Prof. em. Dr.-Ing. habil. Dr. h.c. mult. Dr.-Ing. E.h. Peter Wriggers


30823 Garbsen


-
Akademische Ausbildung
1988 Habilitation in Mechanik, Universität Hannover 1981 Promotion in Mechanik, Universität Hannover 1976 Diplom in Bauingenieurwesen, Technische Universität Hannover -
Beruflicher Werdegang
seit 2008 Universitätsprofessor für Mechanik in der Fakultät für Maschinenbau an der Leibniz Universität Hannover 2005 - 2006 Conjoint Professor an der University of Newcastle, Australien 1998 - 2008 Universitätsprofessor für Mechanik in der Fakultät für Bauingenieurwesen und Geodäsie an der Leibniz Universität Hannover 1990 - 1998 Universitätsprofessor für Mechanik im Fachbereich für Mechanik an der Technischen Universität Darmstadt 1988 - 1988 Gastprofessor am Department of Civil Engineering der University of California, Berkeley, USA 1984 - 1990 Wissenschaftlicher Mitarbeiter am Institut für Baumechanik und Numerische Mechanik der Universität Hannover 1983 - 1984 Visiting Scholar an der University of California, Berkeley, USA 1976 - 1983 Wissenschaftlicher Mitarbeiter am Institut für Baumechanik der Universität Hannover -
Aktivitäten
seit 2019 Mitglied im wissenschaftlichen Beirat von Rocini (Rostock Centre for Interdisciplinary Implant Research) Link seit 2020 Präsident des wissenschaftlichen Beirats des CIMNE (International Centre for Numerical Methods in Engineering) Link seit 2018 Korrespondierendes Mitglied der Croatian Academy of Sciences and Arts 2009 - 2022 Mitglied des Executivkomites der IACM 2015 - 2016 Vorsitz des Executivkomites der AMD (Applied Mechanics Division) of ASME 2015 - 2021 Vizepräsident für Forschung der Leibniz Universität Hannover seit 2015 Mitglied des "Board of Directors" und "Scientific Council" von CISM (International Center of Mechanical Sciences) Link seit 2014 Editor in Chief von „Computational Particle Mechanics“ seit 2012 Mitglied des wissenschaftlichen Beirats von CIMNE, UPC Barcelona 2011 - 2018 Vizepräsident der IACM (International Association for Computational Mechanics) 2011 - 2013 Vizepräsident der GAMM (Society for Applied Mathematics and Mechanics) 2011 - 2016 Executivkomitee der Applied Mechanics Division der ASME 2011 - 2017 Mitglied des DFG Senatsausschusses für Sonderforschungsbereiche 2010 - 2019 Sprecher des internationalen Graduiertenkollegs IRTG1627: Virtual Materials and Structures and their Validation 2009 - 2022 Mitglied des Lenkungsausschusses des Höchstleistungsrechenzentrums der Universität Stuttgart (HLRS) 2008 - 2012 Präsident der GACM (German Association for Computational Mechanics) 2008 - 2010 Präsident der GAMM (Society for Applied Mathematics and Mechanics) 2007 - 2011 Mitglied des ERC review panels für Starting and Consolidator Grants 2006 - 2015 Mitglied des Auswahlausschusses der Alexander von Humboldt Stiftung für Forschungsstipendien 2004 - 2011 Mitglied des DFG Fachkollegiums Architektur / Bauingenieurwesen sowie Medizintechnik seit 2004 Mitglied der Acatech (German Academy of Technology Science) seit 2003 Mitherausgeber des “Bauingenieur” seit 2003 Mitglied der Akademie für Wissenschaften und Literatur Mainz 2001 - 2004 Mitglied der Beratungskommission des "Transatlantic Science and Humanities Program" der Alexander von Humboldt Stiftung 2001 - 2008 Vizepräsident der GACM seit 2001 Editor in Chief von “Computational Mechanics” 1996 - 2001 Mitglied des DFG Senatsausschusses Graduiertenkollegs -
Ehrungen
2015 Ehrendoktorwürde „Dr.-Ing. E.h.“ der TU Darmstadt 2013 Ehrendoktorwürde „Dr. h.c.“ der ENS Cachan, Frankreich 2013 Ehrendoktorwürde „Dr. h.c.“ der University of Technology Posen 2013 “Zienkiewicz Medal” der Polish Association for Computational Mechanics (PACM) 2011 „Grand Prize“ of the Japan Society for Computational Engineering and Science (JSCES), Tokyo 2011 “Russell Severance Springer Professor“, Visiting Chair at ME Department, UC Berkeley 2010 „IACM Award“ der IACM 2008 „Euler Medal“ der ECCOMAS 2006
Computational Mechanics Award (IACM) 2004
"Highly Commended Award" for paper in Engineering Computations 2003 - 2004
ARC Linkage Professorship at University of Newcastle, NSW, Australia 2002
Fellow of the International Association for Computational Mechanics (IACM) 2002
"Literati Award for Excellence" to the best paper 2002 in Engineering Computations 1981
"Christian-Kuhlemann-Scholarship" for best PhD-thesis, University of Hannover -
Mitgliedschaften
seit 2018 Korrespondierendes Mitglied der Croatian Academy of Sciences and Arts seit 2004 Mitglied von Acatech (Nationalakademie für Technikwissenschaften) seit 2004 Mitglied der Akademie für Wissenschaft und Literatur Mainz seit 1999 Mitglied der Braunschweigischen Wissenschaftlichen Gesellschaft -
Bücher
- Multiscale Modeling of Heterogenous Structures
(J. Soric, P. Wriggers, O. Allix)
Lecture Notes in Applied and Computational Mechanics 86
Springer Verlag
2018, 381 Pages
ISBN 3-319-65463-8
- Biomedical Technology - Modeling, Experiments and Simulation
(P. Wriggers, Th. Lenarz)
Lecture Notes in Applied and Computational Mechanics 84
Springer Verlag
2018, 362 Pages
ISBN 3-319-59547-4
- Advanced Finite Element Technologies
(J. Schröder, P. Wriggers)
CISM International Centre for Mechanical Sciences 566
Springer Verlag
2016, 236 Pages
ISBN 3-319-31923-0
- Automation of Finite Element Methods
(J. Korelc, P. Wriggers)
Springer International Publishing Switzerland
2016, 346 Pages
ISBN 3-319-39003-1
- Nonlinear Finite Element Methods
Springer-Verlag Berlin/Heidelberg
2008, 559 Pages
ISBN 3-540-71000-4
- Nichtlineare Finite-Element-Methoden
Springer-Verlag Berlin/Heidelberg
2001. XI, 495 S. 250 Abb. Brosch.
ISBN 3-540-67747-X
- New Developments in Contact Problems
Springer-Verlag Berlin/Heidelberg
1999. VII, 246 pp. 97 figs. Softcover
ISBN 3-211-83154-1
- Computational Contact Mechanics
Wiley-Verlag
July 2002, 464 Pages
ISBN: 0-471-49680-4
- Error-controlled Adaptive Finite Elements in Solid Mechanics
(Erwin Stein (Editor), Ekkehard Ramm, E. Rank, R. Rannacher, K. Schweizerhof, E. Stein, W. Wendland, G. Wittum, Peter Wriggers, Walter Wunderlich) Wiley-Verlag
November 2002, 422 Pages ISBN: 0-471-49650-2
- An Introduction to Computational Micromechanics
(Zohdi, T.I., Wriggers, Peter)
Springer-Verlag Berlin/Heidelberg
2004, 196 Pages
ISBN: 3-540-22820-9
- Technische Mechanik, Band 4
Hydromechanik, Elemente der Höheren Mechanik, Numerische Methoden
Springer-Verlag Berlin/Heidelberg
3. Aufl. 1999. XI, 434 S. 213 Abb. Brosch.
ISBN 3-540-65205-1
- Formeln und Aufgaben zur Technischen Mechanik 1-3
Springer-Verlag Berlin/Heidelberg
- Multiscale Modeling of Heterogenous Structures
-
Journals
- Editor-in-Chief:
- Associated Editor
International Journal for Numerical methods in Engineering (1998-2001)
Der Bauingenieur (since 2003)
- Member of the Editorial Board:
- Since 1990 Engineering Computations
- Since 1990 International Journal for Numerical Methods in Engineering
- Since 1994 International Journal for Engineering Analysis and Design
- Since 1995 Archives of Computational Methods in Engineering
- Since 1997 Computers & Structures
- Since 1997 International Journal of Solids and Structures
- Since 1997 International Journal of Forming Processes
- Since 1998 Engineering with Computers
- Since 2000 Computer Methods in Applied Mechanics and Engineering
- Since 2000 International Journal for Computational Civil and Structural Engineering
- Since 2000 Computational Engineering Science
- Since 2002 Journal of Computational Biomechanics
- Since 2003 International Journal of Computational Methods
- Since 2003 Latin American Journal of Solids and Structures
- Since 2003 International Journal for Multiscale Computational Engineering
- Editor-in-Chief:
-
Forschungsprojekte
FOR5250
-
In-silico-Design von Implantaten auf der Basis eines MultiskalenansatzesIn der Forschungsgruppe sollen optimierte permanente Implantate entwickelt werden. Durch die additive Fertigung ergibt sich eine große Freiheit in der geometrischen Gestaltung. Dadurch kann die Gitterstruktur im Implantat gezielt eingestellt werden, um das Implantat optimal an den umgebenden Knochen anzupassen. Die Förderperiode 1 konzentriert sich auf permanente Implantate. Dabei muss besonders die Funktionsfähigkeit des Implantats über einen langen Belastungszeitraum garantiert sein. In diesem TP-7 wird ein skalenübergreifendes Modell entwickelt, das den Einfluss von Schädigungseffekten auf der Mikroskala, von Kerbeffekten der Gitterstrukturen auf der Mesoskala sowie das Stress Shielding auf der Makroskala berücksichtigt. Dazu wird ein neuartiger Homogenisierungsansatz eingeführt, der mittels Machine Learning eine zeiteffiziente Kopplung der Skalen erlaubt. Zusätzlich wird die Thermodynamische Topologieoptimierung weiterentwickelt, um skalenübergreifend das optimale digitale Implantat unter Berücksichtigung von prozessbedingten Schädigungs- und belastungsinduzierten Ermüdungseffekten zu bestimmen. Um das Optimum zwischen Gitterstruktur und Funktionsfähigkeit zu finden, wird ein effizienter Multiskalen-Algorithmus entwickelt. Das Ermüdungsverhalten bei Beanspruchung bei hohen (HCF, engl. High Cycle Fatigue) und sehr hohen Lastspielzahlen (VHCF, engl. Very High Cycle Fatigue) wird auf der Mikroskala modelliert. Dabei wird angenommen, dass das Versagen hauptsächlich an den Korngrenzen auftritt. Die Untersuchung des Einflusses der Gitterstruktur auf die Spannungs-Dehnungs-Beziehung findet auf der Mesoskala statt. Die Optimierung des Implantats hinsichtlich Betriebsfestigkeit, Tragfähigkeit und Morphologie wird schlussendlich auf der Makroskala durchgeführt. Der Datentransfer zwischen den einzelnen Skalen soll auf speziell entwickelten künstlichen neuronalen Netzen basieren.Leitung: Philipp Junker, Peter WriggersTeam:Jahr: 2022
Damage modeling
-
In-silico-Design von Implantaten auf der Basis eines MultiskalenansatzesIn der Forschungsgruppe sollen optimierte permanente Implantate entwickelt werden. Durch die additive Fertigung ergibt sich eine große Freiheit in der geometrischen Gestaltung. Dadurch kann die Gitterstruktur im Implantat gezielt eingestellt werden, um das Implantat optimal an den umgebenden Knochen anzupassen. Die Förderperiode 1 konzentriert sich auf permanente Implantate. Dabei muss besonders die Funktionsfähigkeit des Implantats über einen langen Belastungszeitraum garantiert sein. In diesem TP-7 wird ein skalenübergreifendes Modell entwickelt, das den Einfluss von Schädigungseffekten auf der Mikroskala, von Kerbeffekten der Gitterstrukturen auf der Mesoskala sowie das Stress Shielding auf der Makroskala berücksichtigt. Dazu wird ein neuartiger Homogenisierungsansatz eingeführt, der mittels Machine Learning eine zeiteffiziente Kopplung der Skalen erlaubt. Zusätzlich wird die Thermodynamische Topologieoptimierung weiterentwickelt, um skalenübergreifend das optimale digitale Implantat unter Berücksichtigung von prozessbedingten Schädigungs- und belastungsinduzierten Ermüdungseffekten zu bestimmen. Um das Optimum zwischen Gitterstruktur und Funktionsfähigkeit zu finden, wird ein effizienter Multiskalen-Algorithmus entwickelt. Das Ermüdungsverhalten bei Beanspruchung bei hohen (HCF, engl. High Cycle Fatigue) und sehr hohen Lastspielzahlen (VHCF, engl. Very High Cycle Fatigue) wird auf der Mikroskala modelliert. Dabei wird angenommen, dass das Versagen hauptsächlich an den Korngrenzen auftritt. Die Untersuchung des Einflusses der Gitterstruktur auf die Spannungs-Dehnungs-Beziehung findet auf der Mesoskala statt. Die Optimierung des Implantats hinsichtlich Betriebsfestigkeit, Tragfähigkeit und Morphologie wird schlussendlich auf der Makroskala durchgeführt. Der Datentransfer zwischen den einzelnen Skalen soll auf speziell entwickelten künstlichen neuronalen Netzen basieren.Leitung: Philipp Junker, Peter WriggersTeam:Jahr: 2022
Improving Accuracy and Performance of Meshfree Methods
-
Process Simulation for Selective Laser MeltingA phase change model for solution with the meshfree Galerkin OTM method is developed.Leitung: Christian Weißenfels, Peter WriggersTeam:Jahr: 2016
-
ISPH-based Simulation of the Selective Laser Melting ProcessDevelopment of a thermo-mechanical model for the simulation of the SLM process.Leitung: Christian Weißenfels, Peter WriggersTeam:Jahr: 2017
-
Using Machine Learning to Improve the Modelling of Machining and Cutting ProcessesMetal cutting is a fundamental process in industrial production. The fast and accurate on-line prediction of metal cutting processes is crucial for the Intelligent Manufacturing (IM). With the advent of high-speed computing, robust numerical algorithms and machine learning technology, computational modelling serves as a tool for not only accurate but also fast predicting the complex machining processes and understanding the complex physics. In this work, the machine learning based numerical model is developed for simulation of metal cutting processes.Leitung: C. Weißenfels, P. WriggersTeam:Jahr: 2018Förderung: China Scholarship Council (CSC)
-
Peridynamic Galerkin MethodsSimulation-driven product development is nowadays an essential part in the industrial digitalization. Notably, there is an increasing interest in realistic high-fidelity simulation methods in the fast-growing field of additive and ablative manufacturing processes. Thanks to their flexibility, meshfree solution methods are particularly suitable for simulating the stated processes, often accompanied by large deformations, variable discontinuities, or phase changes. Furthermore, in the industrial domain, the meshing of complex geometries represents a significant workload, which is usually minor for meshfree methods. Over the years, several meshfree schemes have been developed. Nevertheless, along with their flexibility in discretization, meshfree methods often endure a decrease in accuracy, efficiency and stability or suffer from a significantly increased computation time. Peridynamics is an alternative theory to local continuum mechanics for describing partial differential equations in a non-local integro-differential form. The combination of the so-called peridynamic correspondence formulation with a particle discretization yields a flexible meshfree simulation method, though does not lead to reliable results without further treatment. In order to develop a reliable, robust and still flexible meshfree simulation method, the classical correspondence formulation is generalized into the Peridynamic Galerkin (PG) methods in this project. On this basis, conditions on the meshfree shape functions of virtual and actual displacement are presented, which allow an accurate imposition of force and displacement boundary conditions and lead to stability and optimal convergence rates. Based on Taylor expansions moving with the evaluation point, special shape functions are introduced that satisfy all the previously mentioned requirements employing correction schemes. In addition to displacement-based formulations, a variety of stabilized, mixed and enriched variants are developed, which are tailored in their application to the nearly incompressible and elasto-plastic finite deformation of solids, highlighting the broad design scope within the PG methods. Compared to related Finite Element formulations, the PG methods exhibit similar convergence properties. Furthermore, an increased computation time due to non-locality is counterbalanced by a considerably improved robustness against poorly meshed discretizations.Leitung: Christian Weißenfels, Peter WriggersTeam:Jahr: 2019
-
Numerical simulation of pile installation in a hypoplastic framework using an SPH based MethodIn this project, a 3D computational tool using smoothed particle hydrodynamics (SPH) is developed which based on a hypoplastic constitutive approach for the mechanical behavior of the soil. The numerical code is firstly validated against a benchmark problem. Then several test cases are simulated including monotonic and vibratory penetration of piles into the soil. A good agreement with the experimental observation is found. Additionally, the impact of pile running in the presence of sheetpiles (retainers) are investigated to see how pile running can alter the applied forces on the sheet piles. The simulation of such complex geotechnical problems which involve large deformation, material nonlinearity and moving boundary conditions demonstrates the applicability and versatility of the proposed numerical tool in this field.Leitung: Peter WriggersTeam:Jahr: 2020
In Silicio Analyses
-
Interfacial effects and ingrowing behaviour of magnesium-based foams as bioresorbable bone substitute materialLeitung: P. WriggersTeam:Jahr: 2016Förderung: DFG
-
Smart hydrogels for drug-delivery and bioprinting applicationsLeitung: Peter WriggersTeam:Jahr: 2017
-
In-stent restenosisLeitung: Michele Marino, Peter WriggersTeam:Jahr: 2018
-
Characterization and Simulation of Biofilm Growth and Degradation (SIIRI - DFG TRR 298)Leitung: Meisam Soleimani, Philipp Junker, Peter WriggersTeam:Jahr: 2022
Virtual Elements For Engineering Appications
-
2D VEM for crack-propagationLeitung: F. Aldakheel, B. Hudobivnik, P. WriggersTeam:Jahr: 2018Förderung: IRTG 1627
-
Virtual element method (VEM) for phase-field modeling of brittle and ductile fractureLeitung: F. Aldakheel, B. Hudobivnik, P. WriggersJahr: 2018Förderung: DFG SPP 1748
-
Virtual Element Method for Dynamic ApplicationsThe Virtual Element Method is a recent developed discretization method, which can be seen as an extension of the classical Galerkin finite element method. It has been applied to various engineering fields, such as elasto-plasticity, multiphysics, damage and fracture mechanics. This project focuses on the extension of VEM towards dynamic applications. In the first part the appropriate computation of the Massmatrix regarding the vitual element ansatzspace will be done. In future works, VEM will be applied to engineering problems, considering the dynamic behavior.Leitung: F. Aldakheel, B. Hudobivnik, P. WriggersTeam:Jahr: 2019
-
Virtual Element Method for 3D ContactThe computational modeling of contact has always been a challenging task, especially when the interface between two or more bodies, which will come into contact, has a non-conforming mesh. In this case, the virtual element method (VEM) can be used to modify the interface mesh, such that a conforming mesh arises. In this project, we employ the virtual element method in 3D to project the interface meshes between each other, such that new nodes can be inserted on both bodies, to obtain matching meshes at the interface. The insertion of new nodes does not change the Ansatz or total number of elements. These new nodes are either stemming from already existing vertices, or edge-to-edge intersections (a). The later can be easily inserted in to the existing mesh, since this nodes are located at element edges. Nodes, which are getting projected from vertices will most probably lie in element faces. The insertion of these nodes needs an additional treatment. However, the projection-based node insertion algorithm leads to matching meshes and allows to employ a simple node-to-node contact at the interface. The numerical results are showing that this way of modeling contact passes the patch test exactly (b)-(c).Leitung: F. Aldakheel, B. Hudobivnik, P. WriggersTeam:Jahr: 2020
-
Virtual element formulation for trusses and beamsThe virtual element method (VEM) was developed not too long ago, starting with the paper Beirao da Veiga et al. (2013) related to elasticity in solid mechanics. The virtual element method allows to revisit the construction of different elements in solid mechanics, however, has so far not been applied to one dimensional structures like trusses and beams. In this project, several VEM elements suitable for trusses and beams are derived. It could be shown that the virtual element methodology produces elements that are equivalent to well know finite elements but also elements that are different, especially for higher order ansatz functions, like 2nd and 3rd order for the truss and 4th order for the beam. It will be shown that these elements can be easily incorporated in classical finite element codes since they have the same nodal degrees of freedom as finite beam elements. Furthermore, the formulation allows to compute nonlinear structural problems undergoing large deflections and rotations.Leitung: P. WriggersJahr: 2021
-
Virtual Kirchhoff-Love plate elements for isotropic and anisotropic materialsThe virtual element method allows to revisit the construction of Kirchhoff-Love elements because the C1-continuity condition is much easier to handle in the VEM framework than in the traditional finite element methodology. Here we study the two most simple VEM elements suitable for Kirchhoff-Love plates as stated in (Brezzi and Marini (2013)). The formulation contains new ideas and different approaches for the stabilization needed in a virtual element, including classic and stabilization. An efficient stabilization is crucial in the case of C1-continuous elements because the rank deficiency of the stiffness matrix associated to the projected part of the ansatz function is larger than for C0-continuous elements. This project aims at providing engineering inside in how to construct simple and efficient virtual plate elements for isotropic and anisotropic materials and at comparing different possibilities for the stabilization. Different examples and convergence studies discuss and demonstrate the accuracy of the resulting VEM elements. Finally, reduction of virtual plate elements to triangular and quadrilateral elements with 3 and 4 nodes, respectively, yields finite element like plate elements. These C1-continuous elements can be easily incorporated in legacy codes and demonstrate an efficiency and accuracy that is much higher than provided by traditional finite elements for thin plates.Leitung: P. Wriggers, B. HudobivnikTeam:Jahr: 2021
Phase Field Modeling of Fracture in Multi-Field Environments
-
Water-induced damage mechanisms of cyclic loaded high-performance concretesLeitung: P. WriggersTeam:Jahr: 2017Förderung: DFG SPP 2020, erste FörderperiodeLaufzeit: 3 Jahre
-
Virtual element method (VEM) for phase-field modeling of brittle and ductile fractureLeitung: F. Aldakheel, B. Hudobivnik, P. WriggersJahr: 2018Förderung: DFG SPP 1748
Multiscale and Multifield problems
-
Multiscale Method for Hydro-Chemo-Thermo-Mechanics Coupling due to Alkali Silica Reaction in ConcreteAlkali Silica Reaction(ASR) is one of most determinant reasons leading to the deterioration of concrete structures, which can be ascribed to the expansion of gel produced by ASR in the microstructural level of concrete. The challenge in the modeling of ASR is due to the necessity to take into account the presence of heterogeneities and physical processes distributed over multiple length scales. With increasing computation power and the tomography scan technology, it can be implemented by numerical simulation . In this contribution, 3D multiscale hydro-chemo-thermal-mechanical coupling based on a staggered method is demonstrated, which explicitly describes the damage evolution originating from the chemical reaction in the microscale and the dependence on environmental factors.Leitung: P. WriggersTeam:Jahr: 2009
-
MULTIPHYSICS COMPUTATIONAL HOMOGENIZATION METHODOLOGIESComputational homogenization techniques that are amenable to a multiscale implementation are being developed for multiphysics problems at the finite deformation regime. Applications include the estimation of the contact conductance for rough interfaces and the modeling of the coupled thermomechanical response of heterogeneous materials.Leitung: P. Wriggers, I. TemizerJahr: 2009
-
Direct Numerical Simulation of Multiphase FlowsMultiphase flows consisting of a continuous fluid phase and a dispersed phase of macroscopic particles are present in many engineering applications. In general, a main task in the study of the particle-laden fluid flow of an application is to make predictions about the system's nature for various boundary conditions, since, depending on the volume fraction and mass concentration of the dispersed phase a fluid-particle system shows quite different flow properties. Unfortunately, often it is impossible to investigate such a system experimentally in detail or even at all. An option to capture and to predict its properties is performing a direct numerical simulation of the particulate fluid. For this purpose, an efficient approach is developed in this project by coupling the discrete element method and finite element method.Leitung: P. WriggersTeam:Jahr: 2009
-
Numerical modeling of electrical contactsThe focus of this work is the investigation of the behavior in electrical contacts, where electrical, thermal and mechanical fields are coupled. Specifically, theoretical constitutive models for the electrical conductance and electrical wear phenomena are developed and implemented in a three dimensional finite element setting. Also a new relation for wear is proposed, where the amount of wear is coupled to the dissipation arising at the contact interface. </a></p>Leitung: P. WriggersTeam:Jahr: 2009
-
RAMWASS - Integrated Decision Support System for Risk Assessment and ManagementThe objective of the EU-project RAMWASS is to develop and validate a new decision support system (DSS) for the risk assessment and management for the prevention and/or reduction of the negative impacts caused by human activities on the water/sediment/soil system at river basin scale in fluvial ecosystems.Leitung: P. WriggersTeam:Jahr: 2009
-
Homogenization procedures for coupled thermo-chemo-mechanical problemsIn order to understand processes of continuum damage mechanics it is necessary to investigate thermo-chemo-mechanical coupled processes at micro scale. However for engineering purposes it is still necessary to be able to model these processes at macro scale, especially when large structures have to be designed. Thus a homogenization procedure or a FE^2 framework is necessary to transform the relation, describing the coupled thermo-chemo-mechanical response at micro scale to the macro scale. The related equations and procedures have to be developed and implemented in a finite element software system.Leitung: P. Wriggers, E. BarangerTeam:Jahr: 2013
-
Multi-Fluid Simulations for High Density RatiosAlthough the contact between fluids or gases of different densities is a common event in nature, like the interaction of water and air, the simulation of multiple fluids often comes along with numerous problems. With the Lagrangian description of continuous fluids in terms of the Smoothed Particle Hydrodynamics (SPH) method multi-fluid interactions within the particle scale can simulated. Nevertheless with the standard SPH algorithms multi-fluid problems can not be solved because of the density jumps at the interfaces. Within the project the state of the art of current multi-fluid approaches are compared and evaluated to develop appropriate methods for the simulation of multi-fluid systems with high density ratios.Leitung: P. Wriggers, B. AvciTeam:Jahr: 2014
-
Towards multiscale modeling of Abrasive wearThe work is motivated towards understanding wear as a multiscale-multiphysics approach. A 3D framework is developed to simulate cracks propagation in a microstructure due to contact loading to eventually predict wear trends in filled elastomeric compounds.Leitung: P. WriggersTeam:Jahr: 2015
-
Entropic approach to modeling Mullins effect in non-crystallizing filled elastomersThe work was done in collaboration with Mrs. Aarohi B. Shah and Dr. Julian J Rimoli of School of Aerospace Engineering, Georgia Tech, USA. In this work, we investigate non-crystallizing nanoparticle-reinforced polymers. The effects of the interface rubber between elastomeric matrix and filler particles and its alteration are investigated as a primary cause of Mullins and Payne effect.Leitung: P. Wriggers, J. J. RimoliTeam:Jahr: 2016
Life time prediction and failure of modern complex materials and structures
-
Fatigue lifetime prediction using Wavelet transformation induced multi-time scaling (WATMUS)A fast and accurate numerical method for fatigue lifetime prediction using eXtended Finite Element Method(XFEM) and WATMUSLeitung: S. Löhnert, P. WriggersTeam:Jahr: 2017
-
Creep deformation of nickel based superalloysModeling of nickel based superalloys on two scales using crystal plasticity and XFEM methods.Leitung: P. WriggersTeam:Jahr: 2018
Material modeling
-
DEVELOPMENT OF A MATERIAL MODEL FOR METAL SHEETS AT FINITE DEFORMATIONTechnical procedures claim an improved material model for the simulation of metal forming processes. An effective, anisotropic elastoplastic material model for the macroscopic material behaviour for sheet metals is developed for further usage in commercial finite element programs.Leitung: P. Wriggers, S. LöhnertTeam:Jahr: 2009
-
Multiskalenmodellierung und erweiterte finite Elmente Analyse von Bruchprozessen in KeramikDie erweiterte finite Elemente Methode (XFEM) ermöglicht die Modellierung von Rissen unabhängig von der Vernetzung. Dadurch hat sich die XFEM für Rissberechnungen durchgesetzt. Vor allem in der Nähe von Makrorissspitzen muss die Mikrostruktur des Materials berücksichtigt werden, da Mikrorisse das Risswachstum verstärken oder abschwächen können. Mikrorisse entstehen unter Belastung in der Nähe des fortschreitenden Makrorisses. Dies motiviert eine Mehrskalenmodellierung z.B. mit der Multiskalenprojektionsmethode, die in der Lage ist, Feinskaleneffekte dort genau aufzulösen, wo es notwendig ist. Auch wenn die Modellierung von Rissen mit der XFEM unabhängig von der Vernetzung ist, hat das Netz einen Einfluss auf die Genauigkeit der Spannungen. Spannungssingularitäten können mit feineren Netzen besser erfasst werden. Die Berechnung eines Diskretisierungsfehlers für den Mikrobereich ermöglicht eine adaptive Verfeinerung des Netzes, so dass genaue Ergebnisse erzielt werden können. Die verwendeten Modelle werden durch einen Vergleich mit experimentellen Daten validiert.Leitung: P. Wriggers, S. LöhnertTeam:Jahr: 2009
-
FAILURE ANALYSIS - ERROR ESTIMATION FOR MULTISCALE METHODSThis project is concerned with the development of tools for error-estimation based adaptive multiscale failure analysis. In order to enable a more accurate mechanical analysis of composite aircraft substructures, existing discretisation error estimators will be improved to be used as indicators for mesh refinement. Additionally, physical error estimators will be developed to identify regions where higher-order material modelling is required.Leitung: P. WriggersTeam:Jahr: 2009
-
ADAPTIVE MULTISCALE MODELING AND ANALYSIS OF HETEROGENEOUS MATERIALSAccurate computational analyses of a composite structure requires multiple levels of resolution: (i) a region where effective elastic properties are employed, (ii) a region where embedded micro-macro problems are solved, and (iii) a region where explicit microstructural evaluation is required. Development of such computational schemes for the adaptive multiscale analysis of heterogeneous materials is the main purpose of this project.Leitung: P. Wriggers, I. TemizerJahr: 2009
-
Crack propagation and crack coalescence in a multiscale frameworkIn this project a numerical framework for propagating and intersecting cracks on micro and macro scales is set up. Modeling cracks using the eXtended Finite Element Method (XFEM) provides an accurate and efficient numerical framework to model propagating and intersecting cracks. Since cracks of different length scales are assumed, a multiscale method is applied in order to be numerical efficient.Leitung: S. Löhnert, P. WriggersTeam:Jahr: 2010
-
Multiscale Methods for Fracturing SolidsIn this project multiscale methods and homogenization techniques for the numerical simulation of three dimensional fracture processes are developed. These methods are important in aerospace and automotive industries and many other fields of mechanical and civil engineering as well as in bio-mechanics and material science. They will improve the prediction of the failure of structures.Leitung: P. Wriggers, S. LöhnertTeam:Jahr: 2011
-
Mehrskalenmodellierung von lokalisiertem duktilen VersagenEs existieren viele phänomenologische Materialmodelle, die duktile Schädigung vorhersagen. Um jedoch die Materialeigenschaften und Schädigungsmechanismen der vorliegenden Mikrostrukturen flexibel einzubinden, ist eine Mehrskalenformulierung notwendig. Die existierenden Multiskalenmodelle beschränken sich jedoch zumeist auf spröde Mikroschädigung. Aus diesem Grund soll in diesem Projekt eine Mehrskalenmethode entwickelt werden, die lokalisiertes plastisches Versagen aufgrund einer duktil schädigenden Mikrostruktur vorhersagen kann.Leitung: P. WriggersTeam:Jahr: 2012Förderung: DFG im Normalverfahren
-
Computational homogenisation of elasto plastic materialParticle-matrix materials are commonly used in different fields(aerospace components, bicycle frames and racing car bodies) for its mechanical and economical advantages,such as high strength, low weight and less expense.However,Because of the microstructural complexities,it is very time and labor consuming to determin the mechanical properties of composite materials. Hence,in order to reduce laboratory expense, numerical simulations via Homogenized techniques are performed on RVE to predict mechanical behavior of composite material.Leitung: P.WriggersTeam:Jahr: 2012
-
Mesoscale modeling of large deformation behavior of nanoparticle-reinforced elastomersElastomeric materials exhibit distinct fracture behavior compared to several other materials. The fracture process involves extensive chain scission (similar to crazing) in rubbery elastomers. Upon loading, the chains start to align along the direction of loading forming a zone just ahead of the crack tip. Upon further loading, more chains are drawn in from the bulk to eventually fail and leading to formation of crack front. Additionally, due to the viscoelastic nature of these polymers, there is a viscoelastic dissipation of energy just ahead of the crack tip leading to phenomena like crack tip blunting etc. A 3D finite thickness cohesive zone mode, alongside directional node release is used for modeling fracture in filled elastomeric materials.Leitung: P.. WriggersTeam:Jahr: 2015
-
Process Simulation for Selective Laser MeltingA phase change model for solution with the meshfree Galerkin OTM method is developed.Leitung: Christian Weißenfels, Peter WriggersTeam:Jahr: 2016
-
Nanoindentation for material property characterizationIn this work, techniques are developed for nanoindentation of soft polymers and brittle powdery materials and measurement of properties like modulus, hardness and fracture toughness.Leitung: P. Wriggers, S. LöhnertTeam:Jahr: 2016
-
Hypoplastic material models for soil-structure interaction problemsIn this work, a hypoplastic material model is implemented using AceGen with an eventual goal to model soil-structure interaction.Leitung: P. Wriggers, C. WeissenfelsTeam:Jahr: 2016
-
Entropic approach to modeling Mullins effect in non-crystallizing filled elastomersThe work was done in collaboration with Mrs. Aarohi B. Shah and Dr. Julian J Rimoli of School of Aerospace Engineering, Georgia Tech, USA. In this work, we investigate non-crystallizing nanoparticle-reinforced polymers. The effects of the interface rubber between elastomeric matrix and filler particles and its alteration are investigated as a primary cause of Mullins and Payne effect.Leitung: P. Wriggers, J. J. RimoliTeam:Jahr: 2016
-
In silico morphogenesis of collagen tissues for targeted drugs and bio-printingThis project targets to understand the mechanisms behind the morphogenesis and the development of living tissues. To this aim, mechanical and biological actions that contribute to confer tissue desired topology and functionality will be modelled and analysed in silico. A computational framework for the modeling of tissue morphogenesis in natural and bio-printed systems will be developed. In particular, the project will address: the multiscale hierarchical and organized arrangement of tissue constituents; the chemo-mechanical interaction among tissue constituents and among cells; the chemo-mechano-biological mechanisms driving growth and remodeling; the extrusion and the curing of multicellular aggregates blended with bio-inks. Obtained results will target to elucidate mechanisms behind tissue functional/dysfunctional structure; conceive targeted drug systems for stimulating optimal molecular pathways promoting tissue healing; develop novel or optimize existing 3D bio-printing technologies.Leitung: M. MarinoJahr: 2017Förderung: Masterplan SmartBiotecs, MWK (Lower Saxony, Germany)
Biomedical technology
-
Numerical simulation and experimental validation of biofilm formationIn this Reserch , a state-of-the-art 3D computational model has been developed to investigate biofilms in a multi-physics framework using smoothed particle hydrodynamics (SPH) based on a continuum approach. Biofilms are in fact aggregation of microorganisms such as bacteria. Biofilm formation is a complex process in the sense that several physical phenomena are coupled and consequently different time-scales are involved. On one hand, biofilm growth is driven by biological reaction and nutrient diffusion and on the other hand, it is influenced by the fluid flow causing biofilm deformation and interface erosion in the context of fluid and deformable solid interaction (FSI). The geometrical and numerical complexity arising from these phenomena poses serious complications and challenges in grid-based techniques such as finite element (FE). Such issues are generally referred to as mesh distortion. Here the solution is based on SPH as one of the powerful meshless methods. SPH based computational modeling is quite new in the biological community and the method is uniquely robust in capturing the interface-related processes of biofilm formation especially erosion. The fact is that SPH is a versatile tool owing to its adaptive Lagrangian nature in the problems whose geometry is temporarily varying (dynamic). Moreover, its mesh-less feature is considered to be favorable in interpreting the method as a particle based one. Hence, it is quite straight forward to incorporate complex interactions and ad-hoc rules at the particle level into the method. This is the case for the problems with coupled governing equations with different time and length scale. In this thesis all different physics which account for biofilm formation have been implemented in the framework of SPH and one can say that this tool is purely SPH based. Besides the numerical simulation, experiments were conducted by our partners in the medical school of Hannover. The obtained numerical results show a good agreement with experimental and published data which demonstrates that the model is capable of predicting overall spatial and temporal evolution of the biofilms. The developed tool can be employed in either controlling the detrimental biofilms or harnessing the beneficial ones.Leitung: Peter WriggersTeam:Jahr: 2013
-
Gekoppelte Simulation von Aerosolströmungen in asthmatischen BronchienDas Ziel dieses Projektvorhabens ist es, auf Basis eines gekoppelten 3D Mehrfeldmodells die partikelbeladene Luftströmung in gesunden sowie in asthmatisch verengten Bronchien anhand von numerischen Simulationen zu studieren.Leitung: P. Wriggers, B. AvciTeam:Jahr: 2014Förderung: Leibniz Universität Hannover, Wege in die Forschung
-
Advanced multiscale computational mechanics for physiopathological behavior analysis of tissues and organsThe physiological functionalities of large biological structures are highly affected by the mechanics of living tissues which is, in turn, related to microstructural arrangement of histological constituents and biochemical environment at nanoscale. Present research activity aims to develop a novel tissue multiscale description, including also inelastic mechanisms, coupled with an advanced computational formulation under finite strain and large-displacement assumptions. As a result, an innovative in-silico tool for simulation of organs and large biological structures will be developed, allowing to predict pathology-related damage or pharmacological-related healing and providing novel diagnostic and clinical indications for highly patient-specific medical treatments.Leitung: P. Wriggers, M. MarinoJahr: 2015Förderung: Alexander von Humboldt-Stiftung
-
Patient-Specific FSI Analysis of the Blood Flow in the Thoracic AortaThe complexity of numerical modeling and simulation of blood flow in patient-specific thoracic aorta geometries leads to a number of major computational challenging issues. For instance, for an adequate simulation of the flow and pressure field, the incompressible Navier-Stokes equations have to be solved with the assumption that the relatively thin blood vessels suffer large displacements and undergo large elastic or visco-elastic deformations caused by the pulsatile blood flow. Subsequently, inaccurate predictions would be obtained for the hemodynamic quantities with the very simplifying rigid-wall assumption (CFD modeling). Moreover, when applying only the CFD modeling approach the essential phenomena of pressure wave propagation in cardiovascular systems are disregarded, however these phenomena are of major relevance for clinical practice. Accordingly, strongly coupled FSI schemes are inevitable for comprehensive blood flow simulations in arterial systems, and as blood and vascular walls have comparable densities, monolithic or at least partitioned strongly coupled FSI schemes are required for solving the multi-physics problem with its inherent significant added-mass effects.Leitung: P. Wriggers, B. AvciTeam:Jahr: 2016
-
Computational modeling of in-stent restenosisThis project aims to develop a computational tool for the modeling of the long-term behaviour of stent deployment, with a special focus on both current and prospective approaches. A multiscale description of arterial constitutive behaviour will be employed, including possible damage due to the stenting procedure. Moreover, the chemo-biological mechanisms underlying the growth and remodelling due to wound healing in tissues will be introduced. Therefore, a multiphysics computational framework will be developed and applied for the analysis of both metal and drug-eluting stents. The project will allow to identify the dominant mechanisms driving in-stent restenosis, deciphering the role of the different molecular species in the pathological remodeling of arteries. The final target is to optimise the clinical outcome of current approaches and propose targeted therapeutic approaches.Leitung: M. MarinoJahr: 2017Förderung: Masterplan SmartBiotecs, MWK (Lower Saxony, Germany)
-
Red blood cell simulation using a coupled shell-fluid analysis purely based on the SPH methodIf the rheological behavior of a Red-Blood-Cell (RBC) changes, for example due to some infection, it is reflected in its deformability when it passes through the microvessels. It can severely affect its proper function which is providing the oxygen and nutrient to the living cells. In this research project, a novel 3D numerical method has been developed to simulate RBCs based on the interaction between a shell-like solid structure and a fluid. RBC is assumed to be a thin shell encapsulating an internal fluid (Cytoplasm) which is submerged in an external fluid (blood plasma). The approach is entirely based on the smoothed particle hydrodynamics (SPH) method for both fluid and the shell structure. The method was motivated by the goal to benefit from the Lagrangian and meshless features of SPH in order to handle several complexities in the problem due to the coupling between the RBC membrane as a deformable elastic shell and interior/exterior fluids.Leitung: Peter WriggersTeam:Jahr: 2017Laufzeit: 3 Jahre
High Performance Computing (HPC)
-
In many cases, massive parallel large-scale computations are indispensable for solving problems of practical interest. The numerical treatment of such class problems requires not only highly efficient scalable parallel solvers, moreover, efficient parallel algorithms covering the whole simulation pipeline – also including pre- and post-processing, mesh generation and design solvers considering uncertainties – are essential to model and to simulate large-scale or exascale class problems. The specific goal of this project is therefore the development and implementation of new parallel algorithms and methods that will allow to solve large-scale class problems with high efficiency.Leitung: P. Wriggers, B. AvciTeam:Jahr: 2014Förderung: FP7 of the EU
-
ISPH-based Simulation of the Selective Laser Melting ProcessDevelopment of a thermo-mechanical model for the simulation of the SLM process.Leitung: Christian Weißenfels, Peter WriggersTeam:Jahr: 2017
Fracture Mechanics/ XFEM
-
Crack propagation and crack coalescence in a multiscale frameworkIn this project a numerical framework for propagating and intersecting cracks on micro and macro scales is set up. Modeling cracks using the eXtended Finite Element Method (XFEM) provides an accurate and efficient numerical framework to model propagating and intersecting cracks. Since cracks of different length scales are assumed, a multiscale method is applied in order to be numerical efficient.Leitung: S. Löhnert, P. WriggersTeam:Jahr: 2010
-
Large Deformation Cohesive-Zone Element for Fracture in Rubbery PolymersIn this work, a 3D cohesive zone element is developed considering material and geometric nonlinearities and suitable for modeling large deformations and rotations.Leitung: P. WriggersTeam:Jahr: 2015
-
Nanoindentation for material property characterizationIn this work, techniques are developed for nanoindentation of soft polymers and brittle powdery materials and measurement of properties like modulus, hardness and fracture toughness.Leitung: P. Wriggers, S. LöhnertTeam:Jahr: 2016
Multiscale and multiphysics material modelling of polycrystalline metals and forming processes
-
Creep deformation of nickel based superalloysModeling of nickel based superalloys on two scales using crystal plasticity and XFEM methods.Leitung: P. WriggersTeam:Jahr: 2018
-
Modelling and simulation of the joining zone during the tailored forming processIn this project, micromechanically motivated thermo-chemo-mechanical material models are developed on a microscopic length scale and transformed to an effective macroscopic material model. In order to achieve a high mechanical strength of the hybrid solid component, these material models are used to evaluate the sensitivity of different process parameters after joining and during forming and heat treatment. Moreover, with aid of the the evaluation results the material behaviour of the joining zone can be accurately adjusted during the Tailored Forming process.Leitung: F. Aldakheel, P. WriggersTeam:Jahr: 2019Förderung: DFG im Rahmen des SFB 1153
-
Water-induced damage mechanisms of cyclic loaded high-performance concretesThe use of offshore wind energy is expanding and fatigue-loaded concrete structures are built that are submerged in water. This currently already applies to so-called grouted joints, where high-strength fine-grained concrete (grout) is used in the steel support structures of offshore wind turbines. Such constructions are subjected to several hundred million load cycles within their service life. An increased water content in the concrete results from the offshore exposure which is principally different to onshore constructions,. Comparatively few investigations of fatigue-tested concrete specimens immersed in water are documented in the literature. Despite the fact, that considerably scatterings occur in these results a clear tendency can be observed. Specimens that are immersed in water have a significantly lower fatigue resistance compared with specimens tested in air. Some investigations also show that fatigue-loaded concrete specimens immersed in water have a significant change in their fracture behaviour compared with specimens tested in air. This can be seen, in tests, for example, by ascending air bubbles, wash-outs of fine particles and premature crack initiation.Water-induced damage mechanisms in fatigue-loaded concrete have indeed been recognised in the past, but they were not identified and described with sufficient precision. Consequently, they cannot be quantified reliably. Based on the existing knowledge gap, the vast majority of these mechanisms have currently escaped numerical modelling and simulation.The aim of this research project is to understand, analyse and quantify macroscopically water-induced damage mechanisms of fatigue-loaded high-performance concretes in the Experimental-Virtual-Lab (EVL) with complementary very latest state-of-the-art experimental methods. At the same time, models will be created and numerically implemented on a micromechanical basis that enables proving of hypotheses that will be derived from the experimental investigations. The structural data serve for the validation of these models; the data will be determined by µCT scans, NMR measurements and mercury intrusion porosimetry.After a first clarification of the origin of mechanisms by the EVL, modelling at the macroscopic level will be attempted on the basis of the micromechanical investigations. In this way it will be verified, how the water influences the degradation behaviour of fatigue-loaded high-performance concretes and which additional active, water-induced damage mechanisms are decisively involved in the degradation process. It will be possible for the first time to carry out a prediction of the degradation behaviour of fatigue-loaded high-performance concretes immersed in water based on microstructurally orientated parameters.Leitung: Fadi Aldakheel, Peter WriggersJahr: 2020Förderung: DFG SPP 2020, zweite FörderperiodeLaufzeit: 3 Jahre
Contact mechanics
-
MULTISCALE CONTACT HOMOGENIZATION OF GRANULAR INTERFACESDry granular third bodies are frequently encountered at multiple scales of contact interfaces in contexts that range from mechanical problems of tire traction and semiconductor manufacturing to biological problems of wear debris generation and mobility in implant joints. The investigations that are envisaged within this proposal will provide further insight into the modeling and simulation of third body effects in a fully nonlinear three-dimensional virtual setting that accounts for inelastic phenomena.Leitung: P. Wriggers, I. TemizerTeam:Jahr: 2009
-
Mutiscale FEM approach for rubber friction on rough surfacesUnderstanding the frictional behaviour of elastomers on rough surfaces is of high practical importance in many industrial applications. For example the traction of a tire is directly linked to the material properties of the considered elastomer and the surface conditions of the road track. One goal of our studies is to gain a deeper understanding of the underlying contact physics at all length scales. Another aim is to determine a macroscopic coefficient of friction for varying material and surface properties and to validate the results with experimental data.Leitung: P. WriggersTeam:Jahr: 2012
-
Contact models for soil mechanicsThe installation of foundations influences strongly the load bearing capacity of the soil. The large discrepancy between experimental and numerical results, using Coulomb friction law for modeling the soil structure interaction, points out that new strategies to solve this kind of problems are necessary. Experimental observations show that for rough surfaces of the structure the friction angle at the contact zone corresponds to the friction angle of the soil. This leads to the conclusion that the contact zone lies completely within the soil. A way to improve the friction laws for soil structure interactions is to project the soil models onto the contact surface which is the motivation of this work. </a></p>Leitung: P. WriggersTeam:Jahr: 2012
-
Application of the Virtual Element Method to Non-Conforming Contact InterfacesWhen using standard Finite Elements the discretization is subject to limitations depending on the element geometry. In contrast to this the Virtual Element Method offers the possibility for elements with an arbitrary number of nodes and special geometries like non-convex polygons or hanging nodes. In this Project the application of the Virtual Elements to different problems is investigated. Here it is used to create an efficient contact discretization.Leitung: P. WriggersTeam:Jahr: 2014
-
Towards multiscale modeling of Abrasive wearThe work is motivated towards understanding wear as a multiscale-multiphysics approach. A 3D framework is developed to simulate cracks propagation in a microstructure due to contact loading to eventually predict wear trends in filled elastomeric compounds.Leitung: P. WriggersTeam:Jahr: 2015
Additive Manufacturing
-
Process Simulation for Selective Laser MeltingA phase change model for solution with the meshfree Galerkin OTM method is developed.Leitung: Christian Weißenfels, Peter WriggersTeam:Jahr: 2016
-
ISPH-based Simulation of the Selective Laser Melting ProcessDevelopment of a thermo-mechanical model for the simulation of the SLM process.Leitung: Christian Weißenfels, Peter WriggersTeam:Jahr: 2017
Discrete Elements and Molecular Dynamics
-
Discrete Element MethodThis project is concerned with the development of a discrete element method (DEM) code for the simulation of large particle systems in 3-D, where also complex moving boundary geometries can be taken into account. The DEM is a well established numerical method to simulate systems consisting of granular matter. Granular mixing, tumbling mills, transport of particles via conveyor belts or screw conveyors are just some examples of important particulate processes in industry sectors like mining, pharmaceutical and food industries. For such systems, the optimization of the design variables as well as the appropriate choice of the operating parameters is still a difficult and a challenging task.Leitung: P. WriggersTeam:Jahr: 2011
Artificial Intelligence
-
Using Machine Learning to Improve the Modelling of Machining and Cutting ProcessesMetal cutting is a fundamental process in industrial production. The fast and accurate on-line prediction of metal cutting processes is crucial for the Intelligent Manufacturing (IM). With the advent of high-speed computing, robust numerical algorithms and machine learning technology, computational modelling serves as a tool for not only accurate but also fast predicting the complex machining processes and understanding the complex physics. In this work, the machine learning based numerical model is developed for simulation of metal cutting processes.Leitung: C. Weißenfels, P. WriggersTeam:Jahr: 2018Förderung: China Scholarship Council (CSC)
-
Physics-Informed Data-Driven SimulationThis project investigates to what extent simulation with neural networks on the one hand and data-based empirical modeling on the other hand can be combined in a symbiotic manner. The ultimate goal is the generation of reliable models for complex dynamical systems known as digital twins.Leitung: H. Wessels, P. WriggersTeam:Jahr: 2020
Finite element technology
-
Application of the Virtual Element Method to Non-Conforming Contact InterfacesWhen using standard Finite Elements the discretization is subject to limitations depending on the element geometry. In contrast to this the Virtual Element Method offers the possibility for elements with an arbitrary number of nodes and special geometries like non-convex polygons or hanging nodes. In this Project the application of the Virtual Elements to different problems is investigated. Here it is used to create an efficient contact discretization.Leitung: P. WriggersTeam:Jahr: 2014
-
Large Deformation Cohesive-Zone Element for Fracture in Rubbery PolymersIn this work, a 3D cohesive zone element is developed considering material and geometric nonlinearities and suitable for modeling large deformations and rotations.Leitung: P. WriggersTeam:Jahr: 2015
-
The stress and fatigue analysis of the transportation lineThe conveyor of the production line in Salzgitter Flachstahl GmbH which carries the steel coils is going to be subjected to an extra load due to the bigger coil size. The objective is to do a structural analysis of the conveyor to see if the safety factor of structure is still in the allowable region. Since, the loading condition is naturally variable due to continuously feeding the moving conveyor with steel coils, a fatigue analysis is required in addition to an ordinary static analysis.Leitung: Peter WriggersTeam:Jahr: 2018
-
Publikationen
2023
Multiplicative, Non-Newtonian Viscoelasticity Models for Rubber Materials and Brain Tissues: Numerical Treatment and Comparative Studies. / Ricker, Alexander; Gierig, Meike; Wriggers, Peter.
in: Archives of Computational Methods in Engineering, Jahrgang 30, Nr. 5, 06.2023, S. 2889–2927.Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
Systematic Fitting and Comparison of Hyperelastic Continuum Models for Elastomers. / Ricker, Alexander; Wriggers, Peter.
in: Archives of Computational Methods in Engineering, Jahrgang 30, Nr. 3, 04.2023, S. 2257-2288.Publikation: Beitrag in Fachzeitschrift › Übersichtsarbeit › Forschung › Peer-Review
Tensor Calculus and Differential Geometry for Engineers : With Solved Exercises. / Sahraee, Shahab; Wriggers, Peter.
1. Aufl. Cham : Springer Nature Switzerland AG, 2023. 674 S.Publikation: Buch/Bericht/Sammelwerk/Konferenzband › Monografie › Forschung › Peer-Review
Mathematical modeling and numerical simulation of arterial dissection based on a novel surgeon’s view. / Soleimani, Meisam; Deo, Rohan; Hudobivnik, Blaz et al.
in: Biomechanics and Modeling in Mechanobiology, Jahrgang 22, Nr. 6, 12.2023, S. 2097-2116.Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
Numerical and experimental investigation of multi-species bacterial co-aggregation. / Soleimani, Meisam; Szafranski, Szymon P.; Qu, Taoran et al.
in: Scientific reports, Jahrgang 13, Nr. 1, 11839, 22.07.2023.Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
Elimination of the Stops Because of Failure of Nonlinear Solutions in Nonlinear Seismic Time History Analysis. / Soroushian, Aram; Wriggers, Peter.
in: Journal of Vibration Engineering and Technologies, 30.08.2023.Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
Test of an Idea for Improving the Efficiency of Nonlinear Time History Analyses When Implemented in Seismic Analysis According to NZS 1170.5:2004. / Soroushian, Aram; Wriggers, Peter.
Recent Trends in Wave Mechanics and Vibrations: Proceedings of WMVC 2022. Hrsg. / Zuzana Dimitrovová; Rodrigo Gonçalves; Zuzana Dimitrovová; Paritosh Biswas; Tiago Silva. Cham : Springer Science and Business Media B.V., 2023. S. 107-114 (Mechanisms and Machine Science; Band 125 MMS).Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
Failure of high-speed bearing at cyclic impact-sliding contacts : Numerical and experimental analysis. / Wang, Che; Aldakheel, Fadi; Zhang, Chuanwei et al.
in: International Journal of Mechanical Sciences, Jahrgang 253, 108410, 01.09.2023.Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
A locking free virtual element formulation for Timoshenko beams. / Wriggers, P.
in: Computer Methods in Applied Mechanics and Engineering, Jahrgang 417, 116234, 15.12.2023.Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
Virtual element formulation for gradient elasticity. / Wriggers, Peter; Hudobivnik, Blaž.
in: Acta Mechanica Sinica/Lixue Xuebao, Jahrgang 39, Nr. 4, 722306, 06.2023.Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review