Anisotropic materials

Led by:  D. R. Jantos, P. Junker
Year:  2021


High performance materials as for example carbon fiber reinforced polymers but also structures produced with additive manufacturing inhere anisotropic material properties, which can be be influenced during the production process, i.e. the applied direction of fibers or print path within 3D printing. Since the material orientation has a major influence on the structure performance, the local material orientation should also be considered as design variable for the optimization process. With the thermodynamic optimization approach, evolution equations for the optimal material direction described by Euler angles can be found and are combined with a simultaneous topology optimization, which results in significantly different varying optimal typologies in comparison to a topology optimization with isotropic material. For some production processes, as for example reinforcement with long fibers, or simply for a smoother fiber path design, the maximum fiber curvature can be constrained via a filtering technique with the filter radius R given by the user.