klaus; Junker, Philipp.

    in: International Journal for Numerical Methods in Engineering, Jahrgang 117, Nr. 9, 02.03.2019, S. 991-1017.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

    Comparison of thermodynamic topology optimization with SIMP. / Jantos, Dustin Roman; Riedel, Christopher; Hackl, Klaus et al.

    in: Continuum Mechanics and Thermodynamics, Jahrgang 31, Nr. 2, 27.08.2019, S. 521-548.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

    Innovative Ansätze zur Topologie- und Materialoptimierung basierend auf thermodynamischen Prinzipien. / Jantos, Dustin Roman.

    2019.

    Publikation: Qualifikations-/StudienabschlussarbeitDissertation

    Structural and material optimization based on thermodynamic principles. / Jantos, Dustin Roman; Hackl, Klaus; Junker, Philipp.

    in: PAMM - Proceedings in Applied Mathematics and Mechanics, Jahrgang 19, Nr. 1, 18.11.2019.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

    A fast and robust numerical treatment of a gradient-enhanced model for brittle damage. / Junker, Philipp; Schwarz, Stephan; Jantos, Dustin Roman et al.

    in: International Journal for Multiscale Computational Engineering, Jahrgang 17, Nr. 2, 2019, S. 151-180.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review


    2018


    On an accurate and fast regularization approach to thermodynamic based topology optimization. / Jantos, Dustin Roman; Hackl, Klaus; Junker, Philipp.

    in: PAMM - Proceedings in Applied Mathematics and Mechanics, Jahrgang 18, Nr. 1, 17.12.2018.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

    Optimized growth and reorientation of anisotropic material based on evolution equations. / Jantos, D.R.; Junker, P.; Hackl, K.

    in: Computational mechanics, Jahrgang 62, Nr. 1, 2018, S. 47-66.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

    Topology and material orientation optimization based on evolution equations. / Jantos, Dustin Roman; Junker, Philipp; Hackl, Klaus.

    in: PAMM - Proceedings in Applied Mathematics and Mechanics, 15.03.2018, S. 739-740.

    Publikation: Beitrag in FachzeitschriftArtikelForschung


    2017


    A variational growth approach to topology optimization. / Junker, P.; Jantos, D.R.; Hackl, K.

    Proceedings of the 14th International Conference on Computational Plasticity - Fundamentals and Applications, COMPLAS 2017. Hrsg. / Eugenio Onate; Djordje Peric; D. Roger J. Owen; Michele Chiumenti. 2017. S. 235-246.

    Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschung


    2016


    An evolutionary topology optimization approach with variationally controlled growth. / Jantos, D.R.; Junker, P.; Hackl, K.

    in: Computer Methods in Applied Mechanics and Engineering, Jahrgang 310, 01.10.2016, S. 780-801.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

    An evolution equation based approach to topology optimization. / Jantos, Dustin Roman; Junker, Philipp; Hackl, Klaus.

    in: PAMM - Proceedings in Applied Mathematics and Mechanics, 2016.

    Publikation: Beitrag in FachzeitschriftArtikelForschung


    2015


    Analyse und Weiterentwicklung eines variationellen Wachstumsmodells zur Topologieoptimierung. / Jantos, Dustin Roman.

    2015.

    Publikation: Qualifikations-/StudienabschlussarbeitMasterarbeit


  • CV
    Seit 2021 Oberingenieur am IKM
    2019-2021 Post-Doc am Lehrstuhl Mechanik - Materialtheorie von Prof. Hackl an der Ruhr-Universität Bochum
    2015-2019

    Promotion (Maschinenbau) an der Ruhr-Universität Bochum (Abschluss mit Auszeichnung).
    Dissertations-Titel: Innovative Ansätze zur Topologie- und Materialoptimierung basierend auf thermodynamischen Prinzipien

    2010-2015 Bachelor und Master of Science (Maschinenbau) an der Ruhr-Universität Bochum (Abschluss mit Auszeichnung)
  • Preise und Mitgliedschaften
    2020 Eickhoff Preis der Gebr. Eickhoff Maschinenfabrik u. Eisengießerei GmbH für hervorragende wissenschaftliche Leistungen im Promotionsverfahren
    2018-2021 Mitglied der GAMM-Junioren
    2011-2014 Stipendium für herausragende Studienleistungen und besonderes Engagement der Ruhr-Universität Bochum