145. Norddeutsches Mechanik-Kolloquium
Am Samstag, 1. Februar 2020 in der Leibniz Universität Hannover,
Hörsaal A145, Appelstr. 11, 1. OG, 30167 Hannover

Programm

09.00 Uhr Begrüßung und Einführung: Prof. Dr.-Ing. habil. Peter Wriggers

09.25 Uhr Dominik Schillinger, Stein K.F. Stoter, Institut für Baumechanik, Leibniz Universität Hannover
Ein Feinskalen-Grenzschichtmodell basierend auf der Reinterpretation schwacher Randbedingungen im Sinne der Variationellen Multiskalenmethode

09.55 Uhr A. Warkentin, L. Behlen, A. Ricoeur, Institut für Mechanik, Universität Kassel
Polykristalline Ferroelektrika als gekoppelte Mehrskalen-Mehrfeldprobleme der nichtlinearen Thermoelektromechanik: Modellierungen und Erkenntnisse

10.25 Uhr J. Bouguard, J. Wackerfuß, Institut für Baustatik und Baudynamik, Universität Kassel
Zwei-Schritt-Methode zur Bestimmung der Schraubachsen für Haupt- und Nebenpole im Kontext starrer 3D-Mehrkörpersysteme

10.55 Uhr PAUSE (mit Suppe und Imbiss)

11.35 Uhr T. Marhenke, J. Twiefel, A. Schamelt, Institut für Dynamik und Schwingungen, Leibniz Universität Hannover
Delaminationserkennung in plattenartigen Bauteilen mit Hilfe von luftgekoppeltem Ultraschall

12.05 Uhr S. Descher, O. Wünsch, Institut für Mechanik, Universität Kassel
Modellierung und Simulation von Kristallisationsvorgängen in strömenden Kunststoffschmelzen

12.35 Uhr F. Aldakheel, Institut für Kontinuumsmechanik, Leibniz Universität Hannover
Numerische Simulation des Bruchverhaltens mittels global-lokalem Ansatz

13.15 Uhr LUNCH
Im Restaurant Zwischenzeit, Schaufelder Str. 11, 30167 Hannover

14.30 Uhr – 15.30 Uhr Führung durch die Leibniz-Ausstellung im Welfenschloss, Frau Dr. A. Walsdorf:
Hannovers Leonardo – Gottfried Wilhelm Leibniz als Techniker und Erfinder mechanischer Maschinen
Leibniz war kein weltenrückter Theoretiker, sondern ein Mensch, der sich auch für praktische Dinge interessierte: ein früher Ingenieur, der leidenschaftlich an Innovationen tüftelte, die die Wissenschaft befruchten und das tägliche Leben erleichtern sollten. Er erfand eine Windmühle, die sich selbständig in den Wind drehte, entwickelte eine horizontale Windmühle mit hölzernen Flügeln, von der er in chinesischen Reiseberichten gelesen hatte, erwarb den Einsatz einer Chiffriermaschine zur Verschlüsselung von geheimen Nachrichten und konstruierte mit Hilfe von Uhrmächern die erste Rechenmaschine, mit der man alle vier Grundrechenarten mechanisch rechnen konnte. Wie man die Maschinen bediente, wie sie funktionierten und welche Schwierigkeiten es bei der Fertigung der Maschinen gab, das veranschaulicht die Dauerausstellung der Leibniz Universität Hannover.