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Many materials contain microcracks which influence the overall behavior of 
the structure, especially in case of crack propagation and crack coalescence. 
To consider microcracks efficiently, they are taken into account in a domain 
of interest, here around the crack fronts, by applying the multiscale 
projection method. To capture the physical properties of cracks accurately 
and to avoid remeshing during the crack propagation process, all cracks 
in the multiscale problem are modeled using the eXtended Finite Element 
Method (XFEM). 
To allow for crack propagation of microcracks as well as macrocracks, and 
to model crack coalescence of cracks from different scales, propagation and 
coalescence of cracks is computed on the finest scale. Stable crack growth 
is achieved via an adjustment of the applied boundary conditions acting 
on the coarsest scale. Due to crack propagation, the respective crack fronts 
change their positions such that the fine scale domains move fully adaptive 
through the domain. 
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Zusammenfassung
In dieser Arbeit wird die Interaktion von Mikro- und Makrorissen im Bezug auf die globale
Systemantwort, insbesondere makroskopische Größen wie Risspfad und Lastverlauf, für
spröd brechende Materialien numerisch untersucht. Anhand dieser Ergebnisse soll fest-
gestellt werden, welchen Einfluss vorhandene Mikrorisse auf diese Antwortgrößen haben.
Zur Modellierung von Rissen wird die extended finite element method verwendet, so dass in
Kombination mit Abstandsfunktionen eine weitestgehende netzunabhängige mechanische
und geometrische Beschreibung von Rissen erfolgt. Zur präzisen Approximation des
Verschiebungsfeldes beinhalten die Ansätze die asymptotische analytische Lösung erster
Ordnung des Rissspitzenfeldes. Insbesondere bei Rissfortschritt bietet diese Methode
herkömmlichen Methoden gegenüber den Vorteil der netzunabhängigen Rissbeschreibung,
so dass eine Neuvernetzung nicht notwendig wird. Neben einem weitverbreiteten En-
ergiekriterium zur Vorhersage von Rissfortschritt, wird ein weiteres Kriterium, basierend
auf einem Schädigungsmodell, vorgestellt.
Der große Längenunterschied von Mikro- und Makrorissen würde bei herkömmlichen
numerischen Verfahren zu einem enormen Rechenaufwand führen, da für eine präzise
Modellierung der Mikrorisse ein feines Netz benötigt würde. Die sogenannte Multiskalen-
projektionsmethode hingegen bietet eine numerisch zeitgünstige Möglichkeit Mikrorisse
in bestimmten Gebieten aufzulösen ohne die Qualität der Lösung signifikant zu verändern.
Eine parallele Berechnung der Feinskalengebiete mit OPENMP sorgt zusätzlich für eine
Reduzierung der Rechenzeit.
Da Mikrorissfortschritt nur auf der feinsten Skala möglich ist und das Verschiebungsfeld
auf dieser Skala zudem am besten approximiert wird, wird die Struktur auf dieser Skala
auf Rissfortschritt überprüft. Zur Verfolgung eines stabilen Risspfades bei mehrskaligem
Rissfortschritt wird ein skalenübergreifendes Kurvenverfolgungsverfahren vorgestellt.
Um zudem auf allen Skalen identische Geometrien zu erhalten, werden fortschreitende
Makrorisse von der feinen Skala auf die gröbste Skala übertragen.
Die Modellierung von Rissvereinigung setzt neue Ansatzfunktionen voraus, welche mehrere
Risse sowie deren Kreuzungspunkte in einem Element abbilden können. Neben diesen
Funktionen wird ein geeignetes Kriterium für Rissvereinigung eingeführt.
Zur Modellierung von Rissvereinigung unter Verwendung der Multiskalenmethode wer-
den zusätzliche Ansatzfunktionen für sich nähernde Rissspitzen eingeführt. Eine neue
Rampenfunktion sorgt für die Erfüllung der partition of unity in allen Elementen, sowie
für eine Verkleinerung des ange-reichertern Bereiches auf der groben Skala. Zur nu-
merisch effektiven skalenübergreifenden Modellierung von Rissvereinigung werden die
entstehenden Risspfade auf die grobe Skala übertragen, so dass sie mit den dort üblichen
Ansatzfunktionen dargestellt werden können. Anhand von zahlreichen Beispielen werden
abschließend die Effekte von Mikrorissen und die Robustheit der entworfenen Methode
dargelegt.

Schlagworte: XFEM, Rissfortschritt, Rissvereinigung, Mehrskalenmodellierung
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Abstract
This work numerically investigates the interaction between microcracks and macrocracks in
brittle media. This enables an investigation into the effect microcracks have on the global
response of the structure, i.e. crack path and required loading behavior.
extended finite element method in combination with the level set method is applied in order
to model the cracks, yielding an almost mesh independent tool to model cracks with a high
level of accuracy. In order to capture the displacement field that accurately, the ansatz
contains the first order asymptotic analytical solution for the near tip field. This crack
description is beneficial, especially once cracks propagate: Thus, remeshing is avoided
during fracturing processes. Besides a well-known energetic fracture criterion, a new
damage-based criterion is also proposed.
Traditional numerical approaches require long computation times for the precise description
of microcracks and macrocracks, as microcracks induce fine meshes. However, great
differences in the size of microcracks and macrocracks allow scale separation and thus
the application of the so-called multiscale projection method. This method enables the
restriction of microcracks to regions of interest alone, leading to shorter computation times
without changing the solution significantly. A parallel computation of the microdomains via
OPENMP yields an additional speed-up in solution time.
As the propagation of microcracks is only possible at the respective scale and as the
solution is most accurate there, crack propagation is performed to this scale. In order to
follow a stable crack path, load control between the scales is introduced for multiscale
crack propagation. Additionally, a mapping strategy is introduced to upscale propagating
macrocracks to their corresponding scale, to ensure the same geometry on all scales.
As crack coalescence might result in intersecting cracks, the enrichment functions are
extended to be capable of modeling junctions in crack paths. Besides this additional
enrichment functions, a criterion for crack coalescence is also introduced.
Modeling crack coalescence in a multiscale framework also requires additional shape
functions to model approaching crack tips. Furthermore, a new ramp function is introduced,
reducing enrichment functions to only cracked elements on the coarse scale. To preserve
a fast computation, merged macrocracks must be mapped onto the coarse scale, such
that they can be represented using interpolation functions of that scale. Some examples
demonstrate the robustness of the presented method as well as state the effect of microcracks.

Key words: XFEM, crack propagation, crack coalescence, multiscale
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Chapter 1

Introduction

Analytical solutions of loaded cracked structural components, such as the cracked turbine
blade displayed in figure 1.1, are usually not available or require too many simplifications.
Using skilled manual workers to judge the effect of cracks might yield conservative or risky
decisions and is furthermore strongly dependent on the expert. Overcautious and conserva-
tive judgments lead to high overhauling costs or high scrape rates. In the unfavorable case
of an overly risky decision, the component might fail which can lead to catastrophes such
as the Eschede train disaster (1998), which occurred due to the rupture of a rail wheel. To
circumvent purely analytical models and to dependent not only in the judgments of experts,
numerical methods are applied to investigate the behavior of complex mechanical tasks.

Figure 1.1: Cracked turbine blade [SFB 871, Leibniz Universität Hannover].

Numerical solution methods such as the finite element method gained attention in recent
decades as these methods can be applied to several kinds of physical and geometrical prob-
lems. Regarding fracture mechanics, traditional numerical solution methods are not able to
capture the main features of fracturing solids accurately and numerically efficiently, even
though numerical fracture mechanics have been involved in research for about forty years.
Small defects such as microcracks are present in a vast amount of structures due to overhauls
or minor production imperfections. However, most current computational approaches are not
able to take these fine scale defects into account in a computationally efficient framework
without drastic restrictions to the model. Nevertheless, these defects might influence the
global response of the structure drastically: Crack shielding and crack amplification might
occur, which can affect the external load required to perform crack propagation. Besides
the critical load, fine scale features might influence the crack path due to crack coalescence.
Thus, these defects might be responsible for failure and shall be investigated in computa-
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2 CHAPTER 1. INTRODUCTION

tions. Hence, computationally efficient multiscale strategies are needed to investigate the
effect of fine scale features on the global response of a structure.

1.1 Background and state of the art
Since the development of the finite element method, various numerical tools for modeling
cracks and their propagation have been developed, e.g. meshfree methods as summarized by
FRIES (2005). Within the finite element method, two generally different models for simulat-
ing fracturing processes appeared: Continuum softening models and discrete crack models.
The most widely used continuum softening models are the so-called damage models, sum-
marized by BAŽANT ET AL. (1984), LEMAITRE (1986) and SIMO & JU (1987a,b) among
others. Cracks are modeled via softening variables relating known field quantities, e.g.
strains, to damage variables, which are driven by constitutive equations. To overcome numer-
ical drawbacks such as mesh dependency, non-local damage models by PIJAUDIER-CABOT

& BAŽANT (1987) and LASRY & BELYTSCHKO (1988) and gradient enhanced damage
models by PEERLINGS ET AL. (1996) gained attention and are nowadays frequently em-
ployed. These models can be applied to a broad range of different material models, but
require a lot of experiments to resolve all material parameters. Current research by MOËS

ET AL. (2011) and BERNARD ET AL. (2012) aims to find new techniques to store and to
propagate crack surfaces. A more recent approach of continuum softening models are phase-
field models, introduced by BOURDIN (1998), BOURDIN ET AL. (2008) and MIEHE ET AL.
(2010). These models reformulate brittle fracture such that similar governing equations to
those for gradient enhanced damage models are obtained. Thus, infinitesimal small finite el-
ements capture the crack path highly precisely according to the respective fracture criterion.
Consequently, recent research focalizes on adaptive refinement and higher order methods as
illustrated by BORDEN ET AL. (2012). A similar mechanical model was applied recently by
PANDOLFI & ORTIZ (2012). However, modeling fracture is achieved via an eigenerosion of
finite elements and not via traditional softening. An advantage of all softening models is their
ability to model crack nucleation, enabled by their additional governing equation and their
continuous material degradation. Furthermore, the resulting path and the fracture criterion
are comparably easy to implement. A disadvantage is that non-local and phase-field models
generally yield a non-symmetric system matrix and furthermore non-linear systems to solve,
even in linear elastic fracture mechanics. Additionally, a sharp crack path requires a fine
mesh or adaptive refinement. However, an adequate singular stress field at the crack front
can still not be achieved due to the ductile behavior, naturally induced by softening. Due
to the ability to model crack nucleation and propagation, softening models are frequently
applied to virgin materials.
Research about discrete crack models aimed first at improving the accuracy of finite element
solutions for cracked solids: While CHAN ET AL. (1970) present an adaptive method to cap-
ture features of the crack tip precisely, BYSKOV (1970) suggests subdividing cracked finite
elements to gain accuracy. To meet the order of singularity in the stress field of the first order
analytical solution, BENZLEY (1974) enriches the standard finite element approximation,
which is the basis of todays extended finite element method. An alternative approach was
exploited by HENSHELL & SHAW (1975): Instead of enrichment functions, the order of sin-
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gularity is obtained by collapsing finite elements, which is the basis for integrating singular
functions highly accurately following DUFFY (1982). With the so-called partition-of-unity
method by MELENK & BABUŠKA (1996) enrichment strategies for several types of prob-
lems became popular, such that non-propagating cracks could be investigated accurately.
Besides an accurate solution of the near-tip field, propagating cracks require a numerical
method to follow the crack path. As remeshing performed by e.g. BITTENCOURT ET AL.
(1996) is computationally expensive, methods to decouple the crack from the finite element
mesh developed rapidly: A prominent member of these methods is the so-called strong dis-
continuity approach by SIMO ET AL. (1993) and OLIVER (1995, 1996a,b): In contrast to
the partition-of-unity method it is not able to capture the stress field that accurately. Fur-
thermore, the crack propagation step depends on the finite element mesh, as this method can
only distinguish between completely cracked and non-cracked elements. A second common
method is the extended finite element method/generalized finite element method introduced
by BELYTSCHKO & BLACK (1999), MOËS ET AL. (1999), STROUBOULIS ET AL. (2000)
for two-dimensional problems and by DUARTE ET AL. (2000), SUKUMAR ET AL. (2000),
MOËS ET AL. (2002) for three-dimensional problems, resolving both issues: By evoking
the partition-of-unity method, the stress field is captured accurately and by describing the
crack using level set fields introduced by OSHER & SETHIAN (1988) and combining these
fields to the enrichment functions as introduced by STOLARSKA ET AL. (2001), the crack
can propagate independent of the finite element mesh. Adding further enrichment functions
according to DAUX ET AL. (2000) even allows to capture intersecting cracks, which was an
essential ingredient for BUDYN ET AL. (2004) to model merging cracks. Besides improv-
ing convergence by BABUŠKA & BANERJEE (2012) and LOEHNERT (2013) among others,
current research seeks inter alia accuracy improvements by PASSIEUX ET AL. (2011), MIN-
NEBO (2012) and PEREIRA ET AL. (2012). In contrast to softening models, discrete models
cannot predict crack nucleation simultaneously hand. Furthermore, independent of the nu-
merical method, the crack surface description requires additional effort, especially for merg-
ing cracks. Due to this accurate representation of the crack path, the solution in the vicinity
of the crack front gains accuracy. A mesh independent crack path description via enrich-
ment functions combined with e.g. level sets additionally provides a flexible framework to
simulate propagating cracks. Thus, discrete crack models are mainly applied to model crack
growth of already cracked structures.
In order to model crack nucleation within a discrete crack model, coupling of soften-
ing models to discrete crack models is a popular choice, demonstrated by MAZARS &
PIJAUDIER-CABOT (1996), AREIAS & BELYTSCHKO (2005), MEDIAVILLA ET AL. (2006a)
and SEABRA ET AL. (2013) among others. Once no stiffness remains in a finite element due
to softening, a discrete crack is inserted. The damage model induces nearly all drawbacks
from softening models, i.e. an unsymmetric system matrix and a fine mesh. To overcome
the fine mesh, MOËS (2013) applies mesh coarsening in discrete cracked areas to achieve
shorter computation times with nearly identical results. Thus, these methods are a promising
alternative to pure softening models.
To take into account micro effects with computational efficiency, multiscale methods are fre-
quently applied in solid mechanics. Following GEERS ET AL. (2010), traditional multiscale
techniques such as the variational multiscale method by HUGHES (1995) and the FE2 method
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by MIEHE ET AL. (1999) and FEYEL & CHABOCHE (2000) do not account for localization
effects on the fine scale, meaning that so-called continuous-discontinuous multiscale tech-
niques require application. These approaches were applied to damage mechanics by MAS-
SART ET AL. (2007) and COENEN ET AL. (2012), and to fracture mechanics by LOEHNERT

& BELYTSCHKO (2007b) and BELYTSCHKO ET AL. (2008). Depending on the properties
of the fine scale effects, some of these methods can even nucleate cracks on the coarse scale
as for instance the so-called multiscale aggregating discontinuity method by BELYTSCHKO

ET AL. (2008) and COENEN ET AL. (2012).
Further previous achievements in fracture mechanics, numerical treatment of cracks and
multiscale techniques are summarized in the following chapters of this work.

1.2 Structure of this work
In the first part of this work, the basic governing equations are summarized, followed by an
introduction of linear elastic fracture mechanics including a sketch of damage mechanics.
The basic concepts of the finite element method are introduced in section 3. In order to model
cracks in linear elastic media accurately, this approach is enhanced to the state of the art of
the extended finite element method. Following, the introduced damage model is coupled to
the derived finite element approach. With the applied damage evolution, this coupling yields
a cheap and simple damage model for brittle materials.
In order to capture effects in the fine scale with computational efficiency, the so-called multi-
scale projection method by LOEHNERT & BELYTSCHKO (2007a) is applied. Thus, chapter 4
sketches the main aspects of this method, introducing a parallel computation via OPENMP1

of the fine scale domains.
The numerical modeling of cracks, crack propagation and crack coalescence in a multiscale
framework using the extended finite element method is derived in chapter 5. First, the under-
lying theory for two-dimensional problems without considering microcracks is introduced.
Subsequently, this approach is embedded into the multiscale projection method requiring a
load control scheme across the scales. The following investigation of merging cracks on one
scale requires a criterion for crack coalescence as well as an extension of several introduced
features, i.e. enrichment schemes, enrichment functions, quadrature and storage of crack
surfaces. The last section for two-dimensional problems finally includes crack coalescence
in the proposed multiscale method. The focus is set on the interaction of cracks from dif-
ferent scales, including several coalescence scenarios and enrichment patterns. The effect of
fine scale features on the global response of the structure is exhibited in numerical examples.
Three-dimensional problems are introduced hereafter: As the extension of one dimension
increases the dimension of cracks as well, crack propagation is revisited. Thus, the compu-
tational aspects as well as mechanical properties occurring due to this extra dimension are
accentuated. Applying the multiscale projection method in the last section of this chapter
allows to demonstrate the effect of fine scale features on the crack path.
Finally, chapter 6 summarizes this work. The limits of the proposed models are emphasized,
yielding perspectives and possible future work of the proposed models.

1http://openmp.org



Chapter 2

Continuum solid mechanics

This chapter briefly summarizes the main aspects of continuum mechanics for solid media
as used in this work. There is a huge variety of literature that introduces continuum solid
mechanics including kinematics, balance laws, material theory as well as variational princi-
ples, e.g. TRUESDELL & NOLL (1965), MALVERN (1969), ALTENBACH & ALTENBACH

(1994), CHADWICK (1999), HOLZAPFEL (2000), HAUPT (2002), GURTIN ET AL. (2010)
among others.
Fracture mechanics requires a special treatment in the concept of continuum mechanics, as
discussed by e.g. ANDERSON (2005), GROSS & SEELIG (2007) among others.

2.1 Kinematics
This section briefly summarizes the kinematics of continua, i.e. their deformation and motion
in time at each material point P . Furthermore, the most general deformation tensors as well
as strain tensors are introduced.

Deformation

Considering a material body B as a set of continuously distributed material points P in EU-
CLIDean space R3 is a fundamental assumption in the continuum theory. The coherence
between those points is preserved during the deformation process, which allows the defor-
mation to be described by a continuous, one-to-one mapping of each material point P from
the material body B to a region B. This mapping is defined by a bijective function χ

χ : B −→ B . (2.1)

Assuming the material body B is occupying the region B0 at time t0 = 0 and the region Bt
at time t, the position vector of an arbitrary material point P at time t0 follows

X = χ0 (P) , (2.2)

whereX ∈ B0. At an arbitrary time t > t0 the position vector of point P can be denoted by
x ∈ Bt

x = χt (P) . (2.3)

5
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Since the mapping χ is bijective, a unique inverse function χ−1 exists at all times t0, t.
Therefore, the mapping between both position vectors x andX is unique and well defined

X = χ0

(
χ−1
t (x)

)
, (2.4)

x = χt
(
χ−1

0 (X)
)

. (2.5)

Expressing all field variables in terms of x is referred to as current configuration, EULERian
or spatial description. The observer follows the deformation in a spatial point (2.4). The
initial configuration, LAGRANGian or material description considers an observer being fixed
to a material point. All field variables are expressed in terms ofX (2.5).

E3

e3

O

E2

e2

X

e1 E1

u PP
dX

dx

B0 := χ0 (B)
Bt := χt (B)

x

Γ

γ

Figure 2.1: Deformation and motion of a material body B.

The displacement vector u (t) of point P at time t displayed in figure 2.1 is defined as

u = x−X . (2.6)

The velocity v and acceleration a of this point can be expressed in terms of x by differenti-
ating u with respect to time ˙( · ) = d

dt
( · ), ¨( · ) = d2

dt2
( · )

v =
du

dt
=

dx

dt
= u̇ = ẋ , a =

dv

dt
=

d2x

dt2
= ẍ . (2.7)

In order to determine the distortion of each material point P , rotations and strains are evalu-
ated in an infinitely small domain around the point P . Consider that the position vector X
lies on the material line Γ (s) in the material description and the position vector x lies on
the same material line γ (s) in the spatial description, where s denotes the parametrization
of the line. Differentiating both line descriptions with respect to s and following the material
line with an infinitesimal increment ds

dX =
∂Γ

∂s
ds , dx =

∂γ

∂s
ds , (2.8)
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results in the material tangent vector dX , and the spatial tangent vector dx. Follow-
ing HAUPT (2002) and plugging γ into (2.3), with x = γ and differentiating with respect to
s results in

∂γ

∂s
=
∂x

∂s
=
∂χt (Γ)

∂s
=
∂Γ

∂s

χt (Γ)

∂Γ
. (2.9)

Applying (2.9) to (2.8) results in the material gradient of motion, or deformation gradient, F

F =
∂xi
∂XJ

ei ⊗EJ = FiJ ei ⊗EJ . (2.10)

Equation (2.10) denotes that the components FiJ are identical to the elements of the JACOBI

matrix and refer to the spatial basis ei as well as to the material basis EJ . Hence, the non-
singular two-point tensor F linearly maps the material tangent vector dX onto the spatial
tangent vector dx

dx = F · dX , (2.11)

and thus describes the rotations and stretches of the material point P . F can be uniquely
decomposed into a pure rotation tensor R, the left stretch tensor v and the right stretch
tensor U

FiJ ei ⊗EJ = R ·U = RiK UKJ ei ⊗EJ

= v ·R = vik RkJ ei ⊗EJ

. (2.12)

The proper orthogonal rotation tensor R, i.e. R−1 = RT and det (R) = 1, describes the
rotation from dX to dx and consequently depends on the spatial as well as on the material
basis. The symmetric, positive definite stretch tensors v and U only depend on one of the
basis. The spectral decomposition of the stretch tensors, the deformation gradient and the
rotation tensor follows

v =
3∑

i=1

λini ⊗ ni , U =
3∑

i=1

λiN i ⊗N i ,

F =
3∑

i=1

λini ⊗N i , R =
3∑

i=1

ni ⊗N i .

(2.13)

Here, the eigenvalues λi are the principal stretches and N i, ni are the eigenvectors in the
material and spatial description respectively.
Differentiating F with respect to time results in the material deformation velocity gradi-
ent Ḟ and its transformation to the spatial configuration to the spatial deformation velocity
gradient `

Ḟ =
∂ẋ

∂X
, ` =

∂ẋ

∂x
= Ḟ · F−1 . (2.14)

The deformation gradient itself only maps line elements as tangent vectors, but it can be used
in NANSON’s formula to map infinitesimal surface elements from the material to the spatial
configuration

n da = det (F ) F−T ·N dA . (2.15)



8 CHAPTER 2. CONTINUUM SOLID MECHANICS

Here, da, dA denote the infinitesimal surface areas, n,N the surface normals in the material
and the spatial configuration respectively. The determinant of the JACOBIan matrix, often
referred to as J = det (F ) with J > 0, transforming an infinitesimal material volume
element dV onto an infinitesimal spatial volume element dv

dv = det (F ) dV . (2.16)

Strains

As previously shown, the material deformation gradient F describes the change of shape
and orientation of an infinitesimal line element. Hence, this measure still includes rigid body
motions, namely rotations, and thus cannot be used as strain measurement. The difference
of the norm of the material and the spatial tangent vector is independent of rotations

||dx||22 − ||dX||
2
2 = dx · dx− dX · dX

= (F · dX) · (F · dX)− dX · 1 · dX
= dX ·

(
F T · F − 1

)
· dX

= dX · (C − 1) · dX
= dX · 2E · dX ,

(2.17)

which results in the GREEN - LAGRANGE strain tensor E = 1
2

(
F T · F − 1

)
= 1

2
(C − 1).

Since the right CAUCHY - GREEN tensorC = F T ·F = U ·U is independent of the rotation
tensorR, the GREEN - LAGRANGE strain tensor is an appropriate strain measure referring to
the material description. Observing the same strain measure in the spatial coordinate system
results in the EULER - ALMANSI strain tensor e

||dx||22 − ||dX||
2
2 = dx · dx− dX · dX

= dx · 1 · dx−
(
F−1 · dx

)
·
(
F−1 · dx

)

= dx ·
(
1− F−T · F−1

)
· dx

= dx ·
(
1− b−1

)
· dx

= dx · 2 e · dx .

(2.18)

Here, b = F · F T = v · v denotes the left CAUCHY - GREEN tensor, which is independent
of rigid body motions, as is the right CAUCHY - GREEN tensor. Consequently the EULER -
ALMANSI strain tensor e = 1

2

(
1− F−T · F−1

)
= 1

2

(
1− b−1

)
does not depend onR.

Linearizing E and e around u = 0⇔ x = X results in the same linearized strain tensor ε

ε = LIN [E]|u=0 = LIN [e]|u=0 =
1

2

(
∂u

∂X
+

(
∂u

∂X

)T
)

. (2.19)

Neglecting the second derivatives with respect to X in E and x in e respectively, leads to
the linearized strain tensor ε used as strain measure in the small strain theory.
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2.2 Stresses
Consider a stretched body B, occupying the space Bt at time t in the spatial description.
Cutting the body along a plane induces a force df on the sliced surface element da with its
outward normal n, as depicted in figure 2.2. The surface traction t is defined as force per
area t = df/da.
On the counterpart of the body, the same force in the opposite direction on the corresponding
surface element exerts, to fulfill NEWTON’s third law of action and reaction, which is also
known as free-body principle by EULER as explained by SZABÓ (1987): Both parts are in
equilibrium, i.e. t (n) = −t (−n).

n

df
da

da
-df

-nBt

Figure 2.2: Deformed body cut by a plane with its normal n.

According to CAUCHY’s stress theorem, the surface traction t is defined by the outward
normal n and the so-called CAUCHY stress tensor σ

t = σ · n . (2.20)

Hence, the stretching of a body induces stresses inside the body. Since n, da and t are
defined in spatial coordinates, the stress tensor σ is completely defined in these bases as
well. Due to conservation of angular momentum, one can show that σ is a symmetric tensor,
i.e. σ = σT. Applying NANSON’s formula (2.15) on the surface element n da

t da = σ · n da = J σ · F−TN dA = P ·N dA , (2.21)

leads to the 1st PIOLA - KIRCHHOFF stress tensor P = J σ ·F−T, which is an unsymmetric,
two-point tensor: This stress tensor relates spatial tractions t to material surface elements
N dA, such that P refers to the spatial as well as to the material bases. To overcome the
inconvenience of an unsymmetric stress tensor, the 2nd PIOLA - KIRCHHOFF stress tensor S

S = F−1 · P = J F−1 · σ · F−T , (2.22)

is often applied. Due to the symmetry of σ, S is symmetric and furthermore refers com-
pletely to the material bases. Unfortunately this stress measure has no direct physical mean-
ing.

2.3 Balance laws
Balance laws form a set of equalities and inequalities valid for fluids and solids, and thus they
balance the most important physical measures. In continuum solid mechanics the focus is
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set on the conservation of mass, conservation of linear and angular momentum, conservation
of energy as well as entropy inequality. In order to fulfill these laws, they are considered in
the required constitutive model. For purely linear elastic mechanical systems as considered
in this work, the conservation of energy is not an additional statement but a consequence
of the conservation of linear momentum. However, as the theory of linear elastic fracture
mechanics is based on conservation of energy, it is briefly discussed here. All balance laws
are valid in integral or global form, i.e. for the material body B, as well as for each material
point P known as the local form, independent of the chosen coordinate system.

Conservation of mass

In continuum solid mechanics the mass m of a body B can be considered as constant in
time. A material point P has the mass density ρ = ρ (x, t) in the spatial, and the mass
density ρ0 = ρ (X) in the material system. With

dm = ρ dv = ρ0 dV ⇔ dv

dV
=
ρ0

ρ
= J , (2.23)

and (2.16) the conservation of mass follows

d

dt
m = 0 =

d

dt

∫

Bt
ρ dv =

d

dt

∫

B0
ρ J dV =

∫

B0
ρ̇ J + ρ J̇ dV . (2.24)

With the derivative J̇ = J div (ẋ), the conservation of mass for a body yields

d

dt
m = 0 =

∫

B0
(ρ̇+ ρ div (ẋ)) J dV =

∫

Bt
ρ̇+ ρ div (ẋ) dv . (2.25)

For an arbitrary volume (2.25) follows

ρ̇+ ρ div (ẋ) = 0 . (2.26)

Conservation of linear and angular momentum

The linear momentum I of a body B is defined by

I =

∫

Bt
ρ ẋ dv . (2.27)

Its time derivative is equal to all external forces, i.e. traction t acting on the surface ∂Bt and
volume forces f = ρ b acting on the volume of a body Bt

d

dt

∫

Bt
ρ ẋ dv =

∫

Bt
ρ b dv +

∫

∂Bt
t da , (2.28)

which is NEWTON’s second law of motion for continuous bodies. Applying CAUCHY’s
stress theorem (2.20), the conservation of mass (2.25) and the divergence theorem, the bal-
ance of linear momentum yields

∫

Bt
(div (σ) + f − ρ ẍ) dv = 0 , (2.29)



2.3. BALANCE LAWS 11

for a body, and
div (σ) + f = ρ ẍ , (2.30)

for an arbitrary volume. When considering statics, the acceleration field ẍ = 0 and thus the
inertia term ρ ẍ vanishes, which simplifies (2.29) and (2.30).
The time derivative of the angular momentum L

L =

∫

Bt
ρ (x− x0)× ẋ dv , (2.31)

is equal to all external moments around an arbitrary point x0

d

dt

∫

Bt
ρ (x− x0)× ẋ dv =

∫

Bt
ρ ((x− x0)× b) dv +

∫

∂Bt
((x− x0)× t) da . (2.32)

Applying CAUCHY’s stress theorem (2.20), the balance of linear momentum (2.30) and the
divergence theorem, the balance of angular momentum follows

σ = σT . (2.33)

Conservation of energy

The first law of thermodynamics states that the energy in a closed system remains constant.
The energy E of a body

E = K + U , (2.34)

depends on the kinetic energy K

K =

∫

Bt

1

2
ρ ẋ · ẋ dv , (2.35)

and the sum of the initial strain and thermal energy, called the internal energy U

U =

∫

Bt
u ρ dv , (2.36)

where u is the specific internal energy. The change of energy E in time

d

dt
E = P +Q , (2.37)

is equal to the mechanical power P

P =

∫

Bt
ρ b · ẋ dv +

∫

∂Bt
t · ẋ da , (2.38)

and the thermal power supply Q

Q =

∫

Bt
ρ r dv +

∫

∂Bt
q da

=

∫

Bt
ρ r dv −

∫

∂Bt
q · n da

, (2.39)
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where ρ r = ρ (x, t) · r (x, t) is the internal heat source and q = q (x, t,n) is the heat flux
density field depending on the outward normal n = n (x, t) of the surface ∂Bt. Rewriting
the heat flux density field q in terms of the CAUCHY heat flux vector q = q (x, t) and the
outward normal n, results in the second line of (2.39). Hence, a change in the mechanical
power or heat supply directly effects a change of the kinetic and internal energy in time

d

dt
(K + U) = P +Q ,

d

dt

∫

Bt
ρ

(
1

2
ẋ · ẋ+ u

)
dv =

∫

Bt
ρ (b · ẋ+ r) dv +

∫

∂Bt
t · ẋ− q · n da .

(2.40)

Applying CAUCHY’s stress theorem (2.20), the balance of linear momentum (2.30) and the
divergence theorem to (2.40), the conservation of energy of a body yields

∫

Bt
ρ u̇ dv =

∫

Bt
ρ r + σ : `− div (q) dv . (2.41)

For an arbitrary volume the conservation of energy follows

ρ u̇ = ρ r + σ : `− div (q) . (2.42)

The value
∫
Bt σ : ` dv is also known as the stress or physical power Ψ̇. Besides the CAUCHY

stress tensor σ and spatial deformation velocity gradient `, the physical power can be rewrit-
ten in terms of other work conjugate pairings

σ : ` = J−1P : Ḟ = J−1 S : Ė . (2.43)

Entropy inequaltity

The second law of thermodynamics, or the CLAUSIUS - DUHEM inequality, provides infor-
mation about the processes direction. In contrast to the previously mentioned balance prin-
ciples, the entropy s is not a conserved quantity but restricted: The entropy production is
never negative and depends on the heat flux density field q, the internal heat source ρ r and
the absolute temperature field Θ = Θ (x, t) .

d

dt

∫

Bt
ρ s dv ≥

∫

Bt
ρ
r

Θ
dv −

∫

∂Bt

1

Θ
q · n da . (2.44)

Only in the case of a reversible process is the CLAUSIUS - DUHEM inequality an equation
with equal quantities. Applying the free HELMHOLTZ energy ψ = u − sΘ, the first law of
thermodynamics as well as the divergence theorem to (2.44), the entropy inequality for an
arbitrary volume using spatial quantities is as follows

−ρ
(
ψ̇ + s Θ̇

)
+ σ : `− 1

Θ
q · ∂Θ

∂x
≥ 0 . (2.45)

Using material quantities, the second law of thermodynamics yields

−ρ0

(
ψ̇ + s Θ̇

)
+ S : Ė − 1

Θ
Q · ∂Θ

∂X
≥ 0 , (2.46)
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where Q = Q (X) = J F−1 · q is referred to as the PIOLA - KIRCHHOFF heat flux vector.
If the absolute temperature Θ is constant over the entire deformation process, the process is
called isothermal: the free HELMHOLTZ energy is equal to the elastic strain energy density
function per unit mass, i.e. Ψ = ρψ . Since the CLAUSIUS - DUHEM inequality always needs
to be fulfilled independent of the current deformation, this inequality is taken into account
for the development of constitutive equations.

2.4 Material theory
As kinematics and balance laws are not sufficient to determine the unknown field quanti-
ties, namely the displacement, temperature, heat flux and stress field, additional equations
are required to set up a boundary value problem (BVP). Since isothermal processes are in-
vestigated in this work, only the relation between the displacement and the stress field is
described in this section.
The material behavior provides the missing set of equations required to solve the BVP and
enable the determination of the stress field in terms of the strain field for each material point
uniquely in time. The derivation of these equations for different materials as well as their un-
derlying principles can be found in NOLL (1955), TRUESDELL & TOUPIN (1960), TRUES-
DELL & NOLL (1965), OGDEN (1984), CHADWICK (1999) and HAUPT (2002) among oth-
ers.

The so-called constitutive equation correlates the process of deformation with the current
stress state. These equations depend on the history of deformation or stress or even a combi-
nation of both. Knowing the body’s motion in advance requires the application of a kinematic
constraint to the material model. The assumption of incompressibility, meaning that the vol-
ume is preserved (J = 1), widely used in rubber elasticity as well as the assumption of a
rigid body motion, i.e. all principle stretches are zero (λi = 0), are the most famous kine-
matic restrictions.

Furthermore the material model has to meet principles to follow the physical observations,
of which the most popular are presented here:

Principle of material causality
In a thermomechanical process, the spatial coordinates x = χ (P , t) and the temper-
ature field Θ = θ (P , t) are the only independent variables in the system. All other
variables are regarded as functions of x and Θ.

Principle of determinism
The current stress field σ (x,Θ, t) can be uniquely determined by the history of a
body’s motion and temperature.

Principle of local action
The stress in a material point P depends only on variables in its environment and not
on the variables in the whole body.

Principle of material frame-indifference
Principle of material frame-indifference, or principle of material objectivity, states that
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the constitutive equation needs to be invariant with respect to the change of the ob-
server.

Principle of material symmetry
The material symmetry states the existence of a rotation tensorQ?, for which the stress
response equals, i.e.

σ (F ·Q?) = σ (F ) . (2.47)

In general, the proper orthogonal tensor Q? cannot be chosen, but it depends on the
material itself. If (2.47) holds for arbitrary proper orthogonal tensors Q?, the material
is called isotropic: It deforms equally in all directions.

Isotropic elasticity

If the deformation of a body is an isothermal, reversible process, the CLAUSIUS - DUHEM

inequality (2.44) reduces to an equality and thus the process is called elastic. Hence, the
CAUCHY stress tensor σ depends only on the current deformation gradient F at a material
point P at time t: σ = σ (F (x, t)).

Isotropic hyperelasticity

An isotropic, elastic body simplifies to a so-called hyperelastic, if the HELMHOLTZ en-
ergy ψ = ψ (F ) serves as a potential. Hence, the stress power Ψ̇ is independent of the
deformation history. Defining the strain energy density function per unit mass as Ψ = ρ0 ψ,
the second law of thermodynamics (2.46) leads to

−Ψ̇ + S : Ė = 0 . (2.48)

As the strain energy density Ψ only depends on E, the stress power follows

Ψ̇ =
∂Ψ

∂E
: Ė . (2.49)

Thus, the second law of thermodynamics (2.48) yields
(
−∂Ψ

∂E
+ S

)
: Ė = 0 , (2.50)

exhibiting the relation between the 2nd PIOLA - KIRCHHOFF stress tensor S, the potential Ψ
and the GREEN - LAGRANGE strain tensor E

S =
∂Ψ

∂E
= 2

∂Ψ

∂C
, (2.51)

for non-trivial solutions Ė 6= 0. The corresponding fourth order material tensor C in material
coordinates reads

C =
∂2Ψ

∂E ∂E
= 4

∂2Ψ

∂C ∂C
. (2.52)
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A similar setup can be derived for other conjugate pairings mentioned in (2.43). Note, before
the deformation process (λi = 0), all stresses and strains as well as the strain energy need
to vanish. The potential Ψ is furthermore restricted to be polyconvex, as discussed in BALL

(1977). This functional might also be given in terms of the principle stretches λi or the three
basic invariants of C, namely IC , IIC and IIIC , to define an isotropic hyperelastic material
uniquely, as proven in e.g. HAUPT (2002): Ψ = Ψ (λ1, λ2, λ3) , Ψ = Ψ (IC , IIC , IIIC). The
three basic invariants can be either determined directly from the right CAUCHY - GREEN ten-
sor C or the three principal stretches λi.
The choice of the potential depends on the real physical problem. One of the most gen-
eral strain energy density functions is the OGDEN material, introduced in OGDEN (1972).
With a special set of material parameters applied to the OGDEN material, one obtains the
MOONEY - RIVLIN material introduced by MOONEY (1940) and RIVLIN (1948). A further
simplification in the set of material parameters of the MOONEY - RIVLIN material model
results in the potential of the Neo - HOOKEan solid (see e.g. TRELOAR (1943a), TRELOAR

(1943b) and FLORY (1961)). In this work isotropic, linear elastic material behavior, i.e.
a HOOKEan solid, in context of small displacements and rotations is assumed. The strain
energy density in terms of LAMÉ’s material constants Λ, µ reads

Ψ =
Λ

2
tr2 (ε) + µ tr

(
ε2
)

. (2.53)

With (2.51) and the small displacement theory, the CAUCHY stress tensor follows

σ =
∂Ψ

∂ε
= 2µ ε+ Λ tr (ε) 1 . (2.54)

Applying (2.52) to (2.53) results in the material tensor

C =
∂2Ψ

∂ε ∂ε
= [µ (δik δj` + δi` δjk) + Λ δij δk`] ei ⊗ ej ⊗ ek ⊗ e` , (2.55)

with δij being the KRONECKER delta

δij =

{
1 if i = j
0 if i 6= j

. (2.56)

Thus, the stress-strain relation for an isotropic, linear elastic solid can be rewritten

σ = C : ε . (2.57)

2.5 Weak form of equilibrium
Since the so-called strong form of equilibrium, i.e. the balance of linear momentum (2.30),
coupled with the chosen material model and the appropriate kinematics can in general not be
solved analytically, numerical approaches are required. Therefore, a formulation of (2.30) by
means of one single scalar equation is favorable. Multiplying the continuously differentiable
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virtual displacement field δu = δu (x), also known as test function or weighting function,
with the balance of linear momentum (2.30)

[div (σ) + f − ρ ẍ] · δu = 0 , (2.58)

and integrating over the domain Bt yields the weighted residuals
∫

Bt
[div (σ) + f − ρ ẍ] · δu dv = 0 . (2.59)

Integrating by parts and applying the divergence theorem as well as the CAUCHY theorem
to (2.59) results in the weak form of equilibrium

∫

Bt
ρ ẍ · δu dv +

∫

Bt
σ : ∇δu dv =

∫

Bt
f · δu dv +

∫

∂Btσ
t · δu da . (2.60)

The virtual displacement vector δu needs to vanish on DIRICHLET boundaries ∂Btu, as the
displacements are prescribed there: δu = 0 and u = u on ∂Btu. In contrast to DIRICH-
LET boundaries, the weak form of balance of linear momentum still needs to be solved
for the displacement field on NEUMANN boundaries ∂Btσ, on which tractions t are pre-
scribed: t = σ · n = t. With these boundary conditions the weak form of equilibrium can
be solved for the body.
As in this work linear elastic, isotropic material behavior, as well as small displacements and
rotations are assumed, the corresponding stress strain relation (2.57), (2.89) and strain dis-
placement relation (2.19) are applied to the weak form (2.60). Furthermore, the acceleration
vanishes ẍ = 0, as only quasi-static problems are investigated.

2.6 Linear elastic fracture mechanics
The phenomenon of fracture is the local splitting of a body in two or more pieces. Hence,
additional internal traction free boundaries occur during the deformation process, which re-
quire special treatment in the concept of continuum solid mechanics. Assuming homoge-
neous, isotropic, linear elastic material behavior in this work, only the main aspects of linear
elastic fracture mechanics (LEFM) in context of isotropy and homogeneity are introduced
here. The interested reader is referred to ANDERSON (2005), GROSS & SEELIG (2007)
among others, for additional information about fracture mechanics.
The mathematical solution for an elliptical internal boundary in an infinite plate is shown
by INGLIS (1913), who extended the solution for an infinite plate with a circular hole by
KIRSCH (1898). An improvement of the crack shape and the resulting stress and displace-
ment field was made by WESTERGAARD (1939), assuming a crack as a slit instead of an
elliptical hole. In the vicinity of the crack tip, the stress field blows up to infinity: The com-
ponents of the stress tensor depend mostly on the distance r to the crack tip: σij ∝ r−

1
2 .

Changing the internal boundary condition from a traction free slit into a traction free notch
with an opening angle α, results in a different order of singularity in the stress field in the
vicinity of the notch as observed by WILLIAMS (1952): σij ∝ rλ(α)−1, with 1

2
≤ λ (α) ≤ 1.

For α = 0, i.e. a slit, the solution by WESTERGAARD is obtained with λ = 1
2
. Assuming

α = π, i.e. the notch degenerates into a straight boundary, the components of the stress
tensor do not depend on r anymore, as λ = 1.
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Balance of energy

The crack extension about an infinitesimal increment dA leads to the dissipation of energy,
the energy release rate G

G = −dΠ

dA
, (2.61)

with overall potential Π = Πi+Πe being the sum of the internal potential Πi, or strain energy,
and the potential of the external loads Πe. Following GRIFFITH (1921), the extension of a
crack requires a certain amount of effective fracture surface energy Γ to create the additional
crack surface A

Γ = γ A , (2.62)

with γ being the fracture surface energy density. This extra energy term effects the conser-
vation law (2.40), such that the first law of thermodynamics reads

d

dt
(K + U + Γ ) = Q+ P . (2.63)

As GRIFFITH assumes a fracture process zone Ap in the vicinity of a crack tip, the conserva-
tion of energy for this process zone follows

Γ̇ = −P̂ , (2.64)

while the mechanical power P̂ is the transport of energy into the process zone

P̂ =

∫

Ap

t · ẋ da . (2.65)

During material debonding, the tractions t vanish over time, as the created internal bound-
ary remains traction free, which leads to a smooth dissipation of energy in time. Integration
yields the required mechanical work dW = P̂ dt to perform crack propagation of an incre-
ment dA. As two crack surfaces appear during the propagation process, namely dA+ and
dA−, the required incremental surface energy follows

dΓ = Γ̇ dt = 2 γ dA . (2.66)

Assuming a quasi-static, isothermal process, the kinetic energy K and the thermal power
supply Q vanish. With Π̇i dt = dΠi, Γ̇ dt = dΓ and P dt = −dΠe, the balance of en-
ergy (2.63) reads

dΠ

dA
+

dΓ

dA
= 0 . (2.67)

Applying equations (2.61), (2.66) to equation (2.67) and replacing the material constants 2 γ
with the material specific fracture toughness Gc, the GRIFFITH criterion for fracture follows

G ≥ Gc , (2.68)

i.e. the crack propagates if the condition is fulfilled. The energy release rate in LEFM is often
referred to as material force or configurational force, acting on the singularity as described
in ESHELBY (1951).
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Crack loading conditions

The GRIFFITH criterion for LEFM states the stability of the current system, which can be di-
rectly related to the displacement field around the crack tip. Three different crack movements
are distinguished, as illustrated in figure 2.3:

• Mode I describes a pure opening of the crack front, with the displacement jump per-
pendicular to the crack face (figure 2.3(a)).

• The second mode, depicted in figure 2.3(b), is a pure shearing mode: The displacement
jump is in plane with the crack face and perpendicular to the crack front.

• Figure 2.3(c) shows the second shearing mode, namely mode III, with the displacement
jump parallel to the crack front and in plane with the crack face.

(a) Mode I (b) Mode II (c) Mode III

Figure 2.3: Crack loading conditions.

In general, the displacement field is a combination of all three modes depending on the
boundary conditions and the material constants as well as the crack geometry. With the in-
troduction of the so-called stress intensity factors (SIFs), namelyKI, KII andKIII, by IRWIN

(1957), the displacement field in the vicinity of a crack tip can be determined. The SIFs de-
scribe the intensity of how a crack deforms in a respective mode, but only in the vicinity of
the crack tip, in the K-dominated domain.

g1

g2

g3

θ

r

Figure 2.4: Local coordinate system at crack front.
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The displacement field in the K-dominated domain, in terms of the SIFs for arbitrary crack
configurations, is described in a local coordinate system gi which is displayed in figure 2.4
with gi · gj = δij . The vectors g1 and g3 are in plane with the crack, with g3 being the
tangent, while g2 is perpendicular to the crack. The displacement field u = ui gi, given in
polar coordinates in the g1-g2 plane, in the vicinity of the crack front containing the first
order analytical solution by WESTERGAARD yields

u1 =
KI

2µ

√
r

2 π
cos

(
θ

2

)(
κ− 1 + 2 sin2

(
θ

2

))

+
KII

2µ

√
r

2π
sin

(
θ

2

)(
κ+ 1 + 2 cos2

(
θ

2

))

u2 =
KI

2µ

√
r

2 π
sin

(
θ

2

)(
κ+ 1− 2 cos2

(
θ

2

))

− KII

2µ

√
r

2 π
cos

(
θ

2

)(
κ− 1− 2 sin2

(
θ

2

))

u3 =
KIII

2µ

√
r

2π
sin

(
θ

2

)

(2.69)

with the KOLOSOV constant κ

κ =

{
3−ν
1+ν

plane stress
3− 4 ν plane strain

, (2.70)

and the shear modulus µ as well as POISSON’s ratio ν. In concept of small strains (2.19)
and linear, elastic, isotropic material behavior (2.54), one can see easily from (2.69), that
σij ∝ r−

1
2 , which reflects the WESTERGAARD solution.

Within the concept of LEFM, the energy release rate G can be directly rewritten in terms of
the SIFs (see e.g. GROSS & SEELIG (2007))

G =
1

E?

(
K2

I +K2
II

)
+

1

2µ
K2

III , (2.71)

with

E? =

{
E plane stress
E

1−ν2 plane strain , (2.72)

with E denoting YOUNG’s modulus. For three-dimensional problems, κ is set to κ = 3−4 ν
and E? is set to E? = E/ (1− ν2).

Crack propagation using the J-integral

For the crack growth criterion (2.68) in a linear elastic medium the J-integral, introduced by
RICE (1968), needs to be evaluated as in LEFM

G = J . (2.73)
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In order to explain the main aspects, the theory is only introduced for two-dimensional prob-
lems. The extension to three-dimensional problems can be found in e.g. MORAN & SHIH

(1987a), MORAN & SHIH (1987b). The path-independent ring integral J

J =

∫

C

(
W δ1j − σij

∂ui
∂g1

)
nj ds , (2.74)

with the strain energy

W =
1

2
σij εij (2.75)

is illustrated in figure 2.5, with the outward normal n and the path C.

n

C

g2

g1

Figure 2.5: Contour C and outward normal n in local coordinate system with g1 · g2 = 0.

Assuming two states of the domain with the current state (·)(1) and an auxiliary state (·)(2)

yields the asymptotic fields for mode I/II. The superposition of both states leads to a different
equilibrium and furthermore to a different integral

J (1+2) =

∫

C

(
W (1+2) δ1j −

(
σ

(1)
ij + σ

(2)
ij

) (∂u(1)
i

∂g1

+
∂u

(2)
i

∂g1

))
nj ds , (2.76)

with the superposed strain energy

W (1+2) =
1

2

(
σ

(1)
ij + σ

(2)
ij

) (
ε

(1)
ij + ε

(2)
ij

)
. (2.77)

Rewriting (2.76) identifies J for state (1), state (2) and the interaction integral I(1,2)

J (1+2) = J (1) + J (2) + I(1,2) , (2.78)

with the interaction integral

I(1,2) =

∫

C

(
W (1,2) δ1j − σ(1)

ij

∂u
(2)
i

∂g1

− σ(2)
ij

∂u
(1)
i

∂g1

)
nj ds , (2.79)

and the strain energy

W (1,2) =
1

2

(
σ

(1)
ij ε

(2)
ij + σ

(2)
ij ε

(1)
ij

)
. (2.80)
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Expanding (2.71) yields J for state (1), state (2) and a mixed term

J (1+2) = J (1) + J (2) +
2

E?

(
K

(1)
I K

(2)
I +K

(1)
II K

(2)
II

)
, (2.81)

which can be identified as the interaction integral by applying (2.78) to (2.81)

I(1,2) =
2

E?

(
K

(1)
I K

(2)
I +K

(1)
II K

(2)
II

)
. (2.82)

Choosing state (2) as pure mode I/II

K
(1)
I =

E?

2
I(1,mode I) , K

(1)
II =

E?

2
I(1,mode II) , (2.83)

yields a unique solution for the SIFs KI and KII in terms of the known field variables σ,
ε and u. Here, the auxiliary state variables (·)(2) are the WESTERGAARD solution (2.69)
and their corresponding strains and stresses. Applying the SIFs to (2.71) and subsequently
to (2.68) determines directly whether the crack propagates.
However, the SIFs do not yield a direction of growth at hand. Among the three most popular
criteria to determine the direction θc of crack growth,

• the criterion of maximum hoop stress by ERDOGAN & SIH (1963),

• the criterion of minimum strain energy density by SIH (1974) and

• the criterion of maximum energy release by NUISMER (1975),

the criterion of maximum hoop stress is used here: the crack grows in the direction of the
highest circumferential stress once the hoop stress exceeds the critical value σc. The stresses
in terms of the SIFs can be determined easily, by computing the strains (2.19) in terms of
the displacement field (2.69) and applying the constitutive model (2.54). The hoop stress
σθθ, defined in the local basis of the crack front according to figure 2.4, in terms of the
coordinates r and θ follows

σθθ =
1

4
√

2 π r

[
KI

(
3 cos

(
θ

2

)
+ cos

(
3 θ

2

))
+

KII

(
3 sin

(
θ

2

)
+ 3 sin

(
3 θ

2

))] , (2.84)

while the critical stress σc can be reformulated in terms of the material constant KIc

σc =
KIc√
2π r

, (2.85)

yielding a reformulation of the initially introduced growth criterion (2.68)

σθθ (θc) ≥ σc with

√
G
Gc

=
σθθ (θc)

σc
. (2.86)
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The direction of maximum hoop stress does clearly not depend on the distance r, such that
the direction of crack growth yields

∂σθθ
∂θ

∣∣∣∣
θc

= 0 . (2.87)

Applying (2.87) to (2.84) the direction of crack growth can be expressed in terms of the SIFs

θc =

{
2 arctan 1

4

(
KI

KII
− KII

||KII||

√
K2

I

K2
II

+ 8
)

for KII 6= 0

0 for KII = 0
, (2.88)

displayed in figure 2.6. Hence, the deviation in the crack path for pure mode I loading
vanishes as θc = 0. For pure mode II loading the crack deflects about ±70.5o, since KI = 0.
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Figure 2.6: Angle of crack growth θc depending on ratio of SIFs.

Different models to predict the crack path for three-dimensional problems are discussed in
RICHARD ET AL. (2005).

Crack propagation based on continuum damage mechanics

An alternative approach towards modeling brittle fracture are continuum damage models,
introduced by KACHANOV (1958) for brittle, linear elastic, isotropic solids: Void growth
and coalescence lead to degradation of the material, described by a certain scalar variable D,
such that (2.57) reads

σ = (1−D)C : ε . (2.89)

Here, the damage variable D is zero for virgin material and D = 1 for completely broken
material, such that 0 ≤ D ≤ 1. Thus, a traction free boundary at the crack face is tradition-
ally introduced via material softening and not via creation of new discrete crack surfaces. For



2.6. LINEAR ELASTIC FRACTURE MECHANICS 23

isotropic damage, the damage variable is usually driven by a scalar, depending on the current
load state. Relating this scalar directly to the damage variable leads to localization, such that
once fracture occurs the body breaks completely without requiring any work, despite the fact
that energy dissipates. Furthermore, this localization leads to mesh dependent solutions in
proceeding numerical analysis, as demonstrated by PEERLINGS (1999) among others. In
order to overcome this inconvenience, a gradient enhanced damage model by LASRY & BE-
LYTSCHKO (1988), PEERLINGS ET AL. (1996) is applied. The key idea of non-local models
is to solve a HELMHOLTZ-type equation

ε− div (c grad (ε)) = ε̃ , (2.90)

with the boundary condition introduced by PEERLINGS ET AL. (1996)

grad (ε) · n = 0 on ∂Ω ∪ Γ , (2.91)

for the non-local equivalent strain ε = ε (x), which drives a damage variable D with Ḋ ≥ 0
instead of its local counterpart ε̃. In (2.90) the variable c denotes the internal length scale
and ε̃ is the equivalent strain, which maps the strain tensor onto a scalar variable. A va-
riety of different equivalent strain formulations are suitable for brittle fracture, according
to LEMAITRE (1986), MAZARS & PIJAUDIER-CABOT (1989), BAŽANT ET AL. (1984),
PIJAUDIER-CABOT & BAŽANT (1987), DE VREE ET AL. (1995), SIMO & JU (1987a)
among others:

ε̃ =
√

Ψ =
√
ε : C : ε , (2.92)

ε̃ =
√

Ψ+ =
√
ε+ : C : ε+ , (2.93)

ε̃ =

√√√√
3∑

i=1

〈εi〉2 , (2.94)

ε̃ = f (I1, J2, k) =
(k − 1) I1

2 k (1− 2 ν)
+

√[
(k − 1) I1

2 k (1− 2 ν)

]2

+
3 J2

k (1 + ν)2 . (2.95)

The value of the energy based equivalent strain measure (2.92) depends equally on compres-
sion and tension. Taking only positive eigenvalues εi of the strain tensor ε into account,
i.e.

ε+ =
3∑

i=1

〈εi〉ni ⊗ ni , (2.96)

with the MCAULEY brackets 〈 • 〉 = 1
2

( • + ‖ • ‖), yields an equivalent strain mea-
sure (2.93) which is more sensitive to tension. A similar procedure is to sum only positive
eigenvalues as in (2.94), leading to different weights of positive strain components. Intro-
ducing the additional material parameter k, accounting for a relation of compression strength
to tensile strength, i.e. if k < 1 the material is more sensitive to tension than to compression
and vice versa, is used in the so-called modified VON MISES criterion (2.95). It depends on
the first invariant I1 of the strain tensor as well as on the second invariant J2 of the deviatoric
part of the strain tensor

I1 = tr (ε) , J2 =
1

2
ε : ε− 1

6
[tr (ε)]2 . (2.97)
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With one of these four approaches for the equivalent strain, (2.90) can be solved for the non-
local equivalent strain.
A well known model to relate the damage variable D to this non-local quantity is

D =





0 if ε < κ0
κc
ε

ε−κ0
κc−κ0 if κ0 ≤ ε ≤ κc

1 if ε > κc

, (2.98)

sketched by LEMAITRE (1986) among others. As long as ε is less than the threshold value κ0

the material remains undamaged. Once this value is exceeded, material softening is in-
duced according to (2.98) until the non-local equivalent strain reaches the second threshold
value κc. At this stage of damage, D = 1, the material is completely broken, i.e. a crack
emerges.
Assuming now purely brittle fracture, i.e. no softening occurs, the limiting case κ0 → κc
of (2.98) yields a simplified ε-D relation

lim
κ0→κc

(D) =

{
0 if ε ≤ κc
1 if ε > κc

, (2.99)

displayed together with (2.98) in figure 2.7. Until the non-local equivalent strain does not
exceed the threshold value κc, the material remains undamaged. Once ε is greater than this
threshold value, the material is completely broken, which means that a crack emerges.

ǫ

κc

1

0

D

0 κ0 = κcκ0

Figure 2.7: Gray: Classical damage approach following equation (2.98). Black: Approach
without material softening (2.99).

In LEFM the relation between distance to the crack front r and strains is εij ∝ r−
1
2 , which

justifies the assumption that the non-local equivalent strain ε is always highest at the crack
front. The energetic equivalence of discrete fracture and material softening allows the cou-
pling of both approaches, as shown by MAZARS & PIJAUDIER-CABOT (1996). Thus, the
damage growth, i.e. crack growth, is not modeled via reduction of the tangent stiffness ma-
trix, but by extending the current crack front discretely: An internal variable such as D is not
required anymore. Consequently, the criterion for crack propagation reads

ε > κc crack propagation ,

ε ≤ κc no crack propagation .
(2.100)



2.6. LINEAR ELASTIC FRACTURE MECHANICS 25

Advantageously, the presented approach can be applied to different constitutive models by
an appropriate choice of the equivalent strain ε̃ in (2.90), which was captured by e.g. AREIAS

ET AL. (2003) and MEDIAVILLA ET AL. (2006a) for plasticity.
On the downside, the proposed method does not yield the direction of crack growth at hand
and it can hardly be extracted from the introduced damage model as pointed out by DAW-
ICKE ET AL. (1995) and MEDIAVILLA ET AL. (2006b) among others. This minor drawback
can be overcome by applying the method proposed by FRIES & BAYDOUN (2012) to this
model: Assuming pure mode I and mode II loading, the criterion of maximum hoop stress
by ERDOGAN & SIH (1963) can be applied. Spanning a local coordinate system at the crack
front as displayed in figure 2.4, the direction θc of maximum hoop stress max (σθθ) in the
g1–g2 plane can be found.

Weak form
Besides the balance of linear momentum, the solution of a second equation is now required
to determine crack growth. Similar to the weak form of the balance of linear momentum,
a test function δε = δε (x) is multiplied with (2.90) and integrated over the whole domain,
yielding ∫

Ω

[
ε− c∇2ε− ε̃

]
· δε dv = 0 . (2.101)

The derivative
∇ (δε · ∇ε) = δε · ∇2ε+ (∇δε)T · ∇ε , (2.102)

the divergence theorem and the application of (2.91) yield the weak form
∫

Ω

δε · ε dv + c

∫

Ω

(∇δε)T · ∇ε dv =

∫

Ω

δε · ε̃ dv . (2.103)

Further information about the concept of non-local and gradient enhanced damage models is
well explained e.g. by PEERLINGS (1999).
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Chapter 3

Finite Element Method

As continuous elliptic partial differential equations (PDE), here the conservation of linear
momentum (2.29), (2.60) and the damage approach (2.90), (2.103), are in general not ana-
lytically solvable for arbitrary boundary conditions and geometries, numerical methods are
usually applied to these type of problems. The finite element method (FEM) is a tool for
solving elliptic PDEs and has gained attention within recent decades as being a robust, flexi-
ble, comparably fast and accurate solution method. Consequently a huge variety of literature
is available, covering different aspects of the finite element method. Hence, in this chapter
only the fundamentals of a displacement FE formulation are briefly summarized. The in-
terested reader is referred to ZIENKIEWICZ & TAYLOR (2005b), ZIENKIEWICZ & TAYLOR

(2005a), BATHE (1986), SIMO & HUGHES (1998), BELYTSCHKO ET AL. (2000), WRIG-
GERS (2008) among others.
Within the concept of LEFM, singular stress fields occur naturally as explained in section
2.6. However, the standard FEM is not able to capture these singular stress fields accurately
using an acceptable amount of computation time. Thus, the FEM needs to be extended us-
ing more suitable ansatz functions. The so-called extended finite element method (XFEM)
overcomes these issues and is therefore frequently used in the concept of computational frac-
ture mechanics. STROUBOULIS ET AL. (2001), FRIES & BELYTSCHKO (2010), POMMIER

ET AL. (2011) among others give a precise overview of this method.

3.1 Bilinear/trilinear displacement Finite Element ap-
proach

To solve the weak form of equilibrium (2.60) numerically using the FEM requires the ap-
proximation of different measures. A main idea of the finite element method is the subdivi-
sion of a body B into finite elements e with their volume Ωe

B ≈
ne⋃

e=1

Ωe , (3.1)

with ne being the total number of elements in the whole domain. A subdivision of a domain
is illustrated in figure 3.1: The elements are connected via their nodes xI , while all nodes

27
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that are attached to one element need to be part of this element in standard FE approaches.
Depending on the element shape and size, discretization errors of the boundary of the domain
occur. Consequently, the DIRICHLET and NEUMANN boundary conditions are affected by
this approximation: The smaller the finite elements are, or the better they can reflect the
outer boundary of the domain by using higher order interpolation functions, the smaller the
discretization error becomes.

u

Ωe

xI t

Figure 3.1: Body discretized with elements Ωe containing nodes xI with prescribed tractions
t and displacements u.

3.1.1 Isoparametric concept
Defining locally supported ansatz functions, also known as shape functions, used to interpo-
late the initial as well as current coordinates in the discretized domain, leads to an approxi-
mation of the coordinates

X =
nn∑

I=1

NI (ξ)XI , x =
nn∑

I=1

NI (ξ)xI . (3.2)

Here, nn denotes the number of nodes in the whole domain. The focus in this thesis is to de-
velop new techniques and improve existing methods for the 4-node quadrilateral Q1 element
for two and the 8-node hexahedral Q1 element for three-dimensional problems.

ξ

2

34

1

2

2

η

(a) 4-node quadrilateral element.
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3

5

8

4
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7

ζ

2

2 2

ηξ

(b) 8-node hexahedral element.

Figure 3.2: 2D/3D isoparametric reference elements Ω�.
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These elements are defined in the isoparametric reference configuration denoted by the sub-
script (·)�, displayed in figure 3.2. This configuration has no physical meaning, but facili-
tates the fast implementation of finite elements, applicable to arbitrary geometries: The nodal
shape functions NI (ξ) and the evaluation of the weak form of equilibrium are formulated in
the isoparametric reference configuration and are mapped to the initial or current configura-
tion. Within the isoparametric concept, the displacement and virtual displacement field are
approximated using the same shape functions as used for the geometry

u =
nn∑

I=1

NI (ξ)uI , δu =
nn∑

I=1

NI (ξ) δuI . (3.3)

The chosen ansatz should fulfill the partition of unity – the sum of all nodal shape functions
are one everywhere – and the shape function NI should be one only at node I and zero at all
other nodes

nn∑

I=1

NI (ξ) = 1 , (3.4)

NI (xJ) = δIJ for I, J = 1, . . . , nn . (3.5)

A popular choice for the ansatz functions are the LAGRANGE polynomials, which fulfill the
above mentioned requirements (3.5). For a one-dimensional problem, the shape function for
node I reads

NI (ξ) =
nne∏

J=1 , J 6=I

ξJ − ξ
ξJ − ξI

with :− 1 ≤ ξ ≤ 1 . (3.6)

Here, nne denotes the number of nodes belonging to a single finite element, with nne = 4/8
in this work for 2D/3D problems respectively. Thus, the order of the polynomial shape
function depends on the number of nodes per element: (nne − 1). Choosing the introduced
Q1 elements results in bi-/trilinear shape functions for 2D/3D problems respectively

NI (ξ) =
1

4
(1 + ξI ξ) (1 + ηI η) ,

NI (ξ) =
1

8
(1 + ξI ξ) (1 + ηI η) (1 + ζI ζ) ,

(3.7)

with ξI , ηI and ζI being the nodal coordinates of the reference configuration. As many
computations are performed in the reference configuration, a mapping from the isoparametric
space to the initial or current configuration is required. With the JACOBIan tensors

J =
∂X

∂ξ
=

nn∑

I=1

XI ⊗
∂NI (ξ)

∂ξ
, j =

∂x

∂ξ
=

nn∑

I=1

xI ⊗
∂NI (ξ)

∂ξ
, (3.8)

and the relation to the deformation gradient F = j ·J−1, all measures can be mapped to any
coordinate system, as sketched in figure 3.3.
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e2

e1

E2

E1

Ω0

Ωt

j = ∂x
∂ξ

Ω�

ξ
ξ

F = ∂x
∂X

η

ξ

J = ∂X
∂ξ

η
η

Figure 3.3: Isoparametric mapping applied to one deformed element.

3.1.2 Discretization of the weak form
Applying the FE approach to (2.60), the discretized weak form follows

∫

Bt
σ : ∇δu dv ≈

ne⋃

e=1

nne∑

I=1

δuI ·
∫

Ωt

BI · σe dv = δũ · r (u) , (3.9)

∫

Bt
f · δu dv ≈

ne⋃

e=1

nne∑

I=1

δuI ·
∫

Ωt

NI · f e dv = δũ · P Ω , (3.10)

∫

∂Btσ
t · δu da ≈

ne⋃

e=1

nne∑

I=1

δuI ·
∫

∂Ωt

NI · te da = δũ · P ∂Ω , (3.11)

which is the basis for the implementation of the finite element method. The superscript
(·)e denotes the respective variable on the FE level, and the virtual displacement vector δũ
indicates the virtual displacement after assembling all elements in the domain. The matrix
BI contains the derivatives of the nodal shape functions of node I , such that

1

2

(
∇δu+∇Tδu

)
=

nn∑

I=1

BI · δuI . (3.12)

The variable r (u) is called the internal nodal force vector, which depends on the nodal
unknowns uI . The force vectors P Ω and P ∂Ω are the discretized volume forces and the
discretized tractions respectively.

3.1.3 Numerical integration and solution procedure
In order to obtain a fast integration algorithm, the GAUSSIAN quadrature rule is applied. For
one-dimensional problems, this method yields exact integration of the polynomial functions
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of order 2nGP − 1, with nGP being the number of integration points. The integral of an
arbitrary function f over the current element domain Ωt, is mapped to the isoparametric
element Ω� using the JACOBIan and finally approximated as a sum over all quadrature points
nGP with f evaluated at these points and multiplied with a weighting function w

∫

Ωt

f dv =

∫

Ω�

f det (j e) dv� ≈
nGP∑

i=1

f (ξi) det (j e (ξi)) w (ξi) . (3.13)

As the mapping from the isoparametric configuration to the initial or current configuration
does not generally lead exactly to a polynomial, the numerical integration undergoes minor
errors.
With the discretized weak form and the integration scheme at hand, the problem can be
solved. Applying equations (3.9), (3.10), (3.11) to (2.60), with P = P Ω + P ∂Ω, the weak
form can be rewritten

g (u) = r (u)− P = 0 (3.14)

assuming δu as being arbitrary, but non-zero. The generally non-linear system of equations
can be solved using the NEWTON - RAPHSON method. Expanding (3.14) in a TAYLOR series,
with neglection of the quadratic and higher order terms,

g (uk+1) ≈ g (uk) +
∂g (uk)

∂u

∣∣∣∣
u=uk

· (uk+1 − uk) = 0 (3.15)

the non-linear system of equations can be solved iteratively for u. The GÂTEAUX deriva-
tive in (3.15), often referred to as tangent stiffness matrix KT , is in this work independent
of P , since conservative forces are assumed. As all problems are reduced to linear ones
here, the NEWTON - RAPHSON scheme needs one iteration until convergence is achieved,
i.e. g (u1) ≈ 0.

3.2 Fundamentals of the eXtended Finite Element Method
Modeling cracks in the concept LEFM using the FEM has major drawbacks. In order to
approximate the correct order of stress singularity at the crack front occurring in elasticity,
a fine mesh is required, as LAGRANGE polynomials are generally not able to capture these
singular behaviors. To overcome this drawback, moving the mid-side nodes of the crack
tip elements to their quarter points and degenerate the quadrilateral to triangular elements
as shown by HENSHELL & SHAW (1975), BARSOUM (1976), results in a 1/

√
r stress sin-

gularity. Secondly, the finite elements need to be aligned with the crack. Once the crack
propagates, the region around the crack front requires remeshing and if the circumstances
require, mapping of history data.
In order to obtain the desired singular stress field at the crack front, finite elements can be en-
riched with the analytical solution as shown by BENZLEY (1974), BABUŠKA ET AL. (1994),
MELENK & BABUŠKA (1996) among others, which is an essential ingredient of todays ex-
tended finite element method. Depending on the choice of singular enrichment functions,
the approach is either called generalized finite element method (GFEM) or extended finite
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element method (XFEM). The key aspect, the use of enrichment functions and the initial ap-
plication to fracture mechanics, remains. The GFEM/XFEM was successfully introduced by
BELYTSCHKO & BLACK (1999), MOËS ET AL. (1999), DOLBOW (1999), DOLBOW ET AL.
(2000), STROUBOULIS ET AL. (2000) to two-dimensional problems and by DUARTE ET AL.
(2000), SUKUMAR ET AL. (2000), MOËS ET AL. (2002) to three-dimensional problems.
Consequently, the desired stress singularity is captured accurately, but the XFEM itself does
not provide mesh-independent crack path descriptions naturally. To overcome this draw-
back, nowadays the XFEM is mostly coupled with the level set method (LSM) by OSHER

& SETHIAN (1988) in order to avoid remeshing during crack propagation computations:
The crack is described using level set functions, i.e. signed distance functions, which are
coupled with the problem specific enrichment functions as shown by STOLARSKA ET AL.
(2001). Hence, the crack surface, i.e. the level set functions, needs to be updated after
each propagation step, while the finite element mesh remains untouched. A vast amount
of crack descriptions and level set updates have been successfully applied to computational
fracture mechanics, e.g. the fast marching method by SUKUMAR ET AL. (2003), a geometri-
cal approach by FRIES & BAYDOUN (2012) or solving the HAMILTON–JACOBI equation by
GRAVOUIL ET AL. (2002). Alternatively, the crack can be described using a triangular mesh
for three-dimensional problems instead of a level set function as demonstrated by DUARTE

ET AL. (2001). Thus, remeshing is avoided during the numerical fracture process.
Additionally, the XFEM can be applied independently of the constitutive equations, briefly
introduced in section 2.4. It was successfully applied to hyperelasticity by LEGRAIN ET AL.
(2005), LOEHNERT ET AL. (2011), plasticity by ELGUEDJ ET AL. (2006), cohesive mod-
els by MOËS & BELYTSCHKO (2002) and damage mechanics by AREIAS & BELYTSCHKO

(2005) among others. Besides fracture mechanics, a wide range of various problems such
as thermal problems, inhomogeneous materials, solidification problems, two-fluid flows and
dislocations as reported by FRIES & BELYTSCHKO (2010) can be solved with this numerical
method.
Due to its mesh independent crack description, its applicability to different material models
and its accurate solution at the crack front, the XFEM is the method chosen to model discrete
fracture.

3.2.1 Level set method
In order to track moving interfaces such as cracks, the level set method by OSHER &
SETHIAN (1988) is applied to the XFEM. A level set function ψ = ψ (x) of an interface Γc
is the signed distance function to the interface

ψ (x) = ±min ‖x− xΓc‖ , (3.16)

with xΓc being a point on the interface, illustrated in figure 3.4. As a crack in general
has at least one crack front, a second level set φ = φ (x) is needed to model a crack via
level sets: Its gradient is chosen to be orthogonal to the gradient of the first level set value,
i.e. ∇ψ · ∇φ = 0, such that the position of the crack Γc and its front ∂Γc can be determined

φ < 0 ∧ ψ = 0 ⇔ x ∈ Γc\∂Γc ,
φ = 0 ∧ ψ = 0 ⇔ x ∈ ∂Γc .

(3.17)
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e2e1

ψ

Γc

Figure 3.4: Bilinear level set function ψ (x) of a one-dimensional interface Γc in a two-
dimensional domain.

With this orthogonal construction of the second level set field, the distance r to the crack
front as well as the angle θ of a point x illustrated in figure 2.4 can be determined directly
from the level set values

r =
√
ψ2 + φ2 , θ = arctan

(
ψ

φ

)
. (3.18)

In this work, the level set fields are stored nodalwise and interpolated over the domain using
the same mesh and the same shape functions as applied to the displacement field approxima-
tion introduced in section 3.1.1. Thus, the level set approximation reads

ψ (ξ) =
nn∑

I=1

NI (ξ)ψI , φ (ξ) =
nn∑

I=1

NI (ξ)φI . (3.19)

For two-dimensional problems, a crack is a one-dimensional interface and assumed to be a
straight line in a finite element in the reference configuration Ω�. Consequently, the crack
becomes a bilinear function in an element in the initial and current configuration due to the
choice of its interpolation. This features a fast level set update and an accurate integration,
introduced in section 3.2.3. However, this methodology is not applied to three-dimensional
problems.

3.2.2 Enrichment functions
Once the level set fields have been determined, certain sets of nodes are enriched to incor-
porate the analytical solution (2.69) in the FE problem. Generally, the displacement field
approximation in terms of the XFEM

u (x) =
∑

I∈I

NI (x) uI

︸ ︷︷ ︸
Standard FE approx.

+
∑

I∈I?
MI (x) aI

︸ ︷︷ ︸
XFEM enrichment

, (3.20)

is an extension to the standard FE approximation (3.3). Following BELYTSCHKO & BLACK

(1999) as well as MOËS ET AL. (1999) the extended displacement field approximation for
discrete cracks reads

u (x) =
∑

I∈I

NI (x) uI +
∑

J∈J

4∑

j=1

NJ (x) fj (x) R (x) aJj

+
∑

K∈K

NK (x) H (x) bK .

(3.21)
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Here, the first term is the standard FE displacement approximation (3.3) applied to all
nodes I, while the following terms are the enrichments including their shape functions.
In (3.21), the nodal subset J ⊂ I contains only tip enriched nodes and the nodal subset
K ⊂ I contains all HEAVISIDE enriched nodes. The enrichment scheme is displayed in fig-
ure 3.5, where the nodes belonging to K are encircled and nodes belonging to J are marked
with a square. Similar to (3.3), the approximation of the virtual displacement field δu re-
ceives additional nodal unknowns using the same enrichment scheme and shape functions as
applied to the displacement field approximation (3.21).

tip enriched node

jump enriched node

Figure 3.5: XFEM enrichment scheme.

The terms uI , aJj and bK in (3.21) are the nodal unknowns, multiplied with their corre-
sponding ansatz. The ansatz of the second term of the displacement field approximation is
often referred to as crack tip enrichment function. Besides the bilinear/trilinear shape func-
tions NI (x), it contains the so-called crack tip enrichment functions fj (x), with

f1−4 (x) =

{√
r sin

(
θ

2

)
,
√
r cos

(
θ

2

)
,

√
r sin

(
θ

2

)
sin (θ) ,

√
r cos

(
θ

2

)
sin (θ)

} (3.22)

spanning the near tip asymptotic fields of the WESTERGAARD problem and a ramp func-
tion R (x). It can be seen easily, that the functions fj (x) yield the desired r−

1
2 singularity

in the stress field as well as a traction free crack face Γc, i.e. σ · n = 0 on Γc. With the
application of the level set method and the relation (3.18), the angle θ as well as the dis-
tance r can be computed easily. The ramp function R (x) introduced by LABORDE ET AL.
(2005), FRIES (2008), LOEHNERT ET AL. (2011) ensures that the partition of unity is ful-
filled in elements neighboring the crack tip/crack front elements, also known as blending
elements. Therefore, these elements are included in the nodal subset J and multiplied with
a ramp function sketched in figure 3.6

R (x) =
∑

I∈J ?
NI (x) , (3.23)
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fading out the effect of the enrichment functions. Here, the nodal subset J ? contains all
nodes belonging to a crack tip element, i.e. an element in which a crack tip/crack front ends.
Consequently, the partition of unity is fulfilled in the whole domain. As shown by FRIES

(2008), the application of the ramp function results in linearly dependent enrichment func-
tions f1−4 (x) in blending elements. Omitting the enrichment functions f4 (x), f3 (x) and
f2−4 (x) was investigated by LOEHNERT ET AL. (2011): the system of equations is uniquely
solvable and all three computations yield similar convergences. Note that the first enrich-
ment function f1 (x) cannot be dropped as it is the only one out of these four functions that
is discontinuous on the crack face and is thus needed to preserve a jump in the displacement
field. An alternative ramp function with less enriched nodes is introduced in section 5.2.2.

e2e1

R (x)

Figure 3.6: Ramp function R (x).

The last term of (3.21), often referred to as HEAVISIDE enrichment function, is applied to
nodes of completely cracked elements. This enrichment function ensures that the crack face
remains traction free, i.e. σ ·n = 0 on Γc, and thus enforces a jump in the displacement field
at the crack face. The enrichment function H (x) is the modified HEAVISIDE function

H (x) = H (ψ (x)) =

{
+1 if ψ (x) ≥ 0
−1 if ψ (x) < 0

, (3.24)

which can be evaluated quickly by determining the sign of the level set function at the current
integration point.

3.2.3 Integration
Apart from all its advantages in linear elastic fracture mechanics, the XFEM has two minor
drawbacks, which are addressed in this section: The integration of cracked elements is not
as straight forward as in standard FEM and the position of cracks in finite elements needs
special attention to avoid linear dependencies.
Differentiating (3.21) with respect to x at node xI , what is needed for theB-matrix, requires
the derivative

∂NI (x) H (x)

∂x
=
∂H (x)

∂x
NI (x) +

∂NI (x)

∂x
H (x) . (3.25)

Differentiating the HEAVISIDE function yields the DIRAC delta function δ (x) and thus

∂H (x)

∂x
NI (x) = δ (x) =

{
+∞ if x ∈ Γc

0 if x /∈ Γc
. (3.26)
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As infinity values are unexpedient in numerical simulations, these values need to be avoided.
Therefore, all elements containing cracks are subdivided into triangles/tetrahedrons with
the crack aligned with their edges/faces as shown for two-dimensional elements by MOËS

ET AL. (1999) and three-dimensional elements by LOEHNERT ET AL. (2011). Perform-
ing the integral in these subcells avoids quadrature points on edges and faces of trian-
gles/tetrahedrons such that infinite derivatives are prevented. Furthermore, this procedure
ensures quadrature points on both sides of the crack to take into account the discontinuous
displacement field. Splitting cracked and partly cracked elements is displayed in figure 3.7
for two-dimensional problems: Since there are two possibilities of how a linear function,
e.g. a crack, can intersect with a quadrilateral, two subdivision options need to be thought
of. Either a crack intersects neighboring sides or opposite sides of the element, resulting in
a pentagon and a triangle or in two quadrilaterals respectively. Inserting a point in the center
of both subdomains and connecting the center point to the nodes of the quadrilateral and the
intersection points, as illustrated in figure 3.7(a), (b), results in the desired subdivision into
triangles, with their edges aligned with the crack face Γc. Elements containing a crack tip,
such as depicted in figure 3.7(c), are generally split into five triangles: The crack tip is con-
nected to all four vertices and to the intersection point of crack and quadrilateral, resulting
in triangles aligned with the crack face Γc. If the crack intersects the quadrilateral at one
of its nodes, the number of triangles reduces to four. The extension for three-dimensional
elements used in this work follows the same strategy as explained in detail by LOEHNERT

ET AL. (2011).

ξ

η

Γc

(a) Cracked element: Crack
intersecting opposite sides of
quadrilateral.

ξ

η

Γc

(b) Cracked element: Crack
intersecting neighboring sides
of quadrilateral.

ξ

η

Γc

(c) Element containing a crack
tip.

Figure 3.7: Subdivision of cracked elements in isoparametric reference configurations.

A further improvement on the position of the quadrature points in elements containing a
stress singularity was made by LABORDE ET AL. (2005): Using the DUFFY transformation
by DUFFY (1982) yields a better approximation of the singular function and thus a better
rate of convergence. This procedure was investigated by BÉCHET ET AL. (2005), MOUSAVI

& SUKUMAR (2010) and MINNEBO (2012) in terms of the accuracy of the J-integral. As
pointed out by MINNEBO (2012), standard integration still yields fairly good approximations
of the J-integral using a reasonable number of integration points per tetrahedron. According
to MINNEBO (2012), the benefits of the DUFFY transformation can only be seen using more
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than 103 integration points per tetrahedron. To maintain fast computability, this transforma-
tion is not applied in this work.

3.2.4 Mesh regularization
As cracks may be distributed arbitrarily in the domain, nodal level set values ψI describing
the crack face might be zero or approximately zero. The resulting HEAVISIDE and standard
ansatz function for a one-dimensional problem are illustrated in figure 3.8, which demon-
strates the ensuing problem: The HEAVISIDE enrichment function resembles the standard
ansatz, which means that the functions are linearly dependent. Consequently, the system of
equations cannot be solved uniquely.

NI (x)

−1

1

0 x

H (x)

−1

1

0 x

NI (x) ·H (x)

−1

1

0 x
xI xI xI

Figure 3.8: Standard shape function, HEAVISIDE function and HEAVISIDE enrichment func-
tion (1D).

A two-dimensional problem containing linear dependency due to crack geometry and finite
element mesh is sketched in figure 3.9: The area A becomes so small, that the HEAVISIDE

enrichment resembles the standard ansatz function.

A

Figure 3.9: Linear dependent ansatz functions at center node.

To overcome this deficiency without changing the ansatz, four geometrical options can be
considered following two main strategies: Either the area A needs to be enlarged or the
area A is set to zero. Setting the area A to zero requires a special enrichment scheme for
nodes intersected by the crack: Elements not intersected by the crack belonging to this node
require either completely positive or completely negative level set values ψI , to maintain
a traction free crack face. Thus, all nodes displayed in figure 3.9 will be enriched, which
slightly increases the number of unknowns.
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Setting the area A to zero can be achieved in two ways: Either the corresponding nodal level
set value is set to zero as displayed in figure 3.10(a) or the respective node is shifted on to
the crack face as sketched in figure 3.10(b). Setting the nodal level set to zero is easy to im-
plement and does not cause any difficulties. Disadvantageously, this regularization changes
the original geometry of the crack face and with it the original BVP. Shifting the node on to
the crack face preserves the initially straight cracks, but for curved cracks, this regularization
changes the original path as well, as displayed in figure 3.10(b).

(a) Shift crack on to node. (b) Shift node on to crack.

(c) Shift crack away from node. (d) Shift node away from crack.

Figure 3.10: Shifting mesh or node to avoid linear dependency.

The enlargement of area A can be obtained by either moving the crack or moving the corre-
sponding finite element nodes: shifting the crack face in the direction of the gradient of the
level set value ψ (x) is displayed in figure 3.10(c). This adjustment changes the boundary
value problem by changing the crack geometry. Moving the node in direction grad (ψ (x))
as illustrated in figure 3.10(d) does not change straight crack surfaces. However, the crack
path approximation changes for curved cracks due to the bi-/trilinear level set field inter-
polation within one finite element. Furthermore, special attention is needed to be given to
nodes on the boundary of the domain, in order to maintain the original outer boundary, when
moving the node in direction grad (ψ (x)). Further details on this method are explained in
detail by MUELLER-HOEPPE (2012).
As all four geometrical regularizations generally yield a slightly different BVP, the intro-
duced methods are unfavorable. Preconditioning techniques by BÉCHET ET AL. (2005) and
MENK & BORDAS (2011) avoid ill-posed systems of equations of nearly zero level set values
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without changing any geometry. However, zero values cannot be treated with this technique
such that a more elegant way by LOEHNERT (2013) is applied here: Instead of changing the
geometry, the elemental stiffness matrix Ke is stabilized. Therefore, this symmetric matrix
is decomposed into V , containing its eigenvectors vi, and into D, containing the eigenval-
ues di

Ke = V ·D · V T . (3.27)

However,D naturally contains zero eigenvalues, e.g. due to rigid body motions, which have
to be preserved. However, further physically and numerically meaningful zero modes might
occur due to the fact that Ke contains contributions from enrichment functions and their
corresponding DOFs as well. These modes strongly depend on the enrichment scheme in the
finite element and on the position of the crack. On the other hand, unfavorable crack paths
as displayed in figure 3.9 might yield very small or zero eigenvalues, which is physically
and numerically meaningless. Stabilizing these modes yields a well conditioned systems
of equations, without changing any geometrical properties. Decomposing (3.27) into non-
zero eigenmodes V̄ , referring to non-zero eigenvalues D̄ and into zero eigenmodes V 0,
containing n eigenvectors vi0, yields

Ke =
(
V̄ ,V 0

)
·
(
D̄ 0
0 0

)
·
(
V̄

T

V T
0

)
. (3.28)

In order to keep the meaningful zero modes V̄ 0 ⊂ V 0, containing n̄ eigenvectors v̄i0, and
to stabilize meaningless zero modes V̂ 0 = V 0\V̄ 0, distinguishing between physically and
numerically meaningful and meaningless modes is necessary. As all eigenvectors in V̄ 0

depend on the shape of the finite element, its enrichment scheme and the crack geometry,
these vectors can be computed in advance. Orthonormalizing vi0 with v̄i0 naturally eliminates
physically and numerically meaningful modes yielding

v̂i0 = vi0 −
n̄∑

j=1

vi0 · v̄j0
v̄j0 · v̄j0

v̄j0 ∀ i ∈ [1, n] . (3.29)

As the solution for V 0 is not unique, i.e. it might be rotated arbitrarily within itself, there
are n̄ linearly dependent vectors v̂i0. Orthonormalizing v̂i0 with itself yields

ˆ̂vi0 = v̂i0 −
i−1∑

j=1

v̂i0 · v̂j0
v̂j0 · v̂j0

v̂j0 ∀ i ∈ [1, n] , (3.30)

which leads to n− n̄ zero eigenmodes ˆ̂vi0 ∈ ˆ̂
V 0 requiring stabilization.

Taking care of nearly zero eigenvalues dj does not require any further computations, but only
an evaluation of the already determined non-zero eigenvalues D̄

γj =
||ε d1 − dj||

2
+
ε d1 − dj

2
≥ 0 . (3.31)

Here, a comparison with the largest eigenvalue d1 of the current element is chosen to ensure
stabilization independent of the element shape. If the stabilization factor γj > 0, this mode
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needs to be stabilized with its eigenvector v̄jε ∈ V̄ ε ⊂ V̄ , leading to m additional modes.
As the resulting vector space V̄ ε is already orthogonal to the zero space V 0, an additional
orthonormalization is not necessary, leading to the vector space Ṽ requiring stabilization

Ṽ =
{

ˆ̂
V 0, V̄ ε

}
ṽj ∈ Ṽ . (3.32)

Finally, the stiffness matrix and the residual vectorRe can be modified consistently yielding

K̃
e

= Ke +
n−n̄+m∑

j=1

γj ṽ
j ⊗ ṽj ,

R̃
e

= Re +
n−n̄+m∑

j=1

γj ṽ
j ⊗ ṽj · ûe ,

(3.33)

with the displacement vector ûe containing all nodal unknowns.
The tolerance ε is typically chosen to ε = 10−5, such that the impact on the solution is neg-
ligible, but the system of equations is well-conditioned.
Note that this technique only needs to be applied to completely enriched elements. As cracks
are one dimension less than the dimension of the problem being solved, only a few elements
are completely enriched. Thus, the eigenvalue decomposition, filtering the eigenvectors and
modifyingKe andRe only needs to be done for a few elements.
With this technique not only linear dependencies are avoided numerically, but also a signifi-
cant speed-up for iterative solvers (here the GMRES) is gained. Here, the computation time
for stabilized systems includes the time to determine K̃

e
and R̃

e
. As this method holds for

arbitrary meshes and cracks and furthermore neither changes any finite element geometry
nor the crack path, this regularization method is the method of choice and thus applied in
this work.

3.3 Discretization of non-local strain field
Besides the balance of linear momentum, the weak form of the HELMHOLTZ-type equa-
tion (2.103) is solved for ε (x) using the finite element method. According to the introduced
boundary conditions (2.91) and the presence of internal boundaries namely cracks, the non-
local equivalent strain field is enriched similar to the displacement field approximation

ε (x) =
∑

I∈I

NI (x) εI +
∑

J∈J

NJ (x) f1 (x) R (x) αJ +
∑

K∈K

NK (x) H (x) βK . (3.34)

Here, αJ and βK are the additional unknowns, which fulfill (2.91) in average on internal
boundaries. The nodal sets I, J and K are the same as in the displacement field approxima-
tion such that the enrichment scheme leads to three nodal unknowns at most describing the
non-local equivalent strain field.
As ε depends generally non-linearly on the strain tensor ε and as ε drives usually non-
linearly an internal damage variable D, the governing weak forms (2.60) and (2.103) are
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strongly coupled. Furthermore, the system of equations is non-linear such that a NEWTON -
RAPHSON scheme is applied, requiring a linearization of both weak forms. This linearization
is explained in detail by PEERLINGS (1999), yielding

[
Kuu Kuε

Kεu Kεε

]
·
[

∆u
∆ε

]
=

[
fu −Kuu u

(i)

f ε −Kεε ε
(i)

]
. (3.35)

Here, the system matrix consists of two symmetric matrices Kuu and Kεε referring to the
left-hand side of the weak forms (2.60) and (2.103) and to two rectangular matrices Kuε

andKεu referring to the coupling between those governing equations. With the matrices

Kuu =

∫

Ω

BT (1−D) CB dv ,

Kuε = −
∫

Ω

BT C ε(i) q N dv ,

Kεu = −
∫

Ω

N sTB dv ,

Kεε =

∫

Ω

N N + cB
T
B dv ,

(3.36)

and the load vectors

fu =

∫

∂Ωt

N t da ,

f ε =

∫

Ω

N ε̃ dv ,

(3.37)

the coupled system of equation exhibits another feature besides non-linearity: Due to the
coupling terms Kuε and Kεu with Kuε 6= KT

εu, the global tangent matrix becomes non-
symmetric and thus computationally expensive to solve. In (3.36), the matrix BI contains
the derivatives of NI such that

B
T

I =

[
∂NI

∂x

∂NI

∂y

∂NI

∂z

]
, (3.38)

for a non-enriched node I . The definition of s

s =
∂ε̃

∂ε

∣∣∣∣
ε=ε(i)

, (3.39)

and q

q =
∂D

∂ε
, (3.40)

displays clearly the link between both governing equations. Applying (2.94) to (3.39) yields

s =
1

ε̃

3∑

i=1

〈εi〉 ni ⊗ ni ∀ ε̃ 6= 0 . (3.41)
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Choosing the equivalent strain according to (2.95) yields

s =
(k − 1)

2 k (1− 2 ν)
1 +

(
(k−1)

2 k(1−2 ν)

)2

I1 1 + 3
2 k (1+ν)2

(
1
6
1− ε

)
√(

(k−1)I1
2 k(1−2 ν)

)2

+ 3 J2

k(1+ν)2

. (3.42)

Applying the damage model to crack propagation as introduced in section 2.6 means that the
discrete crack is elongated following the criterion of maximum hoop stress with an amplitude
depending on ε, introduced in section 5.3.1. Consequently, damage does not need to be taken
into account via an internal variableD, such that it remains constant in this work withD = 0.
Therefore, the derivative

q =
∂D

∂ε
= 0 , (3.43)

vanishes, such thatKuε = 0. Thus, (3.35) leads to the following staggered solution scheme

(1)
(2)

Kuu ·∆u = fu −Kuu · u(i)

Kεε ·∆ε = f ε −Kεε ε
(i) −Kεu ·∆u . (3.44)

As the displacement field does not depend directly on the damage evolution, it reduces to a
linear equation solved in the first step. Following, the right-hand side of the HELMHOLTZ-
type equation is updated using the current displacement field and the non-local equivalent
strain from the previous step ( • )(i). In a second solution step, ∆ε can be determined, such
that crack propagation can be investigated.



Chapter 4

Multiscale approach

Microcracks might induce crack shielding and crack amplification effects of macrocracks
such that their SIFs decrease and increase respectively, as pointed out by RUBINSTEIN (1985,
1986), ROSE (1986b,a) and HUTCHINSON (1987) among others. This effect on the SIFs de-
pends strongly on the position and the orientation of microcracks, such that microcracks are
not negligible. Assuming macrocracks as well as microcracks, i.e. cracks of different length
scales, in this work requires, despite the application of the XFEM, a relatively fine finite
element mesh unless the mesh is refined adaptively: The higher the difference in the length
of microcracks and macrocracks, the finer the FE mesh required. As the mesh resolution
depends mainly on the size of the microcracks in relation to the size of the overall problem,
the computational effort increases intensely using quadrilateral/hexahedral elements.
Using adaptive refinement via hanging nodes as shown by FRIES ET AL. (2011) as well as
PRANGE ET AL. (2012) reduces the computational costs as long as crack propagation is pre-
vented. In case of crack propagation, the existing hanging nodes are kept, while additional
hanging nodes need to be created in order to capture microcrack growth precisely. Thus,
the number of nodal unknowns increases with each propagation step depending on the initial
crack configuration and the growth, which makes this method comparably expensive.
Alternatively a multiscale method capturing micro effects can be applied. Disadvantageously
methods like the FE2 method by FEYEL & CHABOCHE (2000) and by MIEHE ET AL. (1999)
as well as the variational multiscale method by HUGHES (1995) are not able to capture lo-
calization effects at the fine scale as pointed out by GEERS ET AL. (2010). A so-called
continuous–discontinuous approach, successfully applied in the context of damage mechan-
ics by MASSART ET AL. (2007), can handle localization effects such as microcracks. Similar
methods were successfully applied to discrete fracture using the XFEM: The multiscale ag-
gregating discontinuity method (MAD) introduced by BELYTSCHKO ET AL. (2008) and ex-
tended by COENEN ET AL. (2012) among others averages the localization effects on the fine
scale and maps those results to the coarse scale. Hence, macrocracks are created using the ag-
gregated micro effects. The multiscale projection method by LOEHNERT & BELYTSCHKO

(2007b) considers cracks of different length scales from the beginning of the computation
which allows scale separation: Microcracks are taken into account in a region of interest, i.e.
around the macrocrack tips, and are independent of macrocracks. Allowing scale separation
yields another advantage: As long as the micro domains do not overlap, all micro domains
can be computed independently of the macro domain and all other micro domains. Thus, the

43
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computational costs can be dramatically reduced as micro computations can be computed in
parallel. The assumption that microcracks are of length scales smaller than macrocracks in
this work, makes the multiscale projection method the method of our choice, which will be
introduced in this chapter.

4.1 Weak form
Even though the multiscale projection method is theoretically applicable to an infinite num-
ber of scales, this work is restricted to a two-scale approach, as the primal ideas as well as
arising difficulties can be transferred one-to-one to further scales. In the following, the su-
perscript ( · )0 denotes macro variables, while the superscript ( · )1 denotes micro variables.
Splitting the displacement field into a macro displacement field u0 (x) and a micro displace-
ment field u1 (x), yields

u1 (x) = u0 (x) + ũ1 (x) . (4.1)

Here, ũ1 (x) denotes the micro fluctuation field being non-zero in the fine scale domain Ω1.
As displayed in figure 4.1, this domain is set within a user defined radius rMS around the
macrocrack tips/fronts, since the highest stress concentrations and gradients in Ω0 occur
around the macrocrack tips. In this part of the domain micro effects, such as microcracks,
are considered, while in the rest of the domain Ω0 \ Ω1, their influence is negligible, i.e.
ũ1 (x) = 0. In Ω1 the microcracks are modeled explicitly, while on the coarse scale they
are taken into account implicitly by means of a projection of the stress field from the fine
scale Ω1 onto the coarse scale Ω0. The size of the radius rMS depends strongly on the size
difference of the macrocracks to the microcracks as well as their location, orientation and
quantity, as investigated by LOEHNERT & BELYTSCHKO (2007b).

∂Ω0

∂Ω1

rMS

∂Ω0
u

Ω1

u

t ∂Ω0
t

Ω0
Γc

Figure 4.1: Coarse scale domain Ω0 and fine scale domain Ω1 containing microcracks and a
macrocrack.
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Applying the displacement field (4.1) to the balance of linear momentum (2.30), yields the
weak forms of equilibrium for the coarse scale (4.2) and the fine scale (4.3) for static analysis
as introduced in section 2.5

∫

Ω0

σ
(
u0 + ũ1

)
: ∇δu0 dv =

∫

Ω0

f · δu0 dv +

∫

∂Ω0
t

t · δu0 da , (4.2)
∫

Ω1

σ
(
u0 + ũ1

)
: ∇δu1 dv =

∫

Ω1

f · δu1 dv +

∫

∂Ω1
t

t · δu1 da . (4.3)

One can see easily from (4.2) that the coarse scale stresses, i.e. the residual, depends not
only on u0 (x), but also on the fluctuation field ũ1 (x).
Discretizing both domains is depicted in figure 4.2: In elements intersected or enclosed by
the circle spanned with rMS around the crack tips/fronts, the fluctuation field ũ1 (x) is non-
zero. Consequently these elements belong to the fine scale domain and are refined elemen-
twise depending on the size of the microcracks for the fine scale computation. Furthermore
microcracks are taken into account on the fine scale, displayed gray in figure 4.2.

Γc rMS

Ω0 Ω1

Figure 4.2: Discretized coarse scale domain Ω0 and fine scale domain Ω1. In Ω1, coarse
scale elements and macrocracks are depicted black, fine scale elements and microcracks are
depicted gray. Here, each macro element is subdivided into 3× 3 micro elements.

As cracks are modeled in this work, the displacement fields u0 (x) and u1 (x) as well as
the virtual displacement fields δu0 (x) and δu1 (x) are discretized according to the XFEM
approach (3.21) such that

N0
I

(
x0
J

)
= δIJ in Ω0, (4.4)

N1
I

(
x1
J

)
= δIJ in Ω1, (4.5)

holds for the bi-/trilinear shape functions N0
I (x) and N1

I (x). Here, x0
J and x1

J are the nodal
supports of the coarse and the fine scale respectively. Thus, both sets of shape functions
resemble each other, i.e. N0

I (x) = N1
I (x), only if the fine scale mesh matches the coarse

scale mesh. The enrichment scheme is adopted from the XFEM approach as introduced in
section 3.2.2 and is applied according figure 3.5 for both domains yielding the discretized
weak forms for both domains.
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4.2 Continuity condition
While the coarse scale domain Ω0 undergoes deformation due to externally applied loads t
and displacements u on its NEUMANN boundaries ∂Ω0

t and its DIRECHLET boundaries ∂Ω0
u

respectively, the fine scale domain Ω1 generally does not contain these boundaries. The fine
scale domain deforms due to the macro displacement field or due to tractions acting on ∂Ω1.
In order to maintain continuity in the displacement field u1 (x) and with the assumption
ũ1 (x) = 0 in Ω0 \ Ω1, physically consistent boundary conditions for the fine scale can be
formulated using (4.1)

ũ1 (x) = 0 ⇔ u1 (x)− u0 (x) = 0 for x ∈ ∂Ω1 . (4.6)

As the macro displacement fieldu0 (x) can be computed, the micro displacement field on the
boundary ∂Ω1 can be determined and applied as displacement boundary conditions. Thus,
all degrees of freedom of all nodes on ∂Ω1 have a prescribed displacement value, i.e.

∂Ω1
u = ∂Ω1 , u1 (x) = u1 (x) for x ∈ ∂Ω1 . (4.7)

Applying pure displacement boundary conditions on ∂Ω1, the last term of (4.3) vanishes
naturally as long as the crack face remains totally traction free, i.e.

∫

∂Ω1
t

t · δu1 da = 0 . (4.8)

When using a standard FE approach and the multiscale projection method, the micro dis-
placement field on the boundary can be extracted from the macro displacement field in a
postprocessing step using (4.6) by evaluating the macro displacement field via the nodal
shape functions N0

I (x) at the nodal supports of the micro domain on its boundary

u1
(
x1
J

)
=

nn∑

I=1

N0
I

(
x1
J

)
u0
I for x1

J ∈ ∂Ω1 . (4.9)

However, when combining the XFEM and the proposed multiscale method, the above men-
tioned procedure is not applicable as enriched nodes on ∂Ω1, appearing naturally due to the
existing macrocracks in Ω1, contain more than one degree of freedom per mesh direction
and can thus not simply be evaluated as when non-enriched nodes. Multiplying (4.6) with
the virtual displacement δu1, i.e. fulfilling (4.6) not exactly but in a least-square sense, and
integrating over the domain Ω1 yields a projection of the displacement boundary conditions

∫

Ω1

(
u1 (x)− u0 (x)

)
· δu1 (x) dv = 0 . (4.10)

The reason for integrating over the domain Ω1 instead of the surface ∂Ω1 or a small strip of
elements Ω̃1 ⊂ Ω1 is illustrated in figure 4.3: Node A and B are both HEAVISIDE enriched,
since the macrocrack Γc intersects the corresponding element. Integrating only over ∂Ω1

would result in linear dependency of standard degrees of freedom and HEAVISIDE enriched
degrees of freedom as the crack does not intersect the boundary between node A and B. To
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overcome this issue, the crack geometry with respect to the whole element needs to be taken
into account by integrating over element e. Assuming an integration over the subdomain Ω̃1

still results in linear dependency of standard degrees of freedom and HEAVISIDE enriched
degrees of freedom: Node C in figure 4.3 is HEAVISIDE enriched, but the discontinuity re-
quiring this enrichment function is in element g, with g /∈ Ω̃1. Thus, integration over Ω̃1

leads to linear dependency of standard and enriched degrees of freedom of node C. Enlarg-
ing the width of Ω̃1 does not ensure that these linear dependencies do not occur anymore.
Consequently the integration is performed over the whole fine scale domain Ω1, as suggested
by LOEHNERT & MUELLER-HOEPPE (2008).

Γc∂Ω1

Ω1

u0 (x)

A

B

Ω̃1

C

e

g

Figure 4.3: Applying macro displacement field u0 (x) on the boundary of the fine scale
domain ∂Ω1. HEAVISIDE enriched nodes are encircled.

Applying the displacement field approximations to (4.10) yields a linear system of equations.
The solution of (4.10) for non-enriched nodal displacements is known, once the coarse scale
problem is solved and can be determined in a single postprocessing step using the introduced
XFEM interpolation

u1
(
x1
L

)
=
∑

I∈I0
N0
I

(
x1
L

)
u0
I +

∑

J∈J 0

4∑

j=1

N0
J

(
x1
L

)
fj
(
x1
L

)
R0
(
x1
L

)
a0
Jj

+
∑

K∈K0

N0
K

(
x1
L

)
H
(
x1
L

)
b0
K for x1

L ∈ Ω1 with L /∈ K1,J 1.

(4.11)

Thus, the least-square projection problem (4.10) is comparably small as merely a few degrees
of freedom are unknown. The solution of (4.10) and (4.11) yields the required displacement
boundary conditions u1 (x1

I) = u1 (x1
I) with x1

I ∈ ∂Ω1 to solve the fine scale domain
problem (4.3).

4.3 Solution procedure
Even though the coarse and fine scale domains as well as the fine scale boundary conditions,
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i.e. the continuity condition, can be solved, the overall solution procedure requires special
attention as a consequence of the weak coupling of the scales: Due to the generally non-
zero micro fluctuation field ũ1 resulting from the presence of microcracks, the coarse scale
residual will not decrease below the desired tolerance within one iteration step, not even for
linear elastic problems. Consequently, an iterative solution procedure over i steps needs to
be applied here:

1. Initialize values:

i = 0 , ũ1
i = 0 , u0

i = 0

2. Solve coarse scale problem (4.2):

K0
T ·∆u0

i = f 0
(
u1
i

)
→ u0

i+1 = u0
i + ∆u0

i

3. Project coarse scale displacement field onto the boundary of fine scale do-
mains (4.10), (4.11):
∫

Ω1

(
u1 (x)− u0 (x)

)
· δu1 (x) dv = 0 → u1

i on ∂Ω1

4. Solve fine scale problems (4.3):

K1
T · u1

i+1 = f 1 → u1
i+1 → f 0

(
u1
i+1

)

5. Check coarse scale residual for the updated micro fluctuation field f 0
(
u1
i+1

)

(a) Convergence → stop computation.

(b) No convergence → i = i+ 1, goto step 2.

One can see easily from the above sketched solution scheme, that the weak coupling between
the scales, due to the non-consistent linearized tangentK0

T in Ω1, might involve several iter-
ation steps until convergence is achieved.
Advantageously, in linear elasticity the tangent stiffness matricesK0

T andK1
T do not change

during computation: If iterative solvers are used, all tangent stiffness matrices needs to be as-
sembled once, such thatK0

T andK1
T could be stored and used until convergence is achieved.

In case direct solvers are applied even the LU decomposition could be stored, decreasing the
computational costs extremely. Once cracks propagate within the multiscale framework as
explained in sections 5.1.2 and 5.3.2, the tangent stiffness matrices require an update.
Due to the weak coupling, all non-overlapping fine scale domains are independent of each
other such that their computation could be parallelized relatively easily. In this work, the
projection of the coarse scale displacement field as well as solving the fine scale problem is
performed on one CPU for each fine scale region using OPENMP. Even though paralleliza-
tions with OPENMP are restricted to one computer core, the computations in this work are
performed on systems with up to 64 CPUs such that 64 fine scale domains can be computed
in parallel leading to a significant speedup compared to sequential computations.
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Reviewing the geometrical regularization techniques, introduced in section 3.2.4 in fig-
ure 3.10, in terms of the multiscale projection method reveals once more the benefit of the
applied stabilization technique introduced by LOEHNERT (2013). Applying one of these geo-
metrical mesh regularization techniques to the multiscale projection method requires special
attention, when the fine scale mesh requires regularization. If this fine scale regularization
requires that the node being moved is on the surface of the corresponding coarse scale ele-
ment, the fine scale element does not match its coarse scale element boundaries. Therefore,
integrations of refined coarse scale elements, performed as a sum over their fine scale ele-
ments,

∫

Ω0
e

(. . .) dv =

n1
e∑

i=1

∫

Ω1
e;i

(. . .) dv , (4.12)

might yield incorrect results. Here, n1
e is the number of fine scale elements in the current

coarse scale element.

Γs
c

(a) Crack of scale s yields
fine scale regularization.

Γ1
c

(b) Microcrack requires
regularization.

Figure 4.4: Coarse scale elements (solid, black); fine scale elements (solid, gray); initial fine
scale elements (solid, gray, dashed); fine or coarse scale crack (solid, black, bold).

Examples of such situations are displayed in figure 4.4: In (a) either a fine or coarse scale
crack is cutting off a node of a fine scale element, such that the volume of the coarse scale el-
ement remains, while a fine scale node needs to be moved. This situation could be overcome
by moving nodes only on the surface of coarse scale elements, which is unfortunately not
applicable to the second example displayed in figure 4.4(b): Since the coarse scale element
incorporates the microcrack only implicitly, i.e. via the projection of the stress field, the
coarse scale node is not moved. As the volume of the fine scale element needs to be enlarged
and the node cannot be moved on the surface of the coarse scale element while keeping this
volume, the node needs to be moved in or against normal direction. Thus, the volume of
coarse scale element does not match the sum over the corresponding fine scale elements,
such that (4.12) would not be applicable. To overcome this issue, the coarse scale element
should be modified instead of fine scale elements especially when fine scale nodes on the
coarse scale element boundary need a shift. The strategy is applicable to all possible crack
configurations, but involves a computationally expensive communication between scales.
Other geometrical regularization techniques do not overcome this issue. Moving the crack
instead of the FE mesh leads to similar problems for macrocracks: Some quadrature points
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on the fine scale might lie on the other side of the crack than on the coarse scale. This fea-
ture would yield a non-converging overall problem. In contrast to geometrical regularization
methods, the applied stabilization technique does neither change the crack geometry nor the
FE mesh, which makes it highly suitable in the context of the multiscale projection method.
However, the projection matrix (4.10) requires stabilization as well, which can be computed
analogously to the introduced procedure.



Chapter 5

Crack propagation using the XFEM

This chapter introduces crack propagation and crack coalescence using the extended finite
element method. In section 5.1, crack propagation is discussed for two-dimensional prob-
lems on one scale, followed by multiscale crack propagation. Merging cracks are introduced
in section 5.2 with an extension to the multiscale framework. Finally, crack propagation for
three-dimensional problems is presented in section 5.3. After setting the basis for computa-
tions on one scale, the approach is embedded into the multiscale projection method.

5.1 2D crack propagation
For two-dimensional problems, crack propagation in quasi-static linear elastic fracture me-
chanics using the XFEM has been successfully applied by MOËS ET AL. (1999) among
others. Here, the XFEM reveals its great benefit of mesh independent crack description:
Only the level set functions and with it the enrichment functions require an update, while the
mesh remains untouched. In this section, the numerical implementation of the crack growth
algorithm for singlescale analysis 5.1.1 and for multiscale problems 5.1.2 are introduced.

5.1.1 Crack propagation on one scale
Even though the theory of LEFM as well as XFEM have been briefly revisited in previous
chapters, their coupling to model fracturing solids requires a manipulation of the J-integral,
a scheme to update crack path and nodal enrichments as well as a strategy to solve the global
problem.

Numerical application of the J-integral

In order to evaluate the proposed crack growth criteria, the interaction integral I(1,2) needs to
be computed. A precise numerical integration of singular functions, i.e. stresses and strains,
is most difficult and usually inaccurate according to MORAN & SHIH (1987a). As these
line integrals are path-independent, the contour of the integration is chosen to be outside the
singular enriched domain. Disadvantageously, line integrals performed in the finite element
method, usually lead to inaccuracies as denoted by MORAN & SHIH (1987a), MOËS ET AL.

51
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(1999) among others. Multiplying (2.79) with an arbitrary smoothing function q (x) and
applying the divergence theorem yields the domain form of the interaction integral following
MORAN & SHIH (1987a)

I(1,2) =

∫

A

(
σ

(1)
ij

∂u
(2)
i

∂g1

+ σ
(2)
ij

∂u
(1)
i

∂g1

−W (1,2) δ1j

)
∂q

∂gj
dA . (5.1)

The arbitrary smoothing function q (x) is set to zero on non-front enriched nodes and to one
on front enriched nodes

q (xI) =

{
0 if I /∈ J
1 if I ∈ J . (5.2)

In between these nodal sets, q (x) is interpolated using the finite element shape func-
tions (3.7) leading to a C0- continuous distribution of q (x), displayed in figure 5.1. The
integration only needs to be carried out in elements, in which q (x) is not constant: In el-
ements with a constant weighting function q (x), the integral (5.1) is zero, as ∂q(x)

∂gj
= 0.

Ensuring non-singular shape functions within the integrated domain leads to excellent re-
sults as demonstrated by e.g. MOËS ET AL. (1999). With this highly accurate computation
of the SIFs, the criterion for crack propagation (2.68), (2.86) as well as the direction of crack
growth (2.88) can be determined.

e2e1

q (x)

Figure 5.1: Weighting function q (x) for two-dimensional problems. Here, crack front en-
riched nodes are boxed.

Instead of the computation of J , HÄUSLER ET AL. (2011) apply the material force concept
to model crack growth in LEFM with the XFEM, achieving a similar accurate criterion for
crack growth. These similar results are consistent with balance of energy at the crack front
introduced in section 2.6, such that the material force concept seems to be an appropriate
alternative to the ring integral.

Updating crack path and enrichment scheme

If the criterion for crack growth is fulfilled, i.e. G ≥ Gc, the crack is advancing in direction
of θc. While the angle is known, the increment of growth ∆a is unknown and needs to be set
in quasi-static analysis. As cracking is an irreversible process in this work, the increment of
crack growth needs to be small enough to follow the correct path, but it still should be large
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enough to keep computation time within reasonable bounds. In this work the increment of
growth is chosen to be about half the characteristic length he of the finite element containing
the crack tip, i.e. ∆a ≈ he/2.
Due to the representation of cracks via level sets, the update of the crack surface does not
require remeshing and thus is a fairly simple process, displayed in figure 5.2. Evaluating
the criterion of maximum hoop stress (2.88) yields the new position of the crack tip, which
is connected to the intersection point xp of the crack tip element with the crack. All nodes
of elements that are intersected by this new segment are updated according to the level set
definition (3.16). As cracks are straight in the reference element and thus bilinear in the
current configuration, nodal level sets are updated in the isoparametric configuration to
avoid the need for an iterative scheme to determine the distance in new crack tip elements.
The enrichment scheme, i.e. the nodal subsets K, J and J ?, are updated as introduced in
section 3.2.2, such that the enrichment scheme matches the new crack configuration.

xp

(a) Crack tip remains in finite element.

xp

(b) Crack tip advances in other element.

Figure 5.2: Level set update: Old crack path (solid, gray); extension of old path (dashed,
gray); new crack path (solid, black).

Overall numerical procedure

The new crack configuration naturally leads to new SIFs for all crack tips in the domain and
often to the growth of numerous cracks as well as to instabilities, since the criterion of crack
growth might be always fulfilled. To avoid this instability and to follow the solution path,
which might be a snap-back problem, load control introduced by MOËS & BELYTSCHKO

(2002) and BUDYN ET AL. (2004) is applied. Multiplying the current boundary conditions
with a load factor λ

t(j+1) = λ t(j) ,

u(j+1) = λu(j) ,

λ =

√
Gc

max (G)
=

σc
max (σθθ (θc))

,

(5.3)

yields max (G) = Gc, such that crack growth is just occurring in the next load step (j + 1).
Here, max (σθθ (θc)) and max (G) are the maximum hoop stress and the maximum energy
release rate respectively, among all crack tips at step (j + 1). Thus, the highest hoop stress in
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the system is equal to its threshold value σc resulting in a stable system. As in linear elastic
fracture mechanics, the boundary conditions depend linearly on the SIFs and thus linearly
on the hoop stress, such that no iteration of λ is needed.
Since this instability might occur in the beginning of the computation, the load of the initial
configuration requires adjustment as well. This procedure furthermore ensures crack prop-
agation at each time step, as the load is adopted such that the crack just propagates. Due to
numerical inaccuracies in the order of 10−13, the criterion for crack propagation might not
be fulfilled exactly. With an infinitesimal small amount of additional load in the following
solution step, at least one crack tip fulfills the criterion for crack growth. Thus, the number
of propagation steps nprop becomes a user defined variable to control the computational time.
This finally yields the numerical implementation displayed in table 5.1.

loop, number of propagation steps nprop

solve for displacement field (2.60)
update boundary conditions (5.3)
solve for displacement field (2.60)
perform crack propagation according to section 5.1.1

end loop

solve for displacement field (2.60)
update boundary conditions (5.3)
solve for displacement field (2.60)

Table 5.1: Overall numerical procedure to perform crack propagation.

Three-point bending test

A famous experiment in the XFEM community to test accuracy was proposed by INGRAF-
FEA & GRIGORIU (1990): The two-dimensional structure, given in figure 5.3 with a thick-
ness of 12.7 mm and a = 25.4 mm, is made of the brittle material CYRO ACRYLITE FF
PLEXIGLAS MC with YOUNG’s modulus E = 3.1 GPa and POISSON’s ratio ν = 0.4. Un-
fortunately, for this test neither a load deflection curve nor an energy release is published, but
only the resulting crack path. Therefore no critical SIFs KIc, hoop stresses σc or energy re-
lease rates Gc are required and only the crack paths are compared. As the crack path strongly
depends on the SIFs KI and KII (2.88), similar crack paths state their correct evaluation.
As displayed in figure 5.3, the structure contains a slit, i.e. it is precracked, which is an
essential ingredient for XFEM applications. Furthermore, the structure contains three holes,
which are points of stress concentrations and thus affect the crack trajectory.
The experimental and the computed crack paths are displayed in figure 5.3: The crack tip is
attracted by the hole reached first, but its influence on the direction of growth is insufficient
for turning the crack into the hole. The path turns towards the centered hole until the tip
finally reaches this hole.
These observations hold true for the experiment as well as numerical model. In the cen-
ter of the paths some minor differences are noticed, but both paths coincide: The model is
capturing the effects of the LEFM remarkably well.
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Figure 5.3: Left: Setup of experiment performed by INGRAFFEA & GRIGORIU (1990).
Right: Experimental crack path (black) and numerical crack path (gray) for 10,912 elements.

Limits of the proposed model

Even though this model sounds generally applicable in the context of LEFM, it is still limited
in some cases: A precise computation of the interaction integral can only be performed in a
mesh dependent distance of the crack tip. Thus, an accurate evaluation is not possible close
to the boundary of the domain. BUDYN ET AL. (2004) and BUDYN (2004) connect the crack
tip to the free surface regardless of the applied boundary conditions, as the tip approaches
the boundary of the domain and thus avoid inaccurate SIFs. As only a small strip of elements
remains before complete failure, the computation is stopped in this work instead of searching
the closest point on the boundary of the domain.
Additionally, the proposed crack propagation model is not able to compute merging cracks:
If crack trajectories intersect, the computation is stopped as soon as some nodes require
two enrichment functions as well as four level set functions, to describe two cracks within
a single finite element. As enrichments cannot simply be added to the displacement field
approximation, but influence each other depending on the crack geometry, merging cracks
require special treatment, introduced by DAUX ET AL. (2000) and revisited in this work in
section 5.2.1. Similar to the above mentioned restriction of a crack advancing towards the
boundary of a domain, the J-integral cannot be evaluated precisely, if another singular func-
tion is inside the domain, in which this integral is carried out. Consequently, crack fronts
must keep a certain distance, depending on the finite element mesh at the crack fronts.
Furthermore, this model does not avoid penetrating crack faces naturally: A contact for-
mulation would provide a remedy as shown by DOLBOW ET AL. (2001) among others, but
also lead to non-linear systems of equations and thus to time consuming iterative solution
procedures. Contact problems are not the main objective of this work and are thus omitted
for simplicity. An elegant way to estimate crack face penetration without solving a contact
problem is done via the SIFs: If KI < 0 crack faces penetrate. Since curved cracks are
investigated as well, this statement does not hold vice versa, as the penetration might occur
far away from the crack tip.
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5.1.2 Multiscale crack propagation
Utilizing this proposed method to the introduced multiscale projection method requires ex-
tension of existing theory and FEM code, introduced by HOLL ET AL. (2013):
As two scales are considered here, the criterion for crack propagation might be fulfilled on
the fine scale, but not on the coarse scale, in case of propagating microcracks: These cracks
are only known implicitly on the coarse scale, such that the J-integral cannot be evaluated
there. Therefore, the criterion of crack propagation needs to be evaluated on the fine scale.
Furthermore, computations on fine scales are more accurate than coarse scale computations.
In contrast to microcracks, advancing macrocracks influence the coarse scale explicitly, such
that the macrocrack geometry, computed on the fine scale, needs to be transferred to the
coarse scale. Generally, propagation of coarse scale cracks does not yield a single bilinear
function in one coarse scale element, as displayed in figure 5.4, with the possibilities of a
crack remaining in the same coarse scale element (figure 5.4(a)) and entering a new coarse
scale element (figure 5.4(b)). Here, the level set update for an advancing macrocrack follows
the same strategy as explained in section 5.1.1, while the crack interpolation, using bilinear
shape functions, is carried out on the coarse scale mesh instead of the fine scale mesh. Inter-
polating a macrocrack using shape functions N1, would yield a more accurate macrocrack
geometry approximation but also the loss of bilinearity in one element and thus a fairly com-
plicated crack description. As scale coupling is the main interest here, this feature is omitted
for brevity. Thus, in this work, a higher macrocrack resolution can only be achieved with
coarse scale mesh refinement.
Propagating microcracks do not necessitate special treatment, as the implicit microcrack de-
scription on the coarse scale does neither influence the coarse scale geometry nor the coarse
scale enrichment scheme.

x0
p

(a) Crack tip remains in finite element.

x0
p

(b) Crack tip advances in other element.

Figure 5.4: Level set update: Old crack path (solid, gray); extension of old path (dashed,
gray); new crack path (solid, black). Each coarse scale element (black) is subdivided into
5× 5 fine scale elements (gray).

Analogous to section 5.1.1, each propagation step is followed by an adaption of the coarse
scale load factor λ0 to maintain stability, i.e.

max
(
σ1
θθ

(
θc, λ

0
))

= σc . (5.4)

Since the load is applied on the boundary of the coarse scale mesh, but the maximum hoop
stress is evaluated on the fine scale, an iterative solution scheme needs to be applied to
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determine the new load factor λ0 within the presented multiscale framework. In the following
equations, the superscript ( · )0 denotes coarse scale variables, while the superscript ( · )1

denotes fine scale variables. Rewriting (5.4)

R
(
λ0
)

= max
(
σ1
θθ

(
θc, λ

0
))
− σc = 0 , (5.5)

and application of a NEWTON scheme

λ0
(i+1) = λ0

(i) +



∂R
(
λ0

(i)

)

∂λ0



−1

·R
(
λ0

(i)

)
, (5.6)

yields the next iterate λ0
(i+1) for the unknown load factor λ0. With the finite difference ap-

proximation


∂R
(
λ0

(i)

)

∂λ0



−1

≈
λ0

(i) − λ0
(i−1)

R
(
λ0

(i)

)
−R

(
λ0

(i−1)

) , (5.7)

the unknown load factor can be determined for the next load step. Once the residual R (λ0
i )

decreases below a user defined tolerance TOL

‖R
(
λ0

(i)

)
‖ < TOL ≈ 0 , (5.8)

the iteration is stopped. Initializing the iterates appropriately, i.e. λ0
(1) = λ1

(1), λ
0
(0) = 0

and max
(
σ1
θθ

(
θc, λ

0
(0)

))
= 0, yields a solution of the problem using an adequate number

of iteration steps i = 1, 2, 3, ...n. Analogously to singlescale computations, the current
traction and displacement boundary conditions on the coarse scale, i.e. t0(j), u

0
(j), are finally

multiplied with the converged load factor λ0
(i)

t
0
(j+1) = λ0

(i) t
0
(j) , u0

(j+1) = λ0
(i) u

0
(j) , (5.9)

such that crack propagation is just occurring in the next load step (j + 1).
Note that the maximum hoop stress for each microcrack tip as well as macrocrack tip needs
to be evaluated on the fine scale. This might involve several fine scale domain computations
within each propagation step for the current global load factor, since the crack tip with the
highest hoop stress needs to be found. Due to the fact that the criterion for crack propagation
as well as the direction of crack growth is computed on the fine scale, the crack development
on the coarse scale is fully driven by the fine scale results.
Apart from the computation of the coarse scale load factor λ0 and the evaluation of crack
propagation on the fine scale, the multiscale crack propagation technique presented here can
be easily implemented in the finite element program, with its solution procedure summarized
in table 5.2.
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loop, number of propagation steps nprop

solve for displacement field section 4.3
update boundary conditions section 5.1.2
solve for displacement field section 4.3
perform crack propagation section 5.1.2

end loop

solve for displacement field section 4.3
update boundary conditions section 5.1.2
solve for displacement field section 4.3

Table 5.2: Overall numerical procedure to perform multiscale crack propagation.

5.2 2D crack coalescence

Considering fracturing processes containing more than one crack in the investigated domain
might result in crack coalescence, reported and numerically investigated by BUDYN (2004),
BUDYN ET AL. (2004), MOËS ET AL. (2011), BYFUT & SCHRÖDER (2012) and GARZON

ET AL. (2013) among others. In two-dimensional space either two crack tips merge to one
longer crack or a crack tip coalesces with a crack face. While the first case does not require
any change of the above introduced theory besides a criterion for coalescence, the introduc-
tion of new enrichments becomes mandatory for merging a crack tip with a crack face as
two cracks and thus two discontinuities in the displacement field need to be approximated.
Introducing this extension in section 5.2.1 reveals its sufficiency for singlescale analysis.
Following HOLL ET AL. (2013), the assumption of coalescing cracks within the introduced
multiscale projection method requires additional enrichments for nearing macrocrack tips, as
the criterion for coalescence is investigated on the fine scale. In order to use the coarse scale
level set interpolation, a mapping strategy is needed to incorporate a microcrack merged
with a macrocrack into the coarse scale domain. The extensions made for crack coalescence
within the multiscale projection method are introduced in 5.2.2. Symbols used to illustrate
crack coalescence schemes in figures 5.14, 5.13, 5.24 - 5.27 are explained in table 5.3.

Coarse scale mesh
Fine scale mesh
Macrocrack
Microcrack
Crack propagation
Shortest distance from new crack tip to crack
First identified crack path
Enriched node belonging to propagated crack •
Enriched node of all other cracks •
Enrichment of already propagated crack ©
(the old enrichments (•) will be deleted)

Table 5.3: Symbols used for crack coalescence sketches.
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Even though the following strategy is applicable to an infinite number of cracks per element,
this work is restricted to two cracks per element. However, this procedure is still able to
demonstrate the major aspects of crack coalescence, as two lines, i.e. cracks, can only inter-
sect at one point. Further cracks will complicate the enrichment scheme but will not yield
another intersection geometry than a point.

5.2.1 Crack coalescence on one scale

Two cases of crack coalescence on one scale exist: Either a crack tip merges with another
crack tip, resulting in one final crack, or a crack tip coalesces with a crack face, such that
the paths of both cracks remain. Merging a crack tip with a crack face naturally yields an
intersection point of both cracks. Thus, a single finite element needs to be able to capture the
two discontinuities resulting from both cracks, leading to an extension of the extended finite
element displacement approximation (3.21), introduced by DAUX ET AL. (2000).
Thus, the integration introduced in section 3.2.3 is not applicable anymore, as integration
points on both discontinuities have to be avoided. Since the displacement field approxima-
tion for multiscale problems requires consideration of a random combination of crack tips
and crack faces, still restricted to two cracks, a hard coded subdivision into triangles as in
section 3.2.3 is not favorable. The constrained DELAUNAY triangulation by CHEW (1989)
automatically subdivides a quadrilateral into triangles, and with the choice of the crack faces
being constrained, quadrature points on crack faces are avoided. The standard DELAUNAY

triangulation algorithm is adopted from DE BERG ET AL. (2008), while the constraints are
implemented according to CHEW (1989).
Finally, the crack coalescence criterion is embedded into the crack propagation scheme ac-
cording to table 5.1. In contrast to BUDYN ET AL. (2004) and BUDYN (2004), the crack
coalescence criterion depends on the element size, meaning that the finer the finite element
mesh, the closer the cracks grow before merging.

Displacement field approximation

Extending the XFEM displacement field approximation for branched cracks yields

u (x) =
∑

I∈I

NI (x) uI +
∑

J∈J

4∑

j=1

NJ (x) fj (x) R (x) ajJ

+

ncracks∑

i=1

(∑

K∈K

NK (x)
[
H i (x)−H i

K

] ∣∣∣∣H i (x)
∣∣∣∣ biK

)
,

(5.10)

with ncracks = 2 at the maximum considered in this work. Here, H i (x) is a modified HEAV-
ISIDE enrichment function H i = H i (x) = H (ψi (x)) of the i-th crack. Subtracting the
nodal value H i

K from H i leads to the so-called shifted HEAVISIDE enrichment function,
which is zero outside cracked elements. The formulation of this enrichment function de-
pends on the configuration of the two cracks in the corresponding finite element. For an
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element containing intersecting cracks, this function reads

H i =





+1 if ψi (x) ≥ 0 ∧ sgn
(
∇φi
||∇φi|| ·

∇ψj
||∇ψj ||

)
· sgn (ψj) = −1

−1 if ψi (x) < 0 ∧ sgn
(
∇φi
||∇φi|| ·

∇ψj
||∇ψj ||

)
· sgn (ψj) = −1

0 if sgn
(
∇φi
||∇φi|| ·

∇ψj
||∇ψj ||

)
· sgn (ψj) = +1

for i 6= j , (5.11)

which is applied instead of the so-called junction function by DAUX ET AL. (2000), yielding
the same enrichment function in a different notation. In elements with two non-intersecting
discontinuities, the second level set functions φi do not yield an adequate solution for H i.
Hence, a different strategy is applied to set the appropriate enrichment function to zero in the
respective domain for elements cracked twice, with non-intersecting cracks. The enrichment
function is evaluated using the level set values of the reference point xc

H i =





+1 if ψi (x) ≥ 0 ∧ sgn (ψj (x)) = sgn (ψj (xc))
−1 if ψi (x) < 0 ∧ sgn (ψj (x)) = sgn (ψj (xc))

0 if sgn (ψj (x)) 6= sgn (ψj (xc))
for i 6= j , (5.12)

which is determined via the intersection points ai of the cracks, with the finite element

xc =
1

4
(a1 + a2 + a3 + a4) . (5.13)

Since the intersection points ai always form a convex quadrilateral, xc is always between
both cracks, as depicted in figure 5.5.

Γ1

a1

a2

Γ2

xc

a4

a3

Figure 5.5: Non-intersecting cracks.

The modified HEAVISIDE enrichment function when applied to the displacement field ap-
proximation (5.10) yields zero values in domains where the corresponding crack is physi-
cally inactive, i.e. by another crack shielded area. From (5.11), (5.12) one can see that the
new enrichment function can be evaluated in terms of the level set function and thus provides
a fast computational framework. HEAVISIDE enrichment functions of elements containing
one crack are evaluated using the standard XFEM approach (3.24). The difference of the
introduced modified HEAVISIDE enrichment function to the standard XFEM approach is
displayed in figure 5.6 and 5.7. Consider a domain Ω cut by two intersecting cracks Γ1

and Γ2. These cracks subdivide the domain in three subdomains, i.e. Ω1, Ω2 and Ω3, dis-
played in figure 5.6.
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Γ1

Γ2Ω1

Ω3

Ω2

Figure 5.6: Domain Ω divided into subdomains Ω1, Ω2 and Ω3.

As the crack Γ1 is active in all subdomains, the corresponding HEAVISIDE enrichment func-
tion H1 (x), displayed in figure 5.7(a), does not change compared to the standard XFEM
approach. In contrast to H1 (x), the second enrichment function H2 (x), responsible for
modeling the second displacement discontinuity, is changed compared to the standard XFEM
approach: The second discontinuity cannot act in the subdomain Ω2 and therefore the enrich-
ment function needs to vanish there. By evaluating the level set fields according to (5.11),
this enrichment function vanishes, i.e. H2 (x) = 0, ∀ x ∈ Ω2, displayed in figure 5.7(b).
With the multiplication of the absolute value of H2 (x) in (5.10), the displacement field ap-
proximation of this crack is zero in the corresponding domain.

e2e1

H1 (x)

(a) First modified HEAVISIDE enrichment
function.

e1

H2 (x)

e2

(b) Second modified HEAVISIDE enrichment
function.

Figure 5.7: Enrichment functions for intersecting cracks.

To maintain consistent enrichment functions in the whole domain, non-intersecting cracks
as displayed in figure 5.8 are enriched as introduced in (5.12). Here, neither of the two
cracks Γ1, Γ2 have an influence on all subdomains Ω1, Ω2 and Ω3 of the whole domain Ω.

Γ1Γ2

Ω1

Ω2

Ω3

Figure 5.8: Domain Ω divided into subdomains Ω1, Ω2 and Ω3.

Since Γ2 cuts off Ω3 from the whole domain, the first enrichment function H1 (x) is not
active, as displayed in figure 5.9(a). The subdomains Ω1 and Ω2 are divided by Γ1, such that
here H1 (x) = ±1 respectively. The enrichment function H2 (x) is determined analogously,
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e2e1

H1 (x)

(a) First modified HEAVISIDE enrichment
function.

H2 (x)

e2e1

(b) Second modified HEAVISIDE enrichment
function.

Figure 5.9: Enrichment functions for non-intersecting cracks.

as Γ1 cuts off Ω1, displayed in figure 5.9(b).
In (5.10), the HEAVISIDE enrichments are shifted according to FRIES (2008), leading to
non-zero enrichment functions in elements containing cracks, and zero in their neighbor-
ing elements due to subtraction of the nodal value H i

K = H i (xK). The application of the
shifted basis is beneficial, as less nodal level set values need to be stored and the evaluation
in neighboring elements does not require any computation.

Assignment of DOFs and cracks

Furthermore, an assignment between level sets and enrichment functions becomes necessary
to ensure that for instance a twice HEAVISIDE enriched node uses the same set of unknowns
in all elements containing this node. Therefore, the intersection points of the cracks with the
finite elements are determined in a preprocessing step as illustrated in figure 5.10.

Γ1

a1

b3

A

b1

b2

a2

B
Γ2

Figure 5.10: Elementwise segmented crack paths.

Here, the intersection points a1 and a2 of element A are compared to the intersection
points b1, b2 and b3 of element B. If element A and B have one point in common, one
can identify easily which nodal level set values to use in the following computation. A sin-
gle integer per element stores which crack belongs to which DOFs. If this integer is e.g.
[13]10 = [1 1 0 1]2, the first set of DOFs of node 1, 3 and 4 belong to the second crack in the
element and vice versa. On node 2, the first crack is assigned to the first set of DOFs and the
second crack to the second set of DOFs. This preprocessing step only needs to be performed
once, as in the ongoing crack propagation computation, one can determine directly which
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level set fields are already assigned. With that procedure, a unique assignment from DOFs
to the cracks is ensured.

Numerical integration

The “hardcoded” subdivision of cracked elements into triangles/tetrahedrons, introduced in
section 3.2.3, is not feasible once two cracks in one element are considered: a vast amount
of different subregions with totally different shapes exists, depending on the position of the
cracks. With the knowledge that the multiscale analysis will require the consideration of two
crack tips in a single element (section 5.2.2) yielding even more cases of crack positions,
the “hardcoded” subdivision of twice cracked elements is not applied for elements contain-
ing two cracks. An elementwise DELAUNAY triangulation of element nodes, crack tips and
intersection points of cracks with the finite element in the reference configuration provides
an accurate mesh of triangles within one cracked element, but is naturally not prohibiting
quadrature points on cracks: Generated triangles might be flipped to ensure an optimal grid
with given points. A constrained DELAUNAY triangulation based on the work of CHEW

(1989), with crack faces being constrained triangle sides, avoids quadrature points on the
crack face. As this procedure is highly flexible and applicable even to all desired crack
geometries for the coming multiscale analysis, it is applied to all twice cracked elements.
Figure 5.11 displays a constrained DELAUNAY triangulation for a few different crack posi-
tions.

ξ

η

Γ1

Γ2

(a) Cracked element contain-
ing two crack tips.

ξ

η

Γ1

Γ2

(b) Splitted element contain-
ing a crack tip.

ξ

η

Γ2

Γ1

(c) Two discontinuities in one
finite element.

Figure 5.11: Subdivision of twice cracked elements in isoparametric reference configura-
tions.

Computational example

A computational example is given in figure 5.12: A square domain of length 2× 2 is loaded
uniaxially in e1-direction and is clamped at its top, as displayed in figure 5.12(a). It con-
tains one branched crack ending in eight crack tips. The resulting VON MISES stress is
displayed in figure 5.12(b): Stress concentrations occur only at the outer crack tips, as the
more centered cracks only open a bit due to crack shielding of the outer cracks. Only slight
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stress oscillations can be detected at these crack tips. Negligible small stress gradients occur
at the opened bottom branch, meaning that the presented modified HEAVISIDE enrichment
function yields traction free crack faces. By taking several branches into account using only
two HEAVISIDE enrichment functions, this example demonstrates the great flexibility of the
implemented finite element program.

t

u

t

e1

e2

(a) Crack configuration and applied boundary
conditions t = ±e1, u = 0.

0

10

20

25

σvM

(b) Distribution of VON MISES
stress σvM on deformed domain.

Figure 5.12: Domain Ω with meshed with 125× 125 quadratic elements.

Crack coalescence

Advancing crack tips in a domain with more than one crack induces merging cracks. Here,
two different cases are distinguished: Either a crack tip merges with another crack tip, or
a crack tip coalesces with a crack face. After setting a new load factor λ, computing crack
propagation ( ) and updating the level set functions according to section 5.1.1, new
enrichment functions (©) need to be set, while the old ones (•) are deleted. If one node re-
quires enrichments from two cracks ( •©), these cracks coalesce. From the propagated crack
tip, the shortest distance ( ) to the corresponding crack is determined, and the level set
functions are extended, such that both cracks merge at this point. The final crack path ( )
as well as new enrichments (•) are set appropriately. Due to bilinear crack description per
element, the final crack path slightly differs from the first approximated one ( ). With
mesh refinement, this negligible inaccuracy will vanish.
An example where two crack tips merge is considered in figure 5.13, with symbols used
according to table 5.3. In figure 5.13(a), the left crack propagates, such that the resulting
enrichments would yield a node being enriched with functions belonging to different cracks.
As in this case, the resulting crack path would lead to an inaccurate SIF extraction in the fol-
lowing step, since within the integrated domain of the J-integral only one singular function
is allowed, both cracks merge. Connecting both crack tips results in one long crack, with its
path displayed in figure 5.13(b).
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(a) One step before coalescence. (b) Final crack path.

Figure 5.13: Crack coalescence on one scale: Two crack tips merge.

Even though an accurate SIF extraction is generally possible in the second coalescence sce-
nario depicted in figure 5.14(a), the criterion for crack coalescence is retained. Here, an
advancing crack tip yields an enrichment scheme, which requires nodal enrichments with
functions belonging to different cracks. As only one set of singular functions is needed, the
computation of the energy release rate is still possible, but in order to have only one criterion
for coalescence, the introduced criterion is kept. Connecting the propagated crack tip via the
shortest distance to the crack face of the second crack is displayed in figure 5.14(b).

(a) One step before coalescence. (b) Final crack path.

Figure 5.14: Crack coalescence on one scale: Crack tip and crack face coalesce.

Remarks

This procedure allows the modeling crack of coalescence on a singlescale. As the criterion
for crack coalescence as well as the domain integrals needed for the evaluation of the
energy release rates depends on the finite element mesh, this technique is highly suitable
in the XFEM framework. With minor extensions of the displacement field approxima-
tion (5.10) and the integration scheme, the presented crack coalescence algorithm can be
easily incorporated into the XFEM code. The solution procedure is summarized in table 5.4.
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loop, number of propagation steps nprop

solve for displacement field (2.60)
update boundary conditions (5.3)
solve for displacement field (2.60)
perform crack propagation according to section 5.1.1
check for crack coalescence according to section 5.2.1

end loop

solve for displacement field (2.60)
update boundary conditions (5.3)
solve for displacement field (2.60)

Table 5.4: Overall numerical procedure to perform crack propagation and crack coalescence.

5.2.2 Multiscale crack coalescence

Combining the presented multiscale method with the introduced crack coalescence scheme
requires, besides new theoretical tasks, an extensive modification of the FE program:
As microcracks are only known explicitly on the fine scale, crack propagation as well
as crack coalescence need to be modeled on the finest scale. This might lead to two
approaching crack tips in one coarse scale element, requiring an extension of the introduced
displacement field approximation (5.10).
With two crack tips in one finite element, the enrichment scheme and nodal level set storage
becomes complicated. To simplify the enrichment scheme and with it the required storage
of nodal level set values, a new ramp function R? (x) is introduced. It is only applied
on the coarse scale while the fine scale ramp function remains, i.e. R0 (x) = R? (x)
and R1 (x) = R (x). Furthermore, R? (x) is defined such that only coarse scale elements
containing cracks require enrichment functions and nodal level set values.
Finally, crack coalescence is applied on the fine scale. Thus, this model is able to capture
different combinations of crack coalescence, i.e. coalescence of cracks on different length
scales, which requires an upscaling of fine scale properties to the coarse scale.

Displacement field approximation

As the properties of multiple approaching crack tips on the coarse scale need to be captured,
a single finite element must be capable of describing these properties as well. Compared to
a standard XFEM approach, a higher amount of nodal level sets and enrichment functions is
needed in a single finite element, leading to the following displacement field approximation
for scale s

us (x) =
∑

I∈Is
N s
I (x) usI +

ncracks∑

i=1

(∑

J∈J s
N s
J (x)

4∑

j=1

f ij (x) Rs (x) ai sjJ

+
∑

K∈Ks
N s
K (x)

[
H i (x)−H i

K

] ∣∣∣∣H i (x)
∣∣∣∣ bi sK

)
.

(5.14)
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Alternative ramp function

To simplify the introduced assignment of cracks to nodal DOFs, especially in blending el-
ements, and to reduce the number of unknowns in the hole domain, a modified ramp func-
tion R? = R? (x) is introduced here. It is non-zero in cracked blending and crack tip ele-
ments and zero in the rest of the domain. Thus, the following conditions need to be met by
this fading out function:

1. Fulfillment of the partition of unity in all elements.

2. Keeping the order of stress singularity at the crack tip.

3. Being zero in elements not cut by a crack.

Reducing the non-zero area of a fading out function to crack tip elements, such that this
function is zero on the boundary of these elements, would suppress crack opening as f 0

1 R
? =

0 ∀ x ∈ ∂Ωe. Thus, the element beyond the crack front element is front enriched as well and
multiplied with the fading out function. Consequently, the modified ramp function R? (x)
leads to a different enrichment scheme on the respective scale, displayed in figure 5.15. In
contrast to the original version of the ramp function, only six instead of 16 nodes per crack tip
belong to the nodal subsetJ s reducing the numerical cost. Furthermore, the evaluation of the
J-integral can be performed over a smaller number of elements, as only one blending element
of the original set remains enriched with singular functions, yielding a further reduction of
the numerical effort.

tip enriched node

jump enriched node

ΩR⋆

∂ΩR⋆

Figure 5.15: Modified ramp function R? (x).

In order to keep the order of stress singularity of the crack tip,

∂R? (x)

∂x
= 0 ∀x ∈

(
Γc ∩ Ωtip

1−4

)
, (5.15)

with Ωtip
1−4 being subdomains of the crack tip element, displayed in figure 5.16(a). In total six

subdomains are considered, in which R? (x) 6= 0: Two domains in the crack tip element in
front of the crack tip (Ωtip

1 , Ωtip
3 ), two domains in the crack tip element with their boundary
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being the crack path (Ωtip
2 , Ωtip

4 ) and two domains in the blending element (Ωtip
5 , Ωtip

6 ). In
each domain two quadratic functions, r1 (x) and r2 (x), are constructed, which are zero on
opposite edges and one on the crack in the crack tip element, displayed in figure 5.16(b), (c).
Multiplying both functions yieldsR? (x) = r1 (x) ·r2 (x), with the desired above mentioned
properties, displayed in figure 5.16(d).

Ωtip
5

Ωtip
4

Ωtip
2

Ωtip
3

Ωtip
1

Ωtip
6Γc

(a) Splitting elements into subdomains.

0

1

r1 (x)

(b) r1 (x).

0

1

r2 (x)

(c) r2 (x).

0

1

R⋆ (x)

(d) R? (x) = r1 (x) · r2 (x).

Figure 5.16: Constructing an alternative ramp function R? (x).

To test the accuracy of the proposed fading out function in terms of the SIFs, pure mode I
displacement boundary conditions are applied onto the surface of a quadratic plate. As il-
lustrated in figure 5.17(a), this plate contains a crack, with its tip ending in the center of the
plate. In order to ensure that the proposed fading out functions yield sufficiently accurate
results in terms of the SIFs also for varying orientations of mesh and crack, the crack is
rotated in each computation by ∆α = 0.04π, as displayed figure 5.17(a). Here, the under-
lying finite element mesh, consisting of 39 × 39 quadratic shaped elements, remains fixed
in all SIF computations. As only pure mode I displacement boundary conditions are ap-
plied, the ratio between the computed SIF KI and its corresponding material parameter KIc

should be equal to one, i.e. KI/KIc
!

= 1. The computed SIFs for both introduced ramp func-
tions are displayed in figure 5.17(b): For rotations of α = {1/4π, 3/4π, 5/4 π, 7/4π},
with k = 1, ...4, the highest mismatch of SIFs for both fading out functions occurs, i.e.
1.1% using R? (x) and 0.9% using R (x). For cracks aligned with the finite element, i.e.
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α = {1/2 π, π, 3/2π, 2 π}, both simulations lead to more precise computations of the
SIFs. Here, the qualitative behavior of both functions is similar, while a quantitative dif-
ference remains, as the nodal subset J s contains more nodes using the enrichment scheme
corresponding to the standard ramp function. This is consistent with observations made
by LABORDE ET AL. (2005), comparing so-called “geometrical“ with ”topological“ enrich-
ment schemes.
As multiple crack tips in a single fine scale element are prohibited to maintain an accurate
solution of the energy release rate, the introduced ramp function is not required on the fine
scale. Therefore, R? (x) and the corresponding enrichment scheme are only applied on the
coarse scale.

α

Γc

u

(a) Straight crack Γc, ro-
tated with angle α.

3
2
π 2ππ

1.012

1.008

1.000

1.004

0 1
2
π

KI
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α

R⋆ (x) R (x)

(b) SIFs for both introduced ramp functions.

Figure 5.17: SIFs for pure mode I boundary conditions u, which are applied on the boundary
of the domain.

A more detailed analysis of the introduced functions in terms of the position of the crack tip
in the crack tip element was performed by HOLL ET AL. (2013). The authors found a maxi-
mum error in terms of the SIFs of 3% for both ramp functions, denoting that the alternative
ramp function yields an accurate solution of the displacement field.

Coarse scale enrichment

Allowing any combination of two cracks in a finite element on the coarse scale yields a vast
amount of different enrichment schemes. This extension becomes necessary for modeling
crack coalescence within the proposed multiscale method. Before cracks merge on the fine
scale both tips might lie within the same coarse scale element. Here, only the most important
cases are demonstrated, even though all of them are considered in the finite element program.
The following six examples cover all possibilities how a node might be enriched, illustrated
in figures 5.18 - 5.23.
Figure 5.18 displays the enrichment scheme for two already merged cracks, occurring on
the fine scale domain as well. As introduced in section 5.2.1, all nodes of the element A©
receive two HEAVISIDE enrichments, modifying their functions according to figure 5.7. In
the neighboring element B©, the modified HEAVISIDE enrichment is applied as illustrated
in figure 5.9, as both crack segments do not intersect in this element. Furthermore, elements
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like element C© exist, which are cracked once, but still have more than one HEAVISIDE

enrichment per node as another crack is located in its neighboring element. Due to shift-
ing the basis of the HEAVISIDE enrichment functions, only one set of enrichment functions
is non-zero in element C©. Some elements which are not cracked might be enriched even
with two enrichment functions, but the enrichment functions value is zero in these elements.
Thus, element D© receives additional DOFs, with the corresponding shape functions being
zero, allowing a fast evaluation of those functions.
The enrichment scheme for two merging cracks, with a crack tip close to the intersection
point is illustrated in figure 5.19. Due to the application of the modified ramp function and
the appropriate enrichment scheme, all nodes of element A© and B© are enriched with the
crack tip functions. Additionally, all nodes of element B© are enriched with the introduced
modified HEAVISIDE function (figure 5.7), to ensure a zero enrichment function above the
intersection point. Thus, all enrichment functions in non-cracked elements are zero.
The consideration of two coarse scale crack tips in one coarse scale element is displayed
in figure 5.20. Here, all nodes of element A© receive two sets of crack front enrich-
ment functions. Due to the curvature of both cracks and the modified ramp enrichment
scheme, two nodes of element A© additionally require HEAVISIDE enrichments. Thus, a
node of this element has either 2 (1 + 4 + 4) = 18 DOFs for two crack tip enrichments or
2 (1 + 4 + 4 + 1) = 20 DOFs for two crack tips and a HEAVISIDE enrichment. Blending el-
ements such as element B© have the same unknowns as their neighbors, but the enrichment
functions referring to the other crack tip vanish due to the modified ramp function. One node
of element C© still has 22 DOFs, but only HEAVISIDE enrichments referring to the discon-
tinuity inside this element are non-zero.

A©
B©

C©
D©

Figure 5.18: Intersecting
cracks: Only HEAVISIDE

enrichments.

B©A©

Figure 5.19: Intersecting
cracks: HEAVISIDE and tip
enrichments.

A©
B© C©

Figure 5.20: Two interact-
ing crack tips.

The enrichment scheme for nearly merged cracks, e.g. one time step before the situation
displayed in figure 5.18, is captured in figure 5.21. The nodes attached to element A© and
element B© are enriched with the crack tip functions as well as with the HEAVISIDE func-
tion. The ramp functionR0 (x) = R? (x) and the shifted HEAVISIDE enrichments yield zero
enrichment functions in element A© and zero crack tip enrichment in element B©. Thus,
two non-zero enrichment functions occur in none of the displayed elements.
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A similar case is considered in figure 5.22: Element B© is not only a completely cracked
element, but also a blending element referring to the upper crack tip. Thus, the nodes this
element has in common with element A© receive two sets of crack tip enrichments and one
node is additionally HEAVISIDE enriched. This leads to 2 (1 + 4 + 4) = 18 DOFs for one
node and 2 (1 + 4 + 4 + 1) = 20 DOFs for the other node. Note that no element receives
two non-zero sets of enrichment functions as these functions are restricted to cracked ele-
ments.
The last presented crack configuration yields the highest number of unknowns per node con-
sidered in this work. Two nearly parallel cracks, with no element being twice cracked, lead
to a rather complex enrichment scheme, as depicted in figure 5.23. The neighboring ele-
ments of element A© which contain a crack are both blending elements. Thus, their node in
common receives 2 (1 + 4 + 4 + 1 + 1) = 22 DOFs, which is the highest number of DOFs
taken into account in this work. As none of the elements is cracked twice, none of them
receive two sets of non-zero enrichment functions.

A©
B©

Figure 5.21: Crack tip in-
teracting with crack face.

A©
B©

Figure 5.22: Just before in-
tersection.

A©

Figure 5.23: Highest num-
ber of DOFs.

From the above examples it can be seen that the shifted basis of the modified HEAVISIDE

enrichment function and the modified ramp function R? (x) yield easy evaluation of these
functions, especially in non-cracked elements. Even though this short passage does not cover
all possible crack configurations, it still demonstrates the great flexibility of the proposed
method, without making any restrictions to the positions of two cracks in a finite element.

Crack coalescence

The crack coalescence scheme is now adopted within the introduced multiscale method
which allows modeling multiple microcracks as well as macrocracks within one coarse scale
element accurately. The criterion for crack coalescence, introduced in section 5.2.1, can be
adopted one-to-one on the finest scale, such that the finest scale fully drives crack growth
and crack coalescence. As the coarse scale crack is interpolated using coarse scale shape
functions N0, but the fine scale crack is interpolated using its respective shape functions N1,
the resulting coarse scale crack path needs to be mapped onto the coarse scale. Merging
microcracks do not influence the coarse scale path, such that their coalescence can be
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captured by the introduced singlescale approach. However, due to the size difference of the
microcracks to the macrocracks, propagating microcracks are rare: In none of the examples
investigated in section 5 does a single microcrack propagate. Thus, four different scenarios
of merging cracks on two scales are considered and introduced here:

• Two macrocrack tips merge.

• A macrocrack tip merges with a macrocrack face.

• A macrocrack tip merges with a microcrack tip.

• A macrocrack tip merges with a microcrack face.

These cases are sketched in figures 5.24 - 5.27, with symbols used according to table 5.3. For
the purpose of the overview the enrichment schemes are omitted here.
The consideration of two approaching macrocrack tips is displayed in figure 5.24: Once the
enrichments on the fine scale overlap, the introduced criterion for coalescence is fulfilled.
From the propagated crack tip, the shortest distance to the other crack tip is determined (fig-
ure 5.24(a)). Finally, the resulting path is mapped onto the coarse scale mesh, such that in
each finite element the crack can be represented using one bilinear function (figure 5.24(b)).
Therefore the intersection points of the first estimated crack path, displayed in figure 5.24(a),
with the finite elements is determined. The level set interpolation of the resulting segmented
crack yields C0- continuous crack paths in Ω0. Consequently, the final crack path slightly
differs from its first estimation, but coarse scale mesh refinement overcomes this minor in-
accuracy. Note that, coalescence is predicted later than in a comparable singlescale analysis.
Thus, two approaching coarse scale crack tips can be modeled highly accurately using the
multiscale approach, even with their tips being in the same/neighboring coarse scale ele-
ment/s.

(a) One step before coalescence. (b) Final crack path.

Figure 5.24: Coalescing macrocrack tips.

The procedure for a macrocrack tip merging with a macrocrack face is similar to the ap-
proach introduced above: Once the enrichments overlap as illustrated in figure 5.25, the
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shortest distance from the tip to the crack face is determined, yielding a first estimation of
the resulting crack configuration. The C0- continuous interpolation of the crack paths onto
Ω0 yields again a slightly different crack path. With mesh refinement, these differences van-
ish.

(a) One step before coalescence. (b) Final crack path.

Figure 5.25: Macrocrack tip and macrocrack face merge.

The coalescence of a microcrack tip with a macrocrack tip is similar to two merging macro-
crack tips and illustrated in figure 5.26: Once the criterion for coalescence is fulfilled, both
crack tips are connected via their shortest distance. In order to achieve a C0- continuous
crack path in Ω0, the path is interpolated. Especially the former microcrack path differs
from its coarse scale approximation, as it used to be interpolated with fine scale shape func-
tions N1. With this coalescence scheme a transition from fine scale features on the coarse
scale is considered, as the microcrack is now part of the macrocrack.

(a) One step before coalescence. (b) Final crack path.

Figure 5.26: Coalescing macrocrack tip and microcrack tip.

A difficulty arises if the shortest distance from a macrocrack tip to a microcrack does not
yield a microcrack tip, but a microcrack face as displayed in figure 5.27(a). Merging both
cracks at the determined point leads to the following problems: If this microcrack is only in
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one coarse scale element, the coarse scale enrichment scheme is not longer valid. A ramp
function being non-zero in this element would be required. In case coalescence occurs as
displayed in figure 5.27(a), one of the resulting macrocrack tips might propagate. Using one
bilinear function per element and crack to store their paths would naturally require moving
their intersection point. To circumvent these issues and stick to two bilinear functions per
element, a different approach is applied: Both microcrack tips are connected to the inter-
section point of the macrocrack with the finite element as displayed in figure 5.27(b). Thus,
the introduced enrichment scheme and displacement field approximation can be applied in-
dependently of the position and length of microcracks and macrocracks. Depending on the
geometry, i.e. fine and coarse scale mesh as well as microcracks and macrocracks, the final
crack path differs from its first estimations. However, coarse scale mesh refinement reduces
these differences automatically.

(a) One step before coalescence. (b) Final crack path.

Figure 5.27: Macrocrack tip merges with microcrack face.

Independent of the coalescence scenario, the enrichment scheme is finally updated, such that
the enrichment functions match the new crack geometry.

Overall numerical procedure

The extensions introduced in this section yield the components for a multiscale framework
to capture crack growth and crack coalescence of cracks on different length scales. The
computational framework is sketched in table 5.5. As fine scale domains are chosen to be
within an user defined radius around the macrocrack crack tips, whose position might change
due to crack propagation, this method is fully adaptive. Furthermore, the fine scale domains
are allowed to grow together, yielding a flexible tool to determine crack growth and crack
coalescence efficiently and accurately.



5.2. 2D CRACK COALESCENCE 75

loop, number of propagation steps nprop

solve for displacement field section 4.3
update boundary conditions λ0 section 5.1.2
solve for displacement field section 4.3
perform crack propagation section 5.1.2
check for and perform crack coalescence section 5.2.2

end loop

solve for displacement field section 4.3
update boundary conditions section 5.1.2
solve for displacement field section 4.3

Table 5.5: Overall numerical procedure to perform multiscale crack propagation and crack
coalescence.

Computational examples

In the last part of this section, three computational examples reveal the need to take mi-
crocracks into account. Furthermore, they demonstrate the robustness and flexibility of the
proposed model. The required number of finite elements to take microcracks into account
in a singlescale analysis, explains the need for a multiscale analysis. The last two presented
examples are published by HOLL ET AL. (2013).

Three-point bending test
The three-point bending test by INGRAFFEA & GRIGORIU (1990), introduced in sec-
tion 5.1.1, is investigated by taking 199 randomly distributed microcracks of length 0.15a
into account. The initial crack distribution is displayed in figure 5.28, while the material and
geometrical properties are kept, according to figure 5.3. In contrast to the singlescale anal-
ysis, the coarse scale mesh consists of 682 coarse scale elements, while each coarse scale
element is refined with 9× 9 fine scale elements. Thus, the coarse scale problem is reduced
by a factor of 10, while the effective mesh resolution is about 5 times higher than in the
singlescale analysis.
The final crack path is displayed in figure 5.28: In the first propagation steps, the trajectory
shows a similar behavior to the experimental solution. As the crack tip gets attracted by
a microcrack, the angle of deflection is slightly larger. Once both cracks merge, the path
changes, such that the trajectory of the multiscale simulation is nearly parallel to the exper-
imentally determined crack path. Once the macrocrack reaches another microcrack, crack
coalescence, and with it a second major kink in the path, occurs. Finally, the crack tip inter-
sects the boundary of the middle hole at a different point than observed in the experiment.
This example clarifies two major aspects of the proposed method: Firstly, existing microc-
racks cannot be neglected as they might change the final crack path. Secondly, the required
computational effort can be reduced drastically by the multiscale approach: A refinement
to capture the fine scale effects with uniform refinement accurately yields five times more
elements.
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F

Figure 5.28: Left: 199 randomly distributed microcracks of length 0.15a in experiment by
INGRAFFEA & GRIGORIU (1990) with measurements given in figure 5.3.
Right: Experimental crack path (black), numerical crack path without microcracks (light
gray) and numerical macrocrack path including microcracks (dark gray).

Multiscale analysis versus singlescale analysis
In the second example, a square domain Ω0 with its origin in its center and of size `× `, with
` = 2.0, is investigated taking into account about 150 randomly distributed microcracks of
length 0.005 `. To identify the required finite element mesh and to study the robustness of
the presented method, results of coarse scale mesh refinement are discussed. Secondly, the
multiscale method is compared to a singlescale analysis without considering microcracks.

λ0 t
0

u0

x⋆

λ0 t
0

e2

e1

Figure 5.29: About 150 microcracks and two macrocracks in Ω0, here meshed with 19× 19
coarse scale elements.

Here, quasi-static crack propagation in an isotropic, linear elastic solid with the LAMÉ’s ma-
terial constants µ = 10, Λ = 20 and the energetic fracture toughness Jc = 1 is assumed. As
displayed in figure 5.29, uniform tractions t0 = ± e1 are applied on the left and right side
of the square. The structure is clamped at the upper side of Ω0, i.e. u0 = 0. The fine scale
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domains are chosen to be within the user defined radius rMS = 0.21 ` around the macrocrack
tips.
To capture all microcracks precisely in a singlescale analysis requires a 241 × 241 uniform
finite element mesh. The effective mesh, i.e. fine scale elements per coarse scale element
times the number of coarse scale elements, for multiscale analysis should have at least the
same resolution. As the final crack path is interpolated using N0 shape functions, it depends
mainly on the coarse scale mesh resolution. Thus, the coarse scale mesh is refined, while
the number of fine scale elements per coarse scale element is decreased to obtain a similarly
effective mesh resolution. Here, the introduced problem is computed using five different
meshes, according to table 5.6.

Refinement
Coarse scale Fine scale elements per Resulting mesh considering

elements coarse scale element uniform refinement
1 19× 19 13× 13 247× 247
2 29× 29 9× 9 261× 261
3 39× 39 7× 7 273× 273
4 49× 49 5× 5 245× 245
5 89× 89 3× 3 267× 267

Table 5.6: Mesh resolution properties.

Three resulting coarse scale meshes of the crack tip belonging to the vertical crack are il-
lustrated in figure 5.30. Independent of the coarse scale resolution, the fine scale elements
have about the same size. Furthermore, the area and shape of the fine scale domain changes
as coarse scale elements inside or cut by the circle spanned with rMS around the crack tip,
belong to Ω1. A fine mesh in Ω0 approximates the circular fine scale domain more precisely,
yielding slightly different fine scale domains for the introduced coarse scale meshes.

(a) 19×19 coarse scale elements;
13 × 13 fine scale elements per
coarse scale element.

(b) 49×49 coarse scale elements;
5 × 5 fine scale elements per
coarse scale element.

(c) 89×89 coarse scale elements;
3 × 3 fine scale elements per
coarse scale element.

Figure 5.30: Coarse scale mesh refinement. Radius rMS is marked white.

The resulting crack paths for the introduced multiscale meshes are displayed in fig-
ure 5.31 (left). All crack paths resemble each other: The propagating macrocrack tips ini-
tially grow in the same direction and merge with the same microcracks. In all examples, the
macrocrack tip hits the second macrocrack face at nearly the same point. Due to the bilinear



78 CHAPTER 5. CRACK PROPAGATION USING THE XFEM

interpolation of the macrocracks on the coarse scale, the final crack paths vary slightly from
each other. Thus, the finer coarse scale discretizations naturally exhibit a smoother descrip-
tion of the final crack path. However, the coarsest mesh still captures the crack path with
sufficient accuracy.
A comparison of the required load to satisfy crack growth, i.e. max (G) = Gc, is illustrated
in figure 5.31 (right): The starting time t0 refers to the initial configuration displayed in fig-
ure 5.29 while the final time T is the time when both macrocracks merge. Crack coalescence
leads to an abrupt extension of the crack path on the coarse scale. Adapting the load factor
yields kinks in the displayed diagrams, which all computations reflect in a similar fashion.
Apart from the coarsest mesh, the major kink, occurring at about two-thirds of the compu-
tation time, has a similar peak value. Thus, the comparison of the load displacement curves
exhibits similar features as comparing the crack paths: All investigated meshes provide sim-
ilar results for this complex example, such that the proposed method is assumed to be robust.

Time t
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29 macro / 9 micro elements19 macro / 13 micro elements
39 macro / 7 micro elements 49 macro / 5 micro elements
89 macro / 3 micro elements

Figure 5.31: Final crack paths in Ω0 and load factor versus displacement for different coarse
scale meshes.

To study the effect of microcracks, the example sketched in figure 5.29 is computed in a
singlescale analysis without taking any microcracks into account. The dependency of the
load factor on the load step is illustrated in figure 5.32(a). As the crack tip in the singlescale
analysis runs straight through the domain and merges only with the second macrocrack, the
crack paths vary. Consequently, the position of the crack tips differ at the same load step such
that a direct comparison of both analyses is difficult. As the crack tip positions in the initial
configuration and just after the coalescence of both macrocracks are the same, the singlescale
result is stretched to match these points. Two major differences between both curves stand
out in this example: Firstly, taking microcracks into account yields a higher external load
to enforce crack propagation, meaning that microcracks are a positive feature to prevent the
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macrocrack from growing. Secondly, the load curve decreases smoothly without any kinks
in the singlescale computation, while the consideration of microcracks leads to significant
kinks which occur when cracks merge.
In figure 5.32(b) load-displacement curves are given, evaluated at point x? which is marked
in figure 5.29. Apart from the initially varying load factors another major difference can be
observed: The initial tangents have different slopes due to the fact that microcracks globally
weaken the structure. Furthermore, this figure displays once more the robustness of the pro-
posed method: Due to the application of load control procedure with the crack propagation
criterion being the constrained equation, such a complex load-displacement curve, i.e. snap-
back problem, can be computed both with comparable ease and speed. Here, the sharp peaks
and many kinks do not cause any difficulties in solving the system of equations.
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(a) Load factor versus load step.
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(b) Load factor λ0 versus displacement at
point x? = −e1 − e2.

Figure 5.32: Comparing singlescale analysis without microcracks to coarsest multiscale
analysis.

In the following figures 5.33 - 5.36, the coarse scale domain Ω0\Ω1 is displayed with its fi-
nite element meshes, while the fine scale meshes are omitted to maintain visibility, i.e. fine
scale domains are displayed as surface plots. The gray circled marks in figure 5.32 refer to
crack configurations in figures 5.34 - 5.36 always one step before and one step after crack
coalescence.
A reason for requiring a higher external load once the microcracks are considered is dis-
played in figure 5.33: In the vicinity of the macrocrack tip, a nearly parallel running micro-
crack shields the macrocrack tip. The stresses and therefore the SIFs are reduced such that a
higher external load is required to perform crack propagation. Further numerical investiga-
tions on crack shielding were performed by LOEHNERT & BELYTSCHKO (2007a).
Once the advancing macrocrack has passed the shielded area, the corresponding tip reaches
a microcrack tip, displayed in figure 5.34(a). A further crack propagation step fulfills the
criterion of crack coalescence, such that the crack tips of both cracks are connected. Accord-
ing to section 5.2.2, the resulting macrocrack is mapped onto the coarse scale, yielding the
configuration displayed in figure 5.34(b).
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Figure 5.33: Crack shielding in first load step.
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(b) VON MISES stress σvM after coalescence.

Figure 5.34: Microcrack elongates macrocrack abruptly.

Due to the loading conditions, the macrocrack and with it the corresponding fine scale do-
main, is moving upwards until the macrocrack tip reaches another microcrack tip, displayed
in figure 5.35(a). In the following load step both crack tips merge, displayed in figure 5.35(b).
Due to the orientation of the microcrack, the resulting macrocrack is abruptly tilted ap-
proximately π/2. However, the applied boundary conditions force the crack to grow in
e2-direction, which requires an increase of λ0 compared to the previous load step. After the
following propagation step, the crack already has nearly rotated back in its original direc-
tion, such that the load is decreased. Thus, this microcrack is responsible for the kinks in the
load-displacement and the load-time curves, displayed in figure 5.32. Note that, only in two
computation steps do the fine scale domains overlap. Thus, the projection of the boundary
conditions as well as solving the fine scale domains are mainly computed independent of
each other.
After merging with two other microcracks, the propagating macrocrack tip reaches the other
macrocrack face. As displayed in figure 5.36(a), all fine scale domains overlap, such that
only one large fine scale domain exists. An infinitesimal increase of the external load yields
crack propagation of the vertically running macrocrack, such that the nodal enrichments on
the fine scale overlap and both macrocracks merge. As the propagating crack tip merges with
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(b) VON MISES stress σvM after coalescence.

Figure 5.35: Crack coalescence leads to a highly different macrocrack tip orientation.

a macrocrack face, the crack tip vanishes and is consequently enriched using two modified
HEAVISIDE enrichment functions. Defining fine scale domains only in the vicinity of macro-
crack tips, only two non-overlapping fine scale domains remain, displayed in figure 5.36(b).
As none of the two macrocrack tips are shielded or amplified by microcracks, the SIFs and
the load factor λ0 reach a similar value as in the singlescale analysis.
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(b) VON MISES stress σvM after coalescence.

Figure 5.36: Both macrocracks merge.

This example exhibits the great impact microcracks have on the global response of the struc-
ture. Not only do the crack paths change when microcracks are considered, but also the
required external load differ due to shielding and amplification of microcracks. Further-
more, a refinement of the finite element mesh shows the robustness of the proposed method.

Effect of a single microcrack
In the following example, the influence of a single microcrack on the overall behavior of the
structure is investigated. The material parameters µ,Λ,Gc and the size of Ω0 are adopted
from the previous example. Only the length of the about 110 microcracks, i.e. 0.0056 `, as
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well as the size of the fine scale domains, with rMS = 0.19 `, are changed slightly to demon-
strate that fine scale domains can separate during the computation process. The structure
contains four macrocracks with seven tips, whose fine scale domains initially all overlap. To
study the influence of a single microcrack, the structure is computed including the centered
microcrack, displayed in figure 5.37(a), and omitting this microcrack as illustrated in fig-
ure 5.37(b). Therefore, the samples will be referred to as ”with microcrack“ and ”without
microcrack“ respectively. Both structures undergo the same boundary conditions: They are
clamped at the bottom, i.e. u0 = 0, and are torn apart at their top with t0 = e2. As in the
previous example, fine scale domains are displayed as surfaces while the contour of the finite
elements is displayed in the course scale domain Ω0\Ω1.

e2

e1

u0

x⋆

λ0 t
0

(a) Crack distribution with a microcrack in the
center of Ω0.

e2

e1

u0

x⋆

λ0 t
0

(b) Crack distribution without a microcrack in
the center of Ω0.

Figure 5.37: Domain Ω0 with four macrocracks and about 110 microcracks, meshed with
21 × 21 coarse scale elements. Each coarse scale element is split into 9 × 9 fine scale
elements.

Loading the structure ”with microcrack“ yields the highest energy release rate at the macro-
crack tip, which is cutting the boundary of Ω0. After merging with two microcrack tips,
displayed in figures 5.38(a) - (b) and in figures 5.38(b) - (c), two macrocrack tips merge, il-
lustrated in figures 5.38(c) - (d). Subsequently, the fine scale domains do not overlap anymore
resulting in two smaller fine scale domains. With further crack propagation, the advancing
macrocrack reaches a microcrack face, displayed in figure 5.38(d). Merging both cracks, as
shown in figure 5.38(e), yields an additional macrocrack tip and consequently an extra fine
scale domain. As it still overlaps with other fine scale domains, the total number of fine scale
domains does not change. No further crack coalescence occurs until the end of the compu-
tation, captured in figure 5.38(f).
At the beginning of the fracturing process, the second structure ”without microcrack“ be-
haves similarly to the previous example: After some propagation steps of the same macroc-
rack tip, a microcrack elongates the advancing macrocrack, displayed in figures 5.40(a) - (b).
Due to the omission of the centered microcrack, the macrocrack propagates in contrast to the
previous example more in negative e2-direction, illustrated in figure 5.40(c). After merging
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Figure 5.38: Crack propagation and coalescence for sample ”with microcrack“ referring to
figure 5.37(a).

with a microcrack, displayed in figure 5.40(d), the macrocrack merges with a macrocrack
face, shown in figure 5.40(e). Thus, only one crack tip vanishes, such that one fine scale
domain vanishes. However, the fine scale domains do not overlap anymore, such that two
smaller fine scale domains are computed onwards. The propagating tip merges analogously
to the previous example with a microcrack face, generating an additional macrocrack tip,
before reaching its final position at the end of the computation, displayed in figure 5.40(f).
Comparing both final crack paths in figure 5.39(a) reveals the impact of a single microcrack
on the global behavior: While the crack paths are similar in the beginning of the computa-
tion, their deviation in the center of the plate is large. Once the tips merge with the centered
macrocrack, the crack trajectories resemble each other.
A similar conclusion can be drawn by investigating the load-displacement behavior of
both computations, displayed in figure 5.39(b). The initial tangents are similar, but once
crack propagation occurs, totally different responses of the structure are observed: For
0.15 > u2 (x?) /` > 0.05 both samples follow complex load-curves with some snap-backs,
until the macrocracks merge. From that point on, the load-displacement curves resemble
each other, both undergoing two minor snap-backs in a very similar fashion.
This example reveals the effect of a single microcrack on the global response of the structure:
In this example, omitting one microcrack yields a totally different post critical behavior in
terms of load-displacement curves and crack paths. Thus, it shows once more the need of
taking all microcracks into account, even though the global response is similar once both
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macrocracks are merged: A single microcrack might change the behavior of the structure
significantly and with it the required external load λ0 to perform crack propagation.
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Figure 5.39: Crack paths and load-displacement curves.
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Figure 5.40: Crack propagation and coalescence for sample ”without microcrack“ referring
to figure 5.37(b).
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5.3 3D crack propagation

As the XFEM combined with the multiscale projection method revealed its benefits for
two-dimensional problems, it is extended to three-dimensional space in this section. The
implemented crack propagation algorithm is first presented for singlescale analysis in
section 5.3.1 and finally utilized in a multiscale framework in section 5.3.2.

5.3.1 Crack propagation on one scale

Analyzing cracks in three-dimensional space using the XFEM/GFEM goes back to the
work of DUARTE ET AL. (2000), SUKUMAR ET AL. (2000) and LOEHNERT ET AL. (2011)
in terms of the corrected XFEM, among others. Crack propagation in context of LEFM
was successfully employed by DUARTE ET AL. (2001), MOËS ET AL. (2002), GRAVOUIL

ET AL. (2002), CHOPP & SUKUMAR (2003), SUKUMAR ET AL. (2003) and FRIES &
BAYDOUN (2012) among others. Two major tasks are discussed in most above mentioned
publications: Firstly, a criterion of crack propagation and secondly a method to update the
crack surface Γ and crack front ∂Γ. Both issues are addressed in this section and finally
applied to three-dimensional crack propagation problems.

Stress intensity factor extraction

Extending the J-integral to three-dimensional problems is not straight forward, as the crack
front does not enclose a ring on which the integral has to be carried out as in two-dimensional
problems. The mathematical extension from a two-dimensional ring to a three-dimensional
tube, as proposed by MORAN & SHIH (1987a) and MORAN & SHIH (1987b), displayed in
figure 5.41, yields SIFs depending on the position of their evaluation, i.e. KI = KI (x∂Γ),
KII = KII (x∂Γ), KIII = KIII (x∂Γ), with x∂Γ ∈ ∂Γ. Thus, the J-integral, whose value
depends on its position s on the crack front, yields a similar computation as in (2.74). In
order to apply a domain form as done for two-dimensional problems, a smoothing function
being zero outside the integrated domain V is applied. In terms of the XFEM, this approach
was implemented by SUKUMAR ET AL. (2000) leading to an adequate approximation for the
SIFs, which is thus applied in this work.

s

∂Γ (s)

V

Figure 5.41: Volume V to integrate for SIF extraction along crack front ∂Γ (s), with s =
s (x∂Γ) ,x∂Γ ∈ ∂Γ.
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As the energy release depends on the position along the crack front one might consider two
strategies to model crack propagation: In cases where crack propagation occurs, only points
which fulfill the criterion for crack propagation advance. This might yield a rather rough
crack front ∂Γ and a lot of iterations to follow the crack path. Alternatively, one can consider
the whole crack advancing in cases where crack propagation occurs at one point, yielding
most likely a comparably smooth crack front. The parts of the crack front of the advancing
crack which do not fulfill the criterion of crack growth, propagate according to their energy
release. FRIES & BAYDOUN (2012) state that in LEFM the final crack path does not depend
on one of the approaches. As the second idea yields faster results it is applied in this work.
Rewriting the criterion for crack propagation (2.68) in terms of the relative energy release
rate G̃ = G̃ (x∂Γ) yields

∃x ∈ ∂Γ : G̃ (x) =
G (x)

Gc
≥ 1 . (5.16)

As in linear elastic quasi-static fracture mechanics the increment of propagation is unknown,
this amplitude of growth ∆a = ∆a (x∂Γ) is chosen to depend on the energy release rate.
Thus, points of propagating cracks not fulfilling (5.16), according to the above mentioned
second propagation approximation, advance as well, such that

∆a = k G̃ . (5.17)

Here, k is typically chosen to be half a characteristic element length as chosen for two-
dimensional problems, i.e. k = he/2. Applying the same strategy as proposed for two-
dimensional problems to ensure stable crack growth, the boundary conditions are multiplied
with a global load factor λ. Thus, crack propagation is just occurring in the following load
step such that the highest amplitude of growth is equal to k.
Making the rigorous assumption of pure mode I/II propagation allows the application of the
criterion of maximum hoop stress (2.88) to determine the direction of growth θc = θc (x∂Γ).
Thus, the position of the new crack front x∂Γ(i+1)

for the following load step (i+ 1) can be

determined by adding the increment of growth v = v
(
x∂Γ(i)

)
to the current position of the

crack front x∂Γ(i)

x∂Γ(i+1)
= x∂Γ(i)

+ v

= x∂Γ(i)
+ ∆a cos (θc) g1 + ∆a sin (θc) g2 .

(5.18)

Here, the orthogonal local basis gi at the crack front, displayed in figure 2.4, can be computed
easily using the level set fields ψ and φ

g1 =
∇φ
||∇φ|| , g2 =

∇ψ
||∇ψ|| , g3 = g1 × g2 . (5.19)

As pointed out by FRIES & BAYDOUN (2012) and by RABCZUK ET AL. (2010), the
evaluation of the SIFs might pose some difficulties. To overcome this issue, MOUSAVI

& SUKUMAR (2010) and MINNEBO (2012) investigated the impact of the transformation
by DUFFY (1982) on the accuracy of the SIFs. Therefore, the integration introduced in
section 3.1.3 should be modified: To capture the stress singularity more accurately, the tetra-
hedrons/triangles introduced for integration should be collapsed at the crack front/tip. A
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different strategy to improve the SIF extraction was proposed by OZER ET AL. (2012): The
authors apply higher order LEGENDRE polynomials for the arbitrary smoothing function q
leading to a better approximation of the SIFs. A third alternative to improve accuracy is
the application of higher order terms of the asymptotic solution by WILLIAMS (1957) and
MUSKHELISHVILI (1963), implemented in the XFEM framework by LIU ET AL. (2004),
RÉTHORÉ ET AL. (2010), PASSIEUX ET AL. (2011), ZAMANI ET AL. (2012) and LAN

ET AL. (2013). Besides the better approximation of the displacement field at the crack front
and a direct evaluation of the SIFs, this method yields more unknowns, depending on the
applied order of displacement approximation. Even though those approaches have a benefit
towards the extraction of the SIFs, the proposed method still yields adequate results and will
be applied in the following.
As the SIFs and therefore θc and ∆a vary depending on their position, these variables require
discretization as well. Thus, the SIFs are evaluated in the center of the elementwise trilin-
ear segment of the crack front, and then linearly interpolated onto intersection points of the
finite element with the crack segment, taking into account the values of the neighboring ele-
ments. This leads to N j

fp discrete points X̂ i describing the crack front for each propagating
crack j. As within this approach the level set values are interpolated using C0- continuous
functions, their gradient in (5.19) is generally discontinuous on the boundary of the finite
element. Thus, the local basis at the intersection points is averaged by the arithmetic mean
leading to the crack front movement vi = v

(
X̂ i

)
for each discrete point X̂ i.

Crack propagation due to damage growth

Besides difficulties the J-integral might pose in three-dimensional space that are discussed
above, it is even more difficult to evaluate this quantity for non-linear material behavior.
However, the introduced damage model overcomes both issues: With an appropriate choice
of ε̃, a criterion for crack growth for a variety of different material laws is available without
even requiring the computation of J . Thus, the C0- continuous distribution of ε yields a dam-
age based criterion for crack growth (2.100). Similar to the energy release based criterion, a
crack advances once one point on the crack front fulfills (2.100) such that the increment of
growth can be computed similar to (5.17)

∆a = k
ε (x∂Γ)

κc
. (5.20)

Employing the criterion of maximum hoop stress following the technique by FRIES & BAY-
DOUN (2012) yields analogously to the SIF extraction the direction of growth θc. This direc-
tion is found by searching along an arc around the currently investigated point for max (σθθ),
showing promising results by FRIES & BAYDOUN (2012). Thus, only the criterion for prop-
agation is discussed in this work following two main objectives: First, how to find the most
suitable equivalent variable according to (2.92)-(2.95) to model discrete fracture and sec-
ond, how sensitive the chosen model is to material parameters, mesh and loading conditions.
Therefore, a cube containing a straight crack with its front centered in the center of the cube
is meshed with 19× 19× 19 elements. In order to ensure that the equivalent measure yields
crack propagation following the theory of LEFM, seven different displacement boundary
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conditions are applied on the boundary of the cube. In case of mixed mode loading, the SIFs
are chosen to be equal unless they are chosen to be zero. According to (2.69) and (2.71), the
applied displacement field is chosen such that G = Gc holds for all computations. Thus, for
all computations ε = κc would be the optimal result meaning that ε̃ is able to predict crack
growth identical to the theory of LEFM.
The results for the introduced non-local strains (2.92)-(2.95) are displayed in figure 5.42
using material parameters µ = 10, Λ = 20 and c = 0.1: One can see that both energy
based formulations (2.92) and (2.93) do not fulfill G = Gc for all cases. Using the positive
eigenvalues of ε (2.94) as equivalent measure for crack propagation leads to a fairly pre-
cise approximation of crack growth according to the theory of LEFM. However, figure 5.42
displays a lack of accuracy for pure mode I loading conditions. The modified VON MISES

criterion (2.95) with k = 2 yields the smallest oscillations in the presented examples. Thus,
this criterion is applied in the following.

ǫ̃ = f (I1, J2, k)ǫ̃ =
√∑3

i=1〈εi〉
2

ǫ̃ =
√
Ψ+ǫ̃ =

√
Ψ
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Figure 5.42: Different equivalent strains ε̃ for varying loading conditions.

In the second step the influence of material parameters and mesh in combination with differ-
ent load cases is investigated: Changing the material constants leads to different boundary
conditions according to (2.69), but not to any change in the criterion for crack growth, such
that G = Gc remains. Rotating the finite element mesh, as displayed in figure 5.43, and
applying the adjusted boundary conditions does not change the criterion of growth either.
One can see clearly, that the highest non-local equivalent strain appears in the vicinity of the
crack front, justifying once more the assumption of the absence of the internal variable D
and modeling damage via advancing cracks.
The results of all computations are displayed in figure 5.44: While the results seem to be
independent of the internal length scale c and the orientation of the finite element mesh,
LAMÉ’s constants have a higher impact on the results.
With less than 10% deviation from the optimum in the presented examples, this method still
requires further improvement. Comparing this approach to the traditional approach to deter-



5.3. 3D CRACK PROPAGATION 89

1

0

ǫ/κc

Figure 5.43: Mesh rotated around crack with loading conditions KI = KII = KIII,
max (ε) = κc and right-hand side ε̃ = f (I1, J2, k).

c = 0.1, µ = 10, Λ = 20
c = 0.1, µ = 10, Λ = 20,

c = 0.02, µ = 10, Λ = 20
c = 0.1, µ = 40, Λ = 20
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Figure 5.44: Effect of material parameters, mesh orientation and loading conditions on ε, for
ε̃ = f (I1, J2, k) with k = 2.

mine crack propagation via the computation of the J-integral, the proposed method yields
minor drawbacks in LEFM. These are the determination of c and κc as well as the require-
ment to solve an extra global equation. Beneficial is the direct outcome of the increment of
growth ∆a. In case of non-elastic material behavior, the J-integral is difficult to evaluate
such that damage models gain attention. Comparing the proposed model to continuous-
to-discontinuous approaches by MAZARS & PIJAUDIER-CABOT (1996), WELLS ET AL.
(2002), AREIAS & BELYTSCHKO (2005), MEDIAVILLA ET AL. (2006a), SEABRA ET AL.
(2013) among others states the benefits of the introduced idea: Due to the assumption that
the highest non-local strain occurs always at the crack front, damage might be modeled via
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growth of discrete cracks. Thus, in LEFM no history data is required such that a mapping
of these internal, quadrature point based variables is not necessary. Furthermore, this as-
sumption yields a weaker coupling between both governing equations, symmetric system
matrices and a linear system to solve in linear elasticity, leading to a significant speed-up in
computation time. With an appropriate choice of ε̃, this model can be easily applied to non-
elastic materials. However, crack initiation, as provided automatically in traditional damage
models, has not been included up to now, but is generally a possible extension.

Level set update

Updating the crack front geometry, i.e. in this work the level set fields, can be realized
with different techniques, e.g. the fast marching method by SUKUMAR ET AL. (2003), a
geometrical approach by FRIES & BAYDOUN (2012) and COLOMBO (2012) or solving the
HAMILTON–JACOBI equation by GRAVOUIL ET AL. (2002) among others. Here, a geomet-
rical approach is chosen, as these approaches do not require the solution of another global
equation. Furthermore, geometrical approaches do not depend that strongly on the topol-
ogy of the finite element mesh, as e.g. the finite difference based fast marching method. In
contrast to the geometrical approach by FRIES & BAYDOUN (2012), who transfer the global
level set fields to explicit crack surfaces, add new triangles to the surfaces and finally trans-
form the resulting surface into level set representation, only the level sets in the vicinities of
the advancing fronts are updated in this work.
For all cracks having front displacements of ||vj|| > 0 all elements in the vicinity of the
advancing crack front within a distance of rtube = max

j=1,...,Nfp

(||vj||) are collected in the set T ,

yielding a tube around this front with its surface ∂T . This tube contains at least all crack
front elements and their neighboring elements. To be computationally efficient, the update
of the level set functions is carried out only in T , sketched in figure 5.45.

∂T

φ < 0
φ > 0

A

k

BΓ(i)

T

e2

e1

e3

rtube

Figure 5.45: Cross section of tube around crack front.

Firstly, all enrichments in T \∂T are deleted. The enrichments on the boundary of the tube
need to be persevered, as a local update of the enrichment scheme leads to incorrect enrich-
ments, displayed in figure 5.45: Cracked elements outside the domain, like element B, are
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not investigated anymore, such that HEAVISIDE enrichments at node k are missing. Ele-
ment A is the only element being updated and containing node k, but as this element is not
cracked it does not lead to any enrichments at node k. In a second preparation before actu-
ally updating the crack surface, all level set values in front of the crack front, i.e. φ > 0, are
deleted. Level set values behind the crack front, i.e. φ < 0, remain and will be compared to
the newly computed signed distances.
The computed crack front movements vj and the current points X̂j form the extension
of the current crack Γ(i) with its front ∂Γ(i) yield a first approximation of the new crack
front ∂Γ̃(i+1), displayed in figure 5.46(a). The quadrilateral surfaces spanned by vj , X̂j ,
vj+1 and X̂j+1 are subdivided into triangles. Therefore, the arithmetic mean of these four
points is computed and connected to two points of the quadrilateral leading to four trian-
gles. By looping all triangles and all elements in T , the shortest distance to the nodes can be
determined. Choosing the orientation of all triangles such that their normals ntri point in a
positive direction of ψ(i) at the current step (i), yields the level set field ψ(i+1) for the crack
surface for the following step (i+ 1). Note that, as the angle of growth using the criterion
of maximum hoop is restricted to 70.5o, the signed distance can be computed uniquely using
the dot product ∇ψ(i+1) · ntri > 0.
However, the first approximation of the crack front ∂Γ̃(i+1) cannot be captured using a tri-
linear interpolation of φ. As this line might contain one or even more kinks in one finite
element. Thus, an interpolation of the crack surface is required. Therefore, the intersection
points x̂j between finite elements and ∂Γ̃(i+1) are computed. Connecting all points leads to
an suitable approximation of the crack front ∂Γ(i+1), with x̂j ∈ ∂Γ(i+1) ∧ x̂j ∈ ∂Γ̃(i+1),
displayed in figure 5.46(b).

e2

e3

e1

∂Γ̃(i+1)∂Γ(i)

Γ(i)

vj
X̂j

X̂j+1e

(a) First approximation of new crack front ∂Γ̃(i+1).

e2

e3

e1

x̂j

∂Γ̃(i+1)

∂Γ(i+1)

Γ(i+1)

(b) Final approximation of crack front ∂Γ(i+1).

Figure 5.46: 3D crack surface update.

In order to satisfy∇ψ ·∇φ = 0, a least square method is applied in each crack front element
to obtain the nodal values of the second level set field

Πφ =

∫

Ωe

(∇ψ · ∇φ)2 dV . (5.21)
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To achieve an accurate approximation of the level set field, this equation is constrained using
a LAGRANGE multiplier method, such that the level set value is zero at both intersection
points x̂1 and x̂2 in the current finite element

Πλ1 = λ1 φ (x̂1) ,

Πλ2 = λ2 φ (x̂2) ,
(5.22)

yielding the overall potential

Π = Πφ + Πλ1 + Πλ2 . (5.23)

The variation of Π [
δφΠ δλ1Π δλ2Π

]
=
[

0
]

, (5.24)

yields the linear system of equations



∂2Π
∂φ ∂φ

∂2Π
∂φ ∂λ1

∂2Π
∂φ ∂λ2

∂2Π
∂λ1 ∂φ

∂2Π
∂λ1 ∂λ1

∂2Π
∂λ1 ∂λ2

∂2Π
∂λ2 ∂φ

∂2Π
∂λ2 ∂λ1

∂2Π
∂λ2 ∂λ2


 ·




∆φ
∆λ1

∆λ2


 = −




∂Π
∂φ
∂Π
∂λ1
∂Π
∂λ2


 . (5.25)

Applying some derivatives leads to the system being solved



∂2Π
∂φ ∂φ

1 1

1 0 0
1 0 0


 ·




∆φ
∆λ1

∆λ2


 = −




∂Π
∂φ

φ (x̂1)
φ (x̂2)


 . (5.26)

Following (3.19), φ is discretized using trilinear shape functions and eight nodal unknowns,
resulting in a 10 × 10 system of equations. However, as the gradients of the first level set
field are not C0- continuous, φ itself is not C0- continuous: The nodal values of φ depend on
the current finite element. Therefore, the mean average of the nodal unknowns is computed
using the computed unknowns from all neighboring elements. Thus, the gradients of the
level set fields are not perfectly orthogonal. However, this procedure leads to a very good
compromise between accuracy, computation time and nearly orthogonal level set gradients.
Finally, the enrichments are set according to the new crack geometry such that all quantities
for the following load step are determined.
The overall numerical propagation algorithm is equivalent to two-dimensional problems,
sketched in table 5.1. Here, the adaption of the external boundary conditions is applied
analogously to two-dimensional problems according to equation (5.3).

Implementation details

Even though the main ideas for three-dimensional crack propagation problems can be
adopted one-to-one from two-dimensional problems, the implementation of crack propa-
gation is different due to the fact of a whole line moving in space instead of independent
points. As not all the cracks in the domain propagate and the nodal level set values are stored
as a global quantity not assigned to a particular crack, a direct application of growth to all
cracks would lead to several propagating cracks. To avoid this phenomenon and apply crack
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propagation only to cracks fulfilling the criterion for growth makes an assignment and sort-
ing of crack segments inevitable. To avoid searching for the neighboring front points of X̂j

to set up the discrete surfaces to determine ψ, the front points X̂j and their properties are
sorted such that in the array X̂( · ) neighboring discrete points are assignment to the same
finite element e, i.e. X̂j ∈ Ωe ∧ X̂j+1 ∈ Ωe, as displayed in figure 5.46(a). Therefore, two
arrays are set up, displayed in figure 5.47: The pointer ntf (c) defines the position at which a
discrete point of the advancing crack c starts and ends. Its length depends on the number of
propagating cracks ncrp, such that 1 ≤ c ≤ ncrp + 1. The second array contains besides co-
ordinates all nodal data required at point X̂j to determine the nodal level set values, i.e. the
propagation increment vj , the two elements assigned to this point elemcf ({1, 2} , j) as well
as the crack face normal at step (i) to determine the correct sign for the level set function.
The assignment of X̂j to both elements elemcf ({1, 2} , j) is required to determine the aver-
aged local basis gi. The size of this second array thus depends on the number of propagating
discrete front points np, such that 1 ≤ j ≤ np, with ntf (ncrp + 1) = np.

X̂ (1) ; . . . X̂ (ntf (c) + 1) ; . . . X̂ (ntf (c+ 1)) ; . . . X̂ (np) ;

propagating crack front c

ntf (1) ; . . . ntf (c) ; ntf (c+ 1) ; . . . ntf (ncrp + 1) ;

Figure 5.47: Storage of propagating crack fronts.

A pseudo-code of this sorting algorithm is displayed in table 5.7. Here, ncrf is the total num-
ber of discrete front points and xcf ({1, 2} , k) refers to the two front points of element k.
This variable is not a global array, as the computation in terms of the level set of these
points is comparably cheap. The logical array `done is required to avoid looping an element
twice, which might otherwise lead to an infinite looping of lines 9 - 31. As the first followed
point xcf (1, i) referring to the initially propagating element i is generally not a point on the
boundary of the domain, the second point xcf (2, i) needs to be followed after inverting the
already determined arrays. Thus, sorted arrays according to figure 5.47 are achieved, in-
dependent of the crack front geometry, i.e. an enclosed front like a ring or a line in space
ending at the boundary of the domain. As cracks change during computation process, this
sorting algorithm is applied at every load step.
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1 ncrp = 0 , np = 0 , `done ( ) = 0 , ntf (1) = 0
2 loop i = 1, ncrf

3 if (i propagates ∧ `done (i) = 0)
4 m = 1 , j = 0 , `done (i) = 1
5 ncrp = ncrp + 1 , np = np + 1
6 elemcf (1, np) = i

7 X̂ (np) = xcf (m, i)
8 compute and store propagation increment vnp and current crack face normal
9 do while (j < ncrf)

10 j = j + 1

11 if (X̂ (np) = xcf (1, j)) ; k = 1

12 elseif (X̂ (np) = xcf (2, j)) ; k = 2
13 else k = 0
14 if (k 6= 0 ∧ `done (j) = 0)
15 np = np + 1
16 elemcf (2, np − 1) = j
17 elemcf (1, np) = j

18 X̂ (np) = xcf (k, j)
19 compute and store propagation increment vnp and current crack face normal
20 `done (j) = 1 , j = 0
21 endif
22 if (j = ncrf ∧ m = 1)
23 m = 2

24 invert arrays v( · ), elemcf( · , · ) and X̂( · ) from entries p to np to restart from the
originally propagating element i using its second intersection point xcf (2, i)

25 np = np + 1
26 elemcf (1, np) = i

27 X̂ (np) = xcf (m, i)
28 compute and store propagation increment vnp and current crack face normal
29 `done (j) = 1 , j = 0
30 endif
31 enddo
32 ntf (ncrp + 1) = np

33 endif
34 end loop

Table 5.7: Finding and sorting advancing crack fronts.
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Computational examples

To verify that the proposed model is able to capture the required mechanical features, com-
parably simple examples are considered first. The following examples demonstrate the ro-
bustness and flexibility of the introduced method. In all examples LAMÉ’s material constants
are chosen to µ = 10, Λ = 20 and the fracture energy is Gc = 1. The geometrical measure-
ments a = 6

19
, ` = 2 hold for all following examples as well.

Tearing and shearing of a single cracked domain
To demonstrate that the three-dimensional model for crack growth is able to reflect sim-
ple shearing and tearing conditions accurately, a domain containing a straight crack in e1 -
e2 plane is loaded with respective boundary conditions u1 and u2, displayed in figure 5.48.
Here, the origin is located in the center of the cuboid, which is meshed with 19× 3× 19 el-
ements.

u2

u1 a

e3e2

ℓ

e1

ℓ

Figure 5.48: Straight crack.

To apply only tearing, the DIRICHLET boundary conditions read

u1 (x1) = u1 e1 + u2 e2 + 0 e3 with x1 = x1 e1 + x2 e2 − `/2 e3 ,

u2 (x2) = u1 e1 + u2 e2 + λ e3 with x2 = x1 e1 + x2 e2 + `/2 e3 .

Here, ui and xi are the unknowns of the displacement field and the components of the posi-
tion vector respectively. The VON MISES stress distribution after crack propagation as well
as the corresponding crack path are displayed in figure 5.49. Similar to two-dimensional
problems, the VON MISES stress is highest at the crack front and appears in a typical kidney-
shape around the crack front. Furthermore, the crack grows straight through the domain,
with its front being a straight line parallel to the e2 - axis. Thus, for this simple loading con-
dition, the model predicts the crack path sufficiently accurately.
The application of pure mode II displacement boundary conditions on the entire boundary is
not straight forward as the nodal unknowns of the enrichment functions on the boundary of
the domain require defined values as well. Thus, shearing boundary conditions are applied
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Figure 5.49: Tensile test. Left: Deformed structure. Right: Crack path in undeformed
domain.

here by changing u1 and u2 to

u1 (x1) = 0 e1 + u2 e2 + 0 e3 with x1 = x1 e1 + x2 e2 − `/2 e3 ,

u2 (x2) = λ e1 + u2 e2 + u3 e3 with x2 = x1 e1 + x2 e2 + `/2 e3 .

The VON MISES stress distribution of the final crack propagation step and the final crack path
are displayed in figure 5.50. The crack deflects 69.3o in its first crack propagation step which
almost resembles the analytical solution of pure mode II crack propagation, i.e. 70.5o. As
the applied shearing boundary conditions contain some displacements reflected by mode I,
i.e. KI 6= 0, a slight decrease of the angle of deflection is reasonable. After some steps of
crack propagation, the angle of deflection decreases slightly and in the proceeding steps it
increases again, leading to small oscillations of the crack surface. This indicates minor errors
in the extraction of the SIFs, but as the crack turns back onto its old trajectory, these errors
seem uncritical. Furthermore, as in the tearing example, the crack front is a straight line
parallel to the e2 - axis. Consequently, the proposed model is able to predict the crack path
highly accurately for simple loading cases.
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Figure 5.50: Shear test. Left: Deformed structure. Right: Crack path in undeformed domain.
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Mixed mode loading of skew crack
In order to verify if the model generally holds for three-dimensional problems, the intro-
duced crack is now tilted by π/6 around e1, displayed in figure 5.51.

u2
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e3e2

ℓ

e1

ℓ

Figure 5.51: Skew crack, rotated by π/6 around e1.

Furthermore, the DIRICHLET boundary conditions contain shearing and tearing equally,
yielding

u1 (x1) = 0 e1 + 0 e2 + 0 e3 with x1 = x1 e1 + x2 e2 − `/2 e3 ,
u2 (x2) = λ e1 + u2 e2 + λ e3 with x2 = x1 e1 + x2 e2 + `/2 e3 .

Thus, mode I and mode II are applied via external loading, while mode III is applied via
tilting the crack around e1. The resulting crack path and stress distribution is displayed in
figure 5.52.
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Figure 5.52: Mixed mode loading. Left: Deformed structure. Right: Crack path in unde-
formed domain.

In the beginning of the simulation the crack front rotates around e1 until it is parallel to e2.
The direction of growth is then between mode I and mode II loading, which reflects the
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external boundary conditions. LAZARUS ET AL. (2008) made similar investigations experi-
mentally: Instead of applying tearing and shearing, the structure is only torn apart. Similar
the example presented here, the crack turns around e1 until the crack front is parallel to e2.
It subsequently follows a straight path in the experiment, as if only tearing is applied. Thus,
in the numerical as well as in the experimental setup the direction of propagation changes
until it matches the applied boundary conditions.
Besides the reasonable crack path, this example exhibits the splendid flexibility of the pre-
sented model: The interpolation of the crack face and the update of the level set field is able
to represent twisting cracks. Complicated crack paths can be tracked, such that this model
can be applied to more general problems.

Propagation of circular crack
The last example in this section investigates a circular crack with diameter 1 in a cuboid with
the dimension 2× 2× 1.3. The block is meshed with 17× 17× 11 elements and loaded with
displacement boundary conditions λu, perpendicular to the crack surface. Figure 5.53(a)
displays the loaded configuration with the initial crack surface. Here, the external load is
adjusted such that crack propagation is just avoided. In the following displayed load steps
the crack grows while the external load λu decreases. Note that, once the crack propagates
through the boundary of the domain the evaluation of the J-integral becomes slightly inac-
curate at these positions. However, to demonstrate the flexibility of the surface update, the
computation is continued. In figure 5.53(c) technically four crack fronts exist which are all
cutting off one corner of the domain. Due to slight numerical inaccuracies in terms of SIF
extraction, the stabilization with λ and the restriction that only one crack propagates, at least
four steps of propagation are required to result in a symmetric crack configuration again,
displayed in e.g. figure 5.53(d). According to the direction of u, the crack is growing in its
plane which can be captured accurately with this model. The ability of the crack to grow
through the boundary of the domain is successfully displayed here.

(a) λ = 3.18 (b) λ = 2.99 (c) λ = 2.67 (d) λ = 2.34
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Figure 5.53: Circular crack advancing. Top: Deformed structure. Bottom: Crack path in
undeformed domain.
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These four examples demonstrate the main features of the proposed method: The mechan-
ical model is able to predict the direction of crack growth accurately for mode I, mode II
and mode III crack propagation. Furthermore, an efficient crack surface update tracks the
crack surface independently of the element shape and the boundary of the domain. Thus,
this method can be applied to more general problems as well as multiscale analysis.

5.3.2 Multiscale crack propagation
In the context of multiscale analysis a so-called global-local GFEM (GFEMgl) approach,
proposed by PEREIRA ET AL. (2012), reveals its benefits from a fine scale computation to
determine crack growth with higher accuracy: Fine scale effects are not considered in the
GFEMgl, such that the fine scale computation is applied to gain more accurate results espe-
cially at the crack front. A strong coupling between the scales and embedding the fine scale
crack path directly into the global problem yields a highly accurate tool to determine crack
growth of coarse scale cracks. However, considering fine scale defects explicitly in the global
problem leads to a vast increase of the computation time. Consequently, the GFEMgl is not
applicable in the context of multiscale analysis. Thus, similar to two-dimensional problems,
the multiscale projection method is applied, to take into account microcracks efficiently us-
ing a weak coupling between scales, introduced by HOLL ET AL. (2014).
In the multiscale projection method, all cracks are known explicitly only at the finest scale.
Thus, the criterion for crack propagation and the computation of the direction of growth
need to be carried out on this scale, such that all cracks are able to propagate. Conse-
quently, the coarse scale is fully driven by the fine scale. As advancing microcracks are only
taken into account on the fine scale explicitly, the propagation can be fully evaluated on this
scale following the introduced singlescale approach. Interpolating advancing macrocracks in
two-dimensional multiscale simulations onto the coarse scale is similar to two-dimensional
singlescale analysis. However, three-dimensional interpolation of the crack path is not as
straight forward due to the fact that a whole line instead of a single point advances.
Computing ∂Γ̃0

(i+1) using the intersection points of the finite elements with the fine scale
fronts ∂Γ1

(i+1) or ∂Γ̃1
(i+1) would neglect several fine scale features, as a lot of vectors v1

j in
between those intersection points would be ignored. Evaluating alternatively only at inter-
section points X̂

0

I on the fine or coarse scale domain drops a lot of fine scale features as well.
The computation of level sets on the fine scale would take all effects into account, but is also
not an appropriate option as piecewise trilinear level set approximation within a single coarse
scale element would require higher order approximation. However, this would lead to an ex-
treme extension of the proposed method and would increase the costs for integrating cracked
coarse scale element significantly. Therefore, all fine scale front displacements v1

i are trilin-
early averaged to receive the coarse scale propagation vectors v0

j , displayed in figure 5.54.
With

v0
I =

n0
parts∑

j=1

max (dj)
∑n0

parts

i=1 max (di)


 1
∑n1

fp,j

i=1 di

n1
fp,j∑

i=1

(1− di) v1
i


 , (5.27)

the whole crack front can be mapped onto the coarse scale, by taking all fine scale effects
into account. Here, n0

parts is the number of coarse scale crack segments joining the current
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discrete front point X̂
0

I such that

n0
parts =

{
1 ∀ X̂0

I ∈ ∂Ω0

2 ∀ X̂0

I ∈ Ω0\∂Ω0
. (5.28)

di

s2
∂Γi

v0
I

v1
i

X̂
0

I

X̂
1

is1

Figure 5.54: Approximation of crack front v0
I using fine scale results v1

i . Fine scale proper-
ties as mesh and vectors are colored gray, coarse scale properties are colored black.

The variable n1
fp,j is the number of discrete fine scale points X̂

1

i of segment j, with n1
fp,j ≥ 2

as the coarse scale element itself has two intersection points. This variable depends, besides
on the number of fine scale elements per coarse scale element, mainly on the position of the
macrocrack in the coarse scale element. With the distance di

di =
∣∣∣
∣∣∣X̂0

I − X̂
1

i

∣∣∣
∣∣∣ , (5.29)

all variables are known to determine the coarse scale quantity v0
I . Finally, these vectors are

passed to the coarse scale on which the level set update is performed, according to the intro-
duced singlescale approach.
In order to ensure stable crack growth, the external boundary conditions are updated accord-
ing to section 5.1.2. Finally, the algorithm sketched in table 5.2 is applied to model several
steps of crack propagation.

Implementation details

Similarly to the singlescale approach, the crack fronts are sorted into arrays as depicted
in figure 5.47. In contrast to singlescale analysis, the evaluation of crack propagation is
carried out on the fine scale domains such that all crack fronts are stored using the algorithm
introduced in table 5.7. As this sorting algorithm can distinguish between different crack
fronts and as non-overlapping fine scale domains can be treated independently from each
other, projecting boundary conditions and solving fine scale domains is computed in parallel
using OPENMP. In case one coarse scale element is assigned to two or more crack tips,
the respective fronts merge to one enlarged fine scale domain. After convergence of the
multiscale analysis, the criterion for crack growth including the propagation increments v0

I
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are computed on the fine scale and passed to the coarse scale at the respective point in the
array to its position vector X̂

0

J .

Computational examples

The following computational examples demonstrate the flexibility of the multiscale method
combined with the proposed crack propagation algorithm. First, the ability of merging fine
scale domains is demonstrated and then the effect of microcracks is investigated in the fol-
lowing example. In these examples LAMÉ’s material constants are chosen to µ = 10, Λ = 20
and the fracture energy is Gc = 1. Finally, this method is applied to a gas turbine blade to
investigate crack growth on the micro level.

Multiple cracks
To demonstrate the ability to merge fine scale domains, two cracks are considered here as
displayed in figure 5.55. The geometrical measurements are set to a = 6

19
, ` = 2, c1 = 8

19

and c2 = 11
19

, and the fine scale radius is rMS = 3 ·
√

3
19
≈ 0.273. The domain is meshed

using 19 × 3 × 19 coarse scale elements and 5 × 5 × 5 fine scale elements per coarse scale
element yielding an effective mesh of 95 × 15 × 95 elements. The structure is loaded with
the boundary conditions

u0
1 (x1) = 0 e1 + 0 e2 + 0 e3 with x1 = x1 e1 + x2 e2 − `/2 e3 ,
u0

2 (x2) = −λ0 e1 + u0
2 e2 + λ0 e3 with x2 = x1 e1 + x2 e2 + `/2 e3 .

a

u0
2

u0
1

e3e2

ℓ

e1

ℓ

c1

c1

c2 c2

Figure 5.55: Two straight cracks in cuboid.

As the external load is adjusted such that the highest energy release rate is equal to its mate-
rial parameter, only the upper crack propagates, displayed in figure 5.56(a). Due to u0

1 and
u0

2 and the presence of the non-growing crack, the propagating crack tilts towards the other
crack front. As long as the fine scale domains do not overlap, the projection of the bound-
ary conditions as well as the complete fine scale computation can be performed in parallel.
When both fine scale domains merge, one larger fine scale domain emerges in which only
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(a) Separated fine scale do-
mains.

(b) Merged fine scale domains.
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Figure 5.56: VON MISES stress σvM of multiple coarse scale cracks in domain.

one crack propagates, displayed in figure 5.56(b).
This example demonstrates two major features of the multiscale projection method in com-
bination with crack propagation. As long as fine scale domains do not overlap, they can be
treated independently such that a parallelization via OPENMP saves computation time com-
pared to serial computations. Merging fine scale domains can be captured as well, showing
again the great flexibility of the proposed method. However, merged fine scale domains can
not be computed in parallel anymore.
At first glance, a single advancing circular crack, as displayed in figure 5.57, does not clearly
belong to the section Multiple cracks.
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Figure 5.57: Circular crack advancing. Top: Deformed structure with transparent coarse
scale domain and fine scale domain displaying VON MISES stress. Bottom: Crack path in
undeformed domain.

However, with extension of the crack surface as displayed in figure 5.57 the front is ad-
vancing through the boundary of the domain. Thus, from one propagation step to another,
four crack fronts exist instead of one, each cutting off a corner displayed in figure 5.57(c).
Consequently, four fine scale domains exist each referring to one crack front. As the fine
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scale domains overlap, only one merged fine scale is computed containing four independent
crack fronts. Thus, analogously to the singlescale example only one of the fronts propa-
gates such that after four propagation steps the problem is symmetric again, as illustrated in
figure 5.57(d). Here, the boundary conditions, the coarse scale mesh and the geometry is
chosen to be identical to the introduced singlescale example. For the fine scale computation,
each coarse scale element is subdivided into 3× 3× 3 fine scale elements.
This example reveals once more the flexibility of the proposed multiscale method. It demon-
strates furthermore that the introduced multiscale technique is able to handle enclosed crack
fronts as well as open crack fronts. As no microcracks are considered here, the crack surface
resembles the surface obtained in the singlescale computation.

Effect of microcracks on propagating crack front
The influence of microcracks on the global response of a structure is investigated in the ex-
ample displayed in figure 5.51. Computing the crack path in a multiscale analysis without
taking microcracks into account is displayed in figure 5.58. Neither the final crack path nor
the stress distribution change significantly compared to the singlescale analysis, illustrated
in figure 5.52. Due to the 5 × 5 × 5 finer resolution in the fine scale domain at the crack
front, the SIF extraction obtains a higher precision leading to a slight change in direction of
growth.
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Figure 5.58: Mixed mode loading. Left: Deformed structure. Right: Crack path.

To investigate the effect microcracks have on crack propagation, 51 circular microcracks are
now considered as displayed in figure 5.59. The distribution of these cracks is random, but
such that the respective level set fields do not interfere each other. The crack path and stress
distribution is displayed in figure 5.59. The turning of the crack front around e1 is similar
to computations without microcracks, but the angle of deflection increases slightly. Once
the crack front reaches a microcrack such that one node receives nodal level set values orig-
inating from different cracks, the cracks are close enough to merge. As this feature is not
implemented in this work, the computation stops.
Thus, the crack path can be compared at the final load step of the computation taking micro-
cracks into account. Apart from the slightly smaller load factor λ0 of 2% once microcracks
are considered, the different crack paths are displayed in figure 5.60(a): This overview states
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Figure 5.59: Mixed mode loading. Left: Deformed structure. Right: Crack path and 51 mi-
crocracks.

a difference between both paths. The impact of the microcracks is given in a detail of the
crack front shown in figure 5.60(b): Considering microcracks enforces the crack to grow
more in negative e3 direction.

(a) Coarse scale paths. (b) Detail of crack fronts.

Figure 5.60: Crack paths considering microcracks (solid, gray) and without microcracks
(left: solid, light gray / right: wireframe, black).

This example clarifies the need to take microcracks into account via the multiscale projec-
tion method: Using uniform refinement would require a mesh resolution of 95 × 15 × 95
elements. Ignoring these fine scale effects would lead to a different crack path, especially
when considering merging cracks between scales. Even without this feature, small but clear
differences can be observed in terms of crack path and load factor λ0.

Investigation of crack growth in a turbine blade
A more practical application is the evaluation of crack propagation in real structures. Spe-
cial attention is given here to predict growth of microcracks in turbine blades as displayed
in figure 5.61. This turbine blade is a rotor blade of the last stage of an air turbine and was
designed by the Institute of Turbomachinery and Fluid Dynamics of the Gottfried Wilhelm
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Leibniz Universität Hannover. It is mostly used to investigate fluid phenomena and therefore
designed rather conservatively in terms of mechanical loading. To investigate microcrack
growth efficiently, the whole 138 mm long turbine blade is first simulated over its lifetime
without considering softening. This yields an estimation for the highest loaded quadrature
point in the structure on which in the second step the crack propagation model is applied.
If a crack propagates on the finest scale, it will usually continue propagating without in-
creasing λ0 in quasi-static simulations in LEFM. Thus, the blade needs to be maintained or
replaced to ensure a safe operation.
The material of the blade, i.e. the high strength aluminum alloy CERTAL - EN AW 7022, is
modeled by a viscoplastic solid considering small displacements. As this blade is subjected
to high thermal loading, unidirectional thermomechanical coupling and temperature depen-
dent material parameters describe the behavior sufficiently. An accurate application of the
external loads, e.g. via unidirectional fluid structure coupling by ASCHENBRUCK ET AL.
(2013), yields precise boundary conditions and with it a reliable response of the structure.
Simulating the blade over its service life yields an estimation of the highest loaded quadrature
point following a linear damage accumulation by PALMGREN (1924) and MINER (1945). As
modeling this blade is not the main task of this work it is therefore not further explained here.
The interested reader is referred to ROGGE & ROLFES (2012) for a detailed description and
to HOLL ET AL. (2014) for a summary.

Figure 5.61: Investigated turbine blade (left) and corresponding micro domain (right).

The highest loaded point according to linear damage accumulation is in the fir-tree teeth
of the blade as sketched in figure 5.61. The corresponding element has a volume V ≈
1.08 mm3, which leads to an average unit cell of 0.6 mm × 0.6 mm × 0.6 mm using a five
point integration rule, which is in the following investigated regarding crack propagation.
This fine scale domain contains three larger ellipsoidal and 182 smaller circular cracks. The
smaller cracks are only taken into account implicitly using the presented multiscale tech-
nique. The geometrical and mesh properties are summarized in table 5.8.
Following HOLL ET AL. (2014), inelastic deformations are nearly zero for the entire blade.
As furthermore no softening is applied in the blade model, the concept of LEFM is ap-
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Size of picked domain 0.6 mm× 0.6 mm× 0.6 mm
Macrocracks Three ellipses with half-axis 0.15 mm and 0.11 mm
Microcracks 182 circles with radius 25 µm
Coarse scale mesh 41× 41× 41 elements
Fine scale mesh 3× 3× 3 elements per coarse scale element

Table 5.8: Properties of investigated domain.

plicable. Due to this nearly linear behavior during the whole service life, the ratio of the
components of the strain tensor does not change. Thus, applying the highest strain tensor as
a boundary condition on the fine scale is the most critical load case, i.e.

[εij] =




2.51 2.31 −0.05
2.31 −1.64 0.08
−0.05 0.08 −0.05


 · 10−3 .

With YOUNG’s modulus E = 72, 000 MPa, POISSON’s ratio ν = 0.33 and the range of frac-
ture toughness of 4.5 N/mm ≤ Gc ≤ 49.5 N/mm according to GROSS & SEELIG (2007),
the fine scale problem can be solved: The highest energy release G in the whole domain is
G = 0.16 N/mm. Thus, the external load can be increased by a factor of 5.7 ≤ λ0

max ≤ 19,
depending on the material parameter Gc.
The VON MISES stress for G = Gc = 4.5 N/mm is displayed in figure 5.62(a). As typical in
LEFM, in all three non-overlapping fine scale domains the stresses are highest at the fronts.
Increasing λ0 to force a crack to grow leads to merging cracks just after the first propagation
step. The final crack path is displayed in figure 5.62(b) without displaying the microcracks
to maintain visibility.

(a) Stress distribution in fine scale
domains. Deformation scaled by
factor 10.

σvM/MPa
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(b) Final coarse scale cracks in undeformed
domain.

Figure 5.62: Resulting crack path and stress distribution.
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A reason for such a load capacity might be the conservative design of the turbine blade.
However, this procedure still clarifies its benefits: The lifetime simulation with a compar-
atively simple model yields a precise estimation of the highest loaded point. Applying the
strain history of this point to a microscale model capturing fine scale features leads to an
evaluation of crack propagation on this scale. Thus, real structures can be analyzed precisely
on the fine scale while the computational effort is kept as low as possible.
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Chapter 6

Conclusions and outlook

Within this work, an adaptive multiscale technique for modeling crack interactions between
scales was developed. The focus was set on modeling crack propagation and crack coales-
cence with computational efficiency, in order to investigate the behavior of microcracks on
the global response of the structure.
Starting by analyzing two-dimensional problems, crack propagation utilizing the XFEM ac-
cording to MOËS ET AL. (1999) and FRIES (2008) was introduced, which conformed well
with experiments performed by INGRAFFEA & GRIGORIU (1990). The combination of the
multiscale projection method and crack propagation allowed to account for microcracks in
the vicinity of the crack front and lead to a fully adaptive numerical tool. In order to track
a stable crack path, the criterion for crack growth required fulfillment on the finest scale.
Therefore, an iteration scheme was presented, adapting the boundary conditions of the coarse
scale. As crack propagation was computed on the finest scale, a method to upscale coarse
scale trajectories onto the corresponding scale was presented. This feature yielded a multi-
scale technique for propagating cracks, fully driven by the finest scale. As cracks generally
tend to merge at some stage of a fracturing process and as the numerical model was not
able to account for crack coalescence, the simulations of the whole fracturing process were
stopped as cracks approached each other. Especially when a large number of microcracks
were considered, only a few propagation steps could be simulated. To incorporate this capa-
bility into the presented multiscale method to model crack propagation, an additional enrich-
ment function for intersecting cracks, based on the work of DAUX ET AL. (2000), was ap-
plied to this model. In contrast to the crack coalescence approach by BUDYN ET AL. (2004),
cracks were merged once the distance of a tip to a second crack fell below a mesh dependent
threshold value. This value was chosen such that enrichment functions of different cracks
did not overlap, so that the computation of the J-integral was carried out in domains with
only one singular function. Additionally, the presented model considered merging crack tips
using the same mesh based criterion for coalescence. To investigate the effect of microcracks
on the overall behavior of the structure, the method for crack coalescence was coupled to the
multiscale projection method. As macrocracks approach each other before crack coalescence
will be detected on the fine scale, the XFEM was enhanced to capture even two macrocrack
tips in one finite element. In order to keep the assignment of cracks and enrichments com-
parably simple, an alternative ramp function was introduced, which reduced the enrichment
area to cracked elements. After this preparatory work on the coarse scale, several scenarios
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of merging cracks of different scales were considered. Thus, this multiscale approach en-
abled scale transition via coalescence and furthermore handled vanishing and appearing fine
scale domains during computation process, occurring due to crack coalescence. Besides this
high flexibility and the fully adaptive computation of the fine scale domains, the numerical
examples demonstrated the robustness of the presented method. Subsequently, multiscale
analyses were compared to simulations without considering microcracks exhibiting a notice-
able difference in crack paths and required load for crack propagation. Omitting only one
microcrack changed the global response significantly, as demonstrated in the final example.
Thus, the examples clearly exhibited the benefit of the proposed method as well as the need
of considering all present microcracks.
The additional dimension of the crack front and crack surface coming with the three-
dimensional approach required a revisit of the determination procedures of the J-integral
needed for crack propagation. An alternative approach based on continuum damage me-
chanics was presented, capturing the mechanical properties of LEFM. This approach yielded
slightly poorer results in LEFM compared to the J-integral, such that the integral was used
in this work. Thus, the energy release rate scaled the boundary conditions to satisfy the cri-
terion for crack propagation. The criterion of maximum hoop stress and a local geometrical
approach to update the level set field presented in this work lead to a fast and stable update
of the crack surface for the coming propagation step. In context of multiscale analysis, the
coarse scale crack geometry was upscaled from the fine scale to the coarse scale to keep
the integration algorithm, but still considering effects from the fine scale. A parallelization
of the fine scale domains via OPENMP was introduced, which decreased the computation
time. The presented examples demonstrated the ability of the proposed model: The level set
update was able to display rotations in the crack path with a rather coarse mesh and followed
the expected crack path. Similar to two-dimensional problems, microcracks influenced the
global response of a structure in terms of crack path as well as required load for propagation.
Despite the above mentioned achievements, four major tasks would improve the applicability
of the model to more complex physical problems.

• The proposed model is implemented for quadrilateral and hexahedral elements. In
order to mesh more general structures, e.g. turbine blades, higher order trian-
gular and tetrahedral elements are required. A challenging problem is the bi-
quadratic/triquadratic crack surface representation, which allows a single crack to in-
tersect one element four times.

• Merging cracks in a three-dimensional multiscale analysis will most likely expose the
effect of microcracks once more. This feature would furthermore allow a continua-
tion of the multiscale computations presented here and display a post critical global
response of the structure. However, crack coalescence in three-dimensional space re-
quires intense programming and additional mechanical features: In contrast to two-
dimensional problems, only three cracks per finite element would cover most merging
scenarios, as this allows three merging surfaces intersecting in a single point. Besides
this geometrical challenge, the mechanical behavior for partly joined cracks needs to
be embedded into the finite element ansatz. Additionally, merging strategies between
scales need to be revisited as coarse scale cracks cannot necessarily only be elongated.
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• Most materials, especially metals, undergo plastic deformation before fracture. The
application of a plastic material behavior has a significant impact on the fracture crite-
rion: The evaluation of J-integral is not straightforward. Furthermore, the criterion of
maximum hoop stress is only applicable to LEFM. With an appropriate choice of the
driving quantity for crack propagation, the application of a damage model as presented
in this work can resolve these issues, displayed in figure 6.1. Plasticity usually induces
history variables, which are traditionally stored at quadrature points. Due to crack
propagation, quadrature points move to avoid infinite entries in the stiffness matrix.
Therefore, the application of a mapping strategy, e.g. SHEPARD’s method, becomes
inevitable. Furthermore, the singular enrichment functions at the crack front need to be
replaced according to ELGUEDJ ET AL. (2006), to avoid infinite stresses at the crack
front. This ansatz leads to a different crack opening behavior, since u 6∝√r.

0.03

0

εp

Figure 6.1: Effective plastic strain εp.

• The presented method is able to compute crack growth and crack coalescence on dif-
ferent scales. However, the fracturing of virgin materials cannot be captured by this
model. According following to MAZARS & PIJAUDIER-CABOT (1996), a criterion
for crack nucleation based on a damage model can resolve this remedy. Alternatively,
a multiscale strategy by e.g. BELYTSCHKO ET AL. (2008) incorporating statistically
distributed defects might be a suitable model: By evolving and merging these defects
on the finest scale, macrocracks appear.

The above mentioned improvements are by far not the only possible extensions, but state
which ones should be addressed first. However, this choice strongly depends on the problem
being modeled, e.g. geometry, material behavior, size and orientation of cracks.



112 CHAPTER 6. CONCLUSIONS AND OUTLOOK



Bibliography
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