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Abstract 

The approximate solutions for complex nonlinear mechanical systems by using 

standard approaches (finite element, finite volume...etc.) are expensive with 

respect to both storage and CPU costs. Therefore, Reduced-order model (ROM) 

is usually thought as computationally inexpensive mathematical representations 

that offer potential for near real-time analysis such as systems of nonlinear 

structural mechanics. Nevertheless, ROM usually lacks robustness with respect 

to parameter changes and therefore must often be rebuilt for each parameter 

variation. Together, these two issues underline the need for a fast and robust 

method for adapting recomputed ROMs to new sets of physical or modeling 

parameters. ROM is based on eliminating degrees of freedom from the 

computational problem as appropriate to attain required computational 

efficiency. In this work, different approaches are introduced to reduce nonlinear 

models. These approaches are adaptive ROM based on proper orthogonal 

decomposition combined with BFGS method to decrease the computational 

cost, adaptive ROM based on the technique called proper snapshots selection, 

adaptive hyper-ROM based on Missing point estimation, and machine learning 

approach based on multi support vector regression.   

Zusammenfassung 

Die Näherungslösung für komplexe, nichtlineare mechanische Systeme unter 

Verwendung der standard Methoden (Finite Elemente, Finite Volumen, usw. ) 

ist aufwändig in Bezug auf Speicher und CPU Leistung. Deshalb werden 

Modelle reduzierter Ordnung (ROM) als weniger rechenintensive mathematische 

Beschreibung gewählt, die das Potential für eine nahezuEchtzeit-Analyse von 

beispielsweise Systemen nichtlineare Strukturmechanik bieten. Allerdings fehlt 

den ROM im Allgemeinen die Robustheit in Bezug auf Parameteränderungen 

und die Modelle müssen deshalb häufig für jede Änderung der Parameter neu 

aufgebaut werden. Zusammen heben diese zwei Probleme den Bedarf für eine 

schnelle und robuste Methode zur Adaption von neu berechneten ROMs an 

neue Sätze physikalischer oder modellierender Parameter hervor. Die ROM 

Methode basiert auf der zulässigen Eliminierung von Freiheitsgraden aus der 
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Berechnung zur Erreichung der angestrebten Recheneffizienz. In dieser Arbeit 

werden verschiedene Ansätze zur Reduktion nichtlinearer Modelle vorgestellt. 

Diese Ansätze sind adaptive ROM unter Nutzung einer passenden orthogonalen 

Zerlegung kombiniert mit der BFGS Methode, um den Rechenaufwand zu 

verkleinern, adaptive ROM basierend auf der Methode der Auswahl passender 

Zustandsaufnahmen, adaptive hyper-ROM basierend auf einer Abschätzung 

fehlender Punkte und der Ansatz des maschinellen Lernens basierend auf einer 

Multi-Stützvektor-Regression. 
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Chapter 1 Introduction 

 

1.1 Motivation 

The demand of the analysis of complex problems in the field of nonlinear 

structural mechanics has increased in both the academic and the industrial 

world. Therefore, a robust numerical tool which provides a systematic 

framework for analysis of such problems is required such as the finite element 

method. In general, the analysis of nonlinear deformation in solids and 

structures by using the finite element method can be expensive, especially for 

large systems or in situations when one requires many repeated trials such as 

structural optimization and design. 

Reduced order models (ROMs) based on projection techniques give a solution to 

analysis and computation of such high dimensional finite element models. The 

basic idea of model reduction (dimensional reduction) is to find a small number 

of generalized coordinates which express the system with some error (Krysl et 

al. (2001)). 

The projection based techniques were successfully applied in different 

computational engineering areas such as frequency response (Avery et al. (2007) 

& Hetmaniuk et al. (2013)), aeroelasticity (Thomas et al. (2003)), control 

(Bergmann et al. (2005)), structural dynamics (Amsallem et al. (2009) & 

Amabili et al. (2003)), and aerodynamics (Epureanu (2003). 

During the last decades, different approaches and techniques of reduced order 

models came to existence. Unfortunately, most of these approaches pay a little 

attention to the stability of the reduced model compared to the high attention 

on the accuracy and the approximation of the original system (Farhat et al. 

(2014)). 

1.2 State of the art 

(Nickell (1976)) is the first who found a modal reduction based on projection for 

nonlinear systems. His method is known as modal basis. At each time step, an 
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eigenvalue problem is solved for a linearized system to find reduced basis. But, 

this will lead to the repetition of solving an eigenvalue problem 

(computationally expensive). Furthermore, the change of approximate basis is 

very important in the case of time–dependent. Almroth et al. (1978)) suggested 

to use a correct displacement in the first iteration to enhance the current basis 

for nonlinear static analysis. (Noor & Peters (1980), (1983)) used the path 

derivative which is the derivative of a displacement (nonlinear solution) with 

respect to step-size control parameter as basis. The later basis has good 

performance for geometrical nonlinearity problems but it is difficult to use it for 

material nonlinearities 

To avoid the previous problem, (Wilson et al. (1982)) introduces a superposition 

of load-dependent Ritz vectors for linear analysis which he extended later to 

nonlinear analysis. In the context of Ritz vector, (Nour-Omid & Clough (1984)) 

used a Lanczos algorithm to generate basis vectors. (Idelson & Cardona (1985)) 

extended load-dependent Ritz vectors with derivatives respect to modal 

coefficients for nonlinear dynamic analysis. (Chan & Hsiao (1985)) used the 

orthogonality of the current and the previous displacement vectors with one 

selected equilibrium displacement vectors as the basis for nonlinear static 

analysis. (Kapania & Byun (1993)) used a combination between eigenvectors 

and Ritz vectors and they found that the updating or reduced basis is essential 

to obtain the accurate result.  

The error appears as the result of few number of basis dimension was studied by 

different researchers. Kline (1986) found two sources of the error, the first one is 

due to inability of reduced basis to reproduce the loading, and the second is due 

to inability of reduced system to produce the eigenvibration of the full system. 

For that, he used a combination between eigenvectors and Ritz vectors as basis 

vectors to decrease the error. (Ibrahimbegovic & Wilson (1990)) suggested that 

eliminating of frequency effect during the process of generating the Ritz vectors 

for better approximation. (Cabos (1994)) introduced error bounds for the 

Krylov subspace. 

Different extended approaches have been introduced to calculate the optimal 

basis. But, it is still challenging. Sirovich (1987) introduces the snapshots 
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method called Proper Orthogonal Decomposition (POD) which is based on 

Karhunen-Loéve decomposition. The method is considered as the best technique 

to generate optimal basis compared to previous techniques especially for 

nonlinear systems. Proper Orthogonal Decomposition was used in the first time 

by (Kreuzer & Kust( 1996)) for the dynamic structures.   

A comparison of the previous reduction techniques can be seen in (Spiess & 

Wriggers (2005), Spiess (2006), Radermacher & Reese (2013)). Recently, 

different approaches based on the interpolation and proper orthogonal 

decomposition where introduced such as, a missing point estimation (Astridet 

al.(2008)), (Vendl & Faβbender (2010, 2011)), a priori hyper-reduction 

(Ryckelynck (2005), Kerfriden et al. (2011)), a discrete empirical interpolation 

(Chaturantabut & Sorensen (2010)) and a Gauss-Newton approximate tensor 

method (Carlberg et al.(2011)). These techniques show dramatically decreases of 

computational possessing time. 

1.3 Objectives 

The objective of this study is thus to evaluate the robustness of the projection-

based reduction techniques in order to carry out better adjustment for both 

accuracy and processing time. At the end, this would result in obtaining a more 

controlled system which lead to better accuracy. 

1.4 The organization of the thesis 

This thesis consists of six chapters.  The first chapter presents an introduction.  

The second chapter gives a brief overview of non-liner finite element method.  

The third chapter presents reduced order model based on projection with some 

reduction techniques with emphasis on Proper orthogonal decomposition (POD) 

and Missing point estimation Technique. The fourth chapter presents different 

proposed approaches of an adaptive reduced order model with numerical results. 

The fifth chapter introduces a support vector machine and numerical result. 

Finally, the sixth chapter includes conclusion, limitations and recommendations 

for future research. 
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Chapter 2 Introduction to Nonlinear Finite Element 

Method 

 

2.1 Solid and Structural Nonlinearities  

In practical applications, the linear elasticity has the limitation due to the 

presence of nonlinearity effects or due to the geometry of the thin structure in 

one or two dimensions. The simple material nonlinearity is the elasticity when 

the relation between stress and strain is nonlinear. In other side, there is a case 

when the deformation of the structure reach a point leads to that the 

deformable and undeformable shape are highly different and it is not possible to 

find a  linear strain-displacement or equilibrium equations on the undeformed 

geometry (finite deformation). Before this point (finite deformation), it may be 

possible to observe buckling or load bifurcations in some solids and nonlinear 

equilibrium should be considered (Zienkiewicz & Taylor (2000)). 

In general, different sources of nonlinearities may exist in the analysis of 

nonlinear structural mechanics systems such as Geometrical nonlinearity (eg. 

large displacements, rotations), physical nonlinearity (nonlinear material) and 

nonlinearity due to boundary conditions (contact problem, deformation 

dependent loading). These kinds of nonlinearity exist from most real structural 

mechanics systems. 

In fact, the small strain problems can be solved accurately by using standard 

finite element method but there are still some challenges to solve some 

nonlinearity due to finite deformation, contact problem and also material 

instabilities by using standard routine codes and software (Wriggers (2008)). 

2.2 Principles of nonlinear FEM  

In this section, a brief overview of the nonlinear finite element method is 

presented.  The detailed description of it can be found in different references 

such as (Zienkiewicz& Taylor (2000), Wriggers (2008)). The system of nonlinear 

structural mechanics is described as to satisfy three issues: kinematic 
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relations, constitutive law, and balance of momentum. Starting from 

the balance momentum equation: 

+ 0 0Div r r=P b u   (2.1) 

where P is the first Piola–Kirchhoff stress tensor, 0r the density of undeformed 

configuration, u  is the acceleration, and b  is the body force. 

Taken into account stress and kinematic relations, the first Piola–Kirchhoff 

stress tensor is defined as: 

=P F S
 (2.2) 

where S is the second Piola–Kirchhoff stress tensor, F is the deformation 

gradient. 

In case of inelastic constitutive material, the second Piola–Kirchhoff stress 

tensor is a function of Green-Lagrange strain tensor (E ) and internal variables 

( iQ ) which depend on the material (rate-dependence or rate-independence) and 

can be found from evolution equation as: 

( ),function i=S S E Q
 

(2.3) 

The kinematic relation between displacements and strain is expressed by: 

( ) ( )1 1

2 2
T= - = - E C I F F I  

whereC is the Right Cauchy-Green tensor and theF is the deformation gradient. 

In this work, a simple Poly-convex Neo-Hookean material is used which it is 

often called Neo-Hookean constitutive model of Simo-Ciarlet. The strain Energy 

Function (( )y ) can be given as: 

( ) ( ) ( ) 2
1 1

1 1 1
; ln 3 2 ln

2 2 2
y

æ ö÷ç= - - + - -÷ç ÷÷çè ø
J I J 1 J I Jl m  

(2.4) 

 where J is the third invariant of deformation gradient F , 1I  is the first 

invariant of Cauchy tensor, l and m  are the Lammé constants. 
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Inserting both equations (2.3) and (2.2) into equation (2.1) leads to a new form 

of balance momentum equation as: 

( )( )( ) + 0 0Div ; i r r=F u E Q b u  (2.5) 

This equation (balance of momentum) should be fulfilled in every point of the 

body at any time. Furthermore, the initial condition and boundary condition 

should be satisfied. Given a domain (B ) enclosed by boundary (¶B ), this 

boundary can be split intoparts Displacements are imposed on u¶B  and 

Traction is imposed on t¶B . 

Thus, the initial boundary value problem is fully stated by:  

- Balance of momentum 

( )( )( ) + 0 0Div ; i r r=F u E Q b u  

(2.6) 

- Initial conditions 

( )
( )

0

0

0

0

t on

t on

= =
= =

u u B

u u B   

- Boundary condition 

         

  

*

* * *
u

t

on

on

= ¶

= = ¶

u u B

t Pn FSn B
 

u t

u t

¶ È ¶ ¶
¶ Ç ¶
B B = B

B B = f
 

  

  

 

 

 

 

Figure 2.1: Boundary condition of initial value problem. 

u

t
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To solve an initial value problem, a numerical tool such as finite element 

method is required. The main idea of finite element method is to descritize the 

entire domain (B ) into finite elements, size ( eW  ). It is possible that the finite 

elements does not fit the entire domain (B ) which will lead to discritization 

errors. 

The finite element method is based on weak solution of the balance of the 

momentum. This means that, the integration of balance of the momentum 

multiplied by test function (h ) over all domains should be zero for any test 

function.  

 

 

Figure 2.2: Discretization of finite element method 

 =0, Div
B

dVr ré ù+ - ⋅ "ê úë ûò P b u h h  (2.7) 

After applying Green’s theorem and considering (    uon= ¶Bh 0 ), a weak form 

of equation of motion is presented in (2.8). The first term internal virtual work 

and last two terms describe respectively the external virtual work and inertia 

contributions. 

           : ( ) 0

tB B B

Grad dV dV dAr- - =ò ò òP b - u th h h  (2.8) 

A finite element describes the structure deformation by the nodes. So, the finite 

element approximation for displacements is given as: 

e
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( ) ( ) ( ) ( ) ( ) ( ), ,h
b b

b

t t t t» = =åu x u x N x u N x u    (2.9) 

where bN  are element shape functions, bu  are time-dependent nodal 

displacements, and the sum is over the number of nodes of an element. The 

previous approximation can be expressed alternatively by Isoparametric form as: 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, ,h
b b

b

b b
b

t t t t

t t

z z z z

z z z

» = =

= =

å
å

u u N u N u

x N x N x

  

 
 (2.10) 

where x  represent nodal coordinate parameters and z  are the parametric 

coordinates for each element. 

 

Figure 2.3: Isoperimetric map for four-node two-dimensional quadrilateral: (a) 

element in z coordinates and (b) element in x coordinates. 

The gradient of the approximated field can be obtained from the derivative of 

the shape functions as  

( ) ( ) ( ),h
b b

b

Grad t Grad t= å u x N x u   (2.11) 

If we gather the nodal values in a vector (u ) and the shape function in the 

matrix (N ), we can express ( ) ( ) ( ),h t t=u x N x u   and ( ) ( )hGrad t= u B x u , 

where B   gathers bGrad N . 

The same shape functions are also used for the test function (h ) as: 

1

11

1

1

2

1x

2x

1

2

(a ) (b )
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( ) ( )b b
b

z z= ⋅åNh h  (2.12) 

The strong form which split into sub-domains (2.1) can also be weakly 

expressed in each element’s domain as: 

           
1

: ( ) 0

e e e

ne

e
Grad dV dV dA

W W W

r
=

¶

æ ö÷ç ÷ç ÷- - =ç ÷ç ÷ç ÷çè ø
ò ò òP b - u th h hA  

(2.13) 

After discretization, this can be expressed as: 

    e

e e e e

T T T T T T T
e e ed d d d

W W W W

W r W r W W
¶

- + -ò ò ò òB P N b N N u N t h h h h

 

(2.14) 

where u  collects the acceleration of this element’s nodes. If we define: 

 

 

  

e

e

e

e e

T
e e

T
e

T T
e e e

d

d

P d d

W

W

W W

r W

W

r W W
¶

=

=

= +

ò

ò

ò ò

M N N 

R B P

N  b N t 

 (2.15) 

and take into account the arbitrary of h , we can express the element’s 

equilibrium as 

( ) ( )( )( ) 
1

0
ne

T
e e e e

e
u u

=
+ - =M R Ph A  

(2.16) 

The global equilibrium can be expressed after the assembling for the entire 

domain as  

  

=

1

1

( ) ( ( )) ( )

e

e

n

e
e
n

e
e

t t t

=

=

+ =

=

M u R u P

M M

R R







 
(2.17) 

whereM is the mass matrix, u  is acceleration, R the internal force vector, P  is 

eternal force vector, e  is the expression of an element. 
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The nonlinear structural mechanics system in equation (2.17) is in the form of a 

dynamic system. For the dynamic case, a damping term should be added whose 

real behavior is still discussed, which is very difficult to find its behavior of the 

system in reality. So, the system (2.17) will be: 

whereC is the damping  matrix, u  is velocity. 

In this work, a simple damping called Rayleigh damping is used. It is assumed 

to be proportional to the mass and stiffness matrices as follows: 

where 1d  is the mass-proportional damping coefficient, 2d  is the stiffness-

proportional damping coefficient, x  is damping ratio, and w  is natural 

frequency. 

The value of the variables ( 1d , 2d ) can be found from solving the system of 

equations for two different values of natural frequency (w ) with fixed value of 

the damping ratio (x ). The damping matrix was computed based on the 

incremental procedure because stiffness changes with the time. 

2.3 Time integration methods: 

The equation (2.17) can be reformulated to be in the first order differential 

equation form by introducing the independent variables as:  

There are two ways to solve this equation numerically which are well known as 

implicit or explicit time integration. The explicit time integration has some 

disadvantages such as limitation of time step and instability due to the fact that 

solution at time ( 1it + ) depends only on the solution at time ( it ).  In other hand, 

the explicit time integration is easy to implement and it is suitable for problems 

( ) ( ) ( )( ) ( )   t t t t+ + =M u C u R u P   (2.18) 

   + d  1 2

1 2

2 2

d

d d w
x

w

=

= +

 C M K
 (2.19) 

( )
for velocity

for acceleration1 v u-

=
é ù= = - -ê úë û

u v, 

u v M P C R , 



  
(2.20) 
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such as impact problem which require very small time steps for handling high 

frequencies. 

The implicit time integration does not has instability problems due to that the 

solution at time ( 1it + ) does not depend only on the solution at time ( it ). 

Furthermore, the equilibrium is checked simultaneously, especially if it is 

combined with Newton method. For that, it can be used with much bigger time 

steps. 

In this work, the implicit time integration method called Newmark method is 

used. It is commonly used in structural dynamic. A brief overview of its 

formulations will be presented in this work based on (Wriggers (2008)). Its 

approximation of the displacement at time ( 1it + ) is: 

and for velocity 

where   &g b are Newmark’s parameters 

Thus, the equations  (2.21) and (2.22) are not dependent only on ( it ). But, it 

depends also on acceleration at ( 1it + ). The acceleration at time ( 1it + ) can be 

found from equilibrium equation(2.17). Finally equations (2.21) and (2.22) can 

be formulated to be that acceleration and velocity are depends only on 

displacements at ( 1it + ) and other quantities at ( it ). 

Common values of Newmark’s parameters are ( 0.5)g =  and ( 0.25)b = . The 

system in equation (2.17) becomes: 

   
2

1 1
( )

(1 2 ) 2
2i i i i i
t

t
D

D b b+ +
é ù= + + - +ë ûu u u u u  

 
(2.21) 

    1 1(1 )i i i itD g g+ +
é ù= + - +ê úë ûu u u u     (2.22) 

  1 1 1 2 3( )i i i i ia a a+ += - - -u u u u u    (2.23) 

  1 4 1 5 6( )i i i i ia a a+ += - + +u u u u u    (2.24) 

         

            

1 2 32

4 5 6

1 1 1 2
, , ,

2( )

, (1 ), (1 ) ,
2

a a a
tt

t
t

b
bD bb D

g g g
a a a D

bD b b

-
= = =

= = - = -
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As all quantities are known at ( it ), the only unknown in ( 1it + ) is ( 1i+u ) which 

is the primary variables of the system. 

2.4 Solution methods of nonlinear structural mechanics systems 

There are different numerical methods which can be used to solve nonlinear 

systems. An extensive overview of these methods was mentioned in (Wriggers 

(2008) & Zienkiewicz et al (2000)). In this context, a short description of the 

used method is presented. 

2.4.1 Newton-Raphson method 

Newton-Raphson is an iterative method to solve nonlinear algebraic system of 

equations such as the system in structural mechanics: 

( ) 0=G u  

 ( ) ( ) ( ) ( ( )) ( ) 0t t t t= + + - =G u M u C u R u P   
(2.26) 

Newton-Raphson is based on Taylor expansion of the residual ( )G u . It neglects 

higher order terms (HOT) and thus yields  

     1( ) ( ) ( ) 0j j j
i i iD HOTD+ = + + =G u G u G u u  (2.27) 

( )DG u  is called Hesse-, Jacobi-, Tangent-  matrix which is a linearization of the 

residual vector ( )G u . The derivative can be done for the Newmark time 

integration (2.25)as:  

( ) ( ) ( ) ( )

( )

    

   
2

( ) ( ) ( )

1
( )

( )

j j
i eff i

j j
eff i T i

j
T i

i

t t
D D t D t

tt

g
D bD b

¶ ¶
= = + + -

¶ ¶

= + +

¶
=

¶
 

u u
G u K u M C R u P

u u

K u M C K u

R
K u

u

 

 (2.28) 

TK  is called  tangent stiffness matrix which is a linearization of internal force 

vector which  depends on the displacement.  

 [ ( ) ]

 [ ( ) ]

 

1 1 2 3

4 1 5 6

1 1(u )

i i i i

i i i i

i i

a a a

a a a
+

+

+ +

- - -

+ - - -
+ =

M u u u u

C u u u u

R P

 

   (2.25) 
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Algorithm 2.1: Standard Newton-Raphson with Newmark integration method 
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D
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Input u

repeat

u K u G u

u u u

u u u

u u u

until G u tol

 

 

  

 

In fact, computing of the tangent stiffness matrix is computational expensive, 

especially for the big systems. Finally, the Newtown-Raphson method solves the 

problem iteratively as shown in algorithm (2.1). The main advantage of the 

Newton-Raphson method is that, its convergence is quadratic. This will lead to 

reach the solution with small number of iterations. The illustration of Newton-

Raphson can be seen in Figure 2.4.  

 
Figure 2.4: Standard Newton-Raphson (NR) method 

2.4.2 Quasi-Newton method 

The main idea of Quasi-Newton method is that using a secant slope formulation 

instead of the derivative (tangent stiffness matrix). One of the popular method 

Displacement 

u0 u1 u2 u3

∆u1 ∆u2 ∆u3

Load level 
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of Quasi-Newton method is Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

((Matthies & Strang(1979)), (Yuan G. & Yao S.(2011) ). The BFGS computes a 

second derivative as: 

 

 

  

   
 

  

1

1

-1

-1

( ) ( )

( )

( ) ( )

i i

i i

k eff i
TT

k k
eff i eff i T T

k

D

D D

D

D
D

D D

D DD D
D D D D

-

-

= -
= -

=

= + -

u u u

G G u G u

G K u u

G GG G
K u K u

G u G u  

(2.29) 

The main advantage of BFGS is that avoiding a direct computation of global 

stiffness matrix which is computationally expensive. But, it gives a superliner 

convergence compared with standard Newton method which gives a quadratic 

convergence. 

2.4.3 Arc-Length method 

The arc-length control method is a path following method to solve some 

problem of stability in nonlinear structural mechanics such as critical points, 

bifurcation...etc for static cases. This technique is required when there is no 

unique solution of the equilibrium solution path for each load parameter. The 

following of the path is very important for different problems in structural 

mechanics, especially in the field of thin structure and material instability. The 

path follow is possible even when singular points are present (determination of 

stiffness matrix equal zero) (Wriggers (2008)). 

It is a control of an equilibrium equation in form of the residualG  by 

introducing the load parameter ( )l  as: 

( ) ( )( ) ( ) int, t tl l= - =G u F u P 0  (2.30) 

Then, the control can be done by an additional constraint ( ( , ) 0l =f u ) which 

leads to found a load parameter ( )l as: 

( ),l =f u 0  (2.31) 

where intF is the internal force vector, ( )tP is external force vector, and l  is 

load level parameter. 
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A linearization is required of this system of equations to be solved by the 

Newton-Raphson method. The linearization is done with respect to the main 

variables (displacement ( )u  and load parameter (l )) as: 

   

   

              

              

, 1 , 1

, 1 , 1

,

( , ) . . 0

( , ) . . 0

Tk
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l D Dl
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l D Dl
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+ +

¶ ¶
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¶ ¶
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fq
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G u u

u

f f
f u
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 

 (2.32) 

The system of equations (2.33) is non-symmetric. So, the partition technique 

will be used for solving such kind of system. The system of equation (2.33) can 

not be singular in the limit point (determination of tangent matrix equal zero). 

The partition will lead to two equations of increments (displacement increment 

1kD +u  and load increment 1kDl + ). 

  =1

1,
kT k k

T
k kk k

D
Dll

+

+

é ù é ù é ù-ê ú ê ú ê ú-ê ú ê ú ê úê ú ê úê ú ë û ë ûë û

K P u G

fq f
 

(2.33) 

Those increments are determined as: 
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(2.34) 

In the literature, there are different options of choosing the constraint function 

( f ). Riks (1972) suggested that a constraint function is linear. But, Crisfield 

(1981) suggested being a spherical function. A more detail description of Arc-

length method is presented by (Wriggers(2008)). 
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Chapter 3 Reduced Order Model based on Projection 

 

3.1 Introduction  

Simulation of real nonlinear problems in mechanics requires a solution of large 

systems with up to millions of unknowns. Such a high fidelity system requires 

powerful computers with high storage capabilities. In several cases, the 

repetition of computation with slightly changing inputs is required in different 

fields such as control design, optimization, and simulation of surgery 

process…etc. 

Thus, the simulation time becomes an important issue in order to improve the 

assessment and design of products. Model order reduction for both linear and 

nonlinear system has received a significant attention over the past decades. Its 

goal is to reduce the number of equations to be solved and thereby decrease the 

time to be spent on solving the system. The solution s of high fidelity models of 

order N lies in low dimensional subspaces of order k <<N. 

3.2 Reduced order model 

In general, the description of any system starts from a partial differential 

equation (PDE). The spatial discretization of PDE will lead to an ordinary 

differential equation whose dimension is governed by the spatial mesh size. The 

dimension can range from hundreds to millions. 

The Model Order Reduction is a reduction of the dimension of an ordinary 

differential equation. An overview of the system includes model order reduction 

in Figure 3.1. A typical system of the ordinary differential equation systems in 

structural dynamic is: 

( ) ( ) ( )( ) ( )   t t t t+ + =M u C u R u P   (3.1) 
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Figure 3.1: Projection based Model reduction (Meyer (2006)). 

3.3 Dimension reduction 

The main idea of reduced order model is to project the full system space of the 

ODEs onto a subspace of small dimension. In this way, the coordinates of the 

full spaced used for approximate the displacements u  can be obtained from 

smaller set of generalized coordinates q by projection matrixF as: 

where u  is a displacement vector with size 1N ´ , F  is a subspace matrix with 

size N m´ , q  is a vector of generalized coordinates with size 1m ´ . N  is the 

dimension of the full space, and m  is the dimension of the reduced space. 

Using projection(3.2), the structural dynamic system in equation (3.1) becomes: 

A pre-multiplication with Ty (sizeN m´ ) yields: 

( ) ( ) t t=u qF  (3.2) 

( ) ( ) ( )( ) ( )    t t t t+ + = PM q C   q R  qF F F   (3.3) 

( ) ( ) ( )( ) ( )        T T T Tt t t t+ + =    M q C q R q Py F y F y F y   

( ) ( ) ( )( )   ( )r r r rt t t t+ + =    M q C q R q PF   

(3.4) 

Model Reduction

1. Choosing   
the basis 

2.Projection on 
(flat) subspace 

3. Deformaing 
the subspace 

PDE 
Small system 

of  ODEs
Approximated 

solution 

Spatial Discretization Time integration 

Large system 

of ODEs
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 y : the projection matrix of the trial space 

 F : the projection matrix of the test space 

The previous projection is called Galerkin projection when =y F , otherwise 

called Petrov-Galerkin projections ( ¹y F ). A Galerkin projection is suitable 

for the symmetric algebraic system. An algorithm (3.1) illustrates the use of a 

reduced order system for solving nonlinear structural dynamic with implicit 

time integration method (Newmark). 

The projection approach is successfully applied in different real problems such 

as control (Bergmann et al. (2005)), structural dynamics (Amsallem et al. 

(2009) & Amabili et al.(2003)), aerodynamics (Epureanu(2003)),….etc. 

Algorithm 3.1: Reduced order model  
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3.4 Computational complexity of dimensionality reduction 

Based on (Krysl et al. (2001) and Spiess (2006)), the computational cost of 

finite element system can be seen in the Table 3.1, where N  number of 

unknowns (DOF), and b (bandwidth of the system). It is clear that the most 

expensive operations are tangent stiffness assembly and the solution for the 

displacement increment. The form of the function s(N b2) depends on the solver 

used even with sparse tangent stiffness matrix. For a reduced order model, the 

computation is drastically decreased and it depends on the number of basis (m) 

of the subspace (F ). 

Table 3.1 computational cost 

Operation Full system Reduced system 

Predictor O(N) O(m) 

Compute residual O(N) O(m) 

Compute effective Tangent  O(Nb) O(m2) 

Solve for Dis. increment O[s(Nb2)] O(m3) 

Configuration update O(N) O(m) 

3.5 An error estimation of dimensionality reduction 

 The projection of the system onto a flat subspace (F ) introduces an error (e) 

between an original system ( )tu  and approximate system ( )tu as: 

 
Figure 3.2: An error estimation of dimensionality reduction. 

( ) ( ) ( )  t t t= -e u u  (3.5) 

u(t)

u(t) 



e

e
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This error can be split into two components. The first component (  ^e )is 

orthogonal to subspace (F ) and it’s caused by the projection onto the low-

dimension subspace. The second one (e) is caused by integration in the 

subspace (F ) ((Meyer(2006)). This is shown in Figure 3.2. 

In the literature, there are some works on the error estimation such as 

calculating the error bounds for the Krylov subspace (Cabos (1994)), a selection 

of a Lanczos basis based on error estimation (Joo et al. (1989)).  The quality of 

a subspace is the main issue for the quality of the reduced order model. 

Actually, the goal of all works related to reduce order model based on projection 

is to find a projection that minimizes the error between two spaces (full space 

and projection subspace). Thus, a projection of a system to optimal subspace 

(F ) is needed (Spiess (2006)). 

3.6 Subspace basis 

The best choice for a subspace basis from a numerical point of view is that the 

basis should be orthogonal and leads to a well-conditioned system of equation 

after projection (Eriksson et al. (1996)). Based on (Noor (1994)), the basis 

should also satisfy the following criteria: 

 They should by linearly independent. 

 Easy to generate with optimal number of basis. 

 Gives high accuracy and approximation of the system of interest. 

More practical requirements were introduced by (Spiess (2006)): 

 The basis should ensure an orthogonality to get a unique projection 

(  T = IF F ). 

 The basis should satisfy the essential boundary conditions (basis vector 

components equal to zero at the degrees of freedoms where displacements 

are prescribed).  This can be done in practice by eliminating those 

components before computing the basis. 

( )t ^= +e e e (3.6) 
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3.7 Reduced order model techniques  

There are different techniques to reduce the model based on projection. In this 

work, the reduction techniques are divided into two groups. The first group is 

called dimensional reduction techniques such as modal basis reduction (Nickell 

(1976)), load-dependent Ritz method (Krysl(2001) & (Wilson et al. (1982)), 

Proper orthogonal decomposition POD (Sirovich (1987), Lenaerts et al.(2001), 

Kerschen et al. (2005)).  The second group is called Spatial-complexity 

reduction techniques such as the missing point estimation (Astridet al.(2008)), 

(Vendl & Faβbender (2010, 2011), a priori hyper-reduction (Ryckelynck (2005), 

Kerfriden et al. (2011)), discrete empirical interpolation (Chaturantabut & 

Sorensen (2010)). 

3.7.1 Dimensional reduction techniques 

These techniques are responsible for calculating the basis of the projection 

subspace. Once the projection matrix F  is calculated, it is used in a Galerkin 

fashion to solve the incremental linear system in a reduced dimension as: 

( ) ( )( )   -1
1 [ ] -T j T j

i eff i i+ =u K u G ud F F F  (3.7) 

Then, the solution of the full system will be: 

1 1i i i+ += +u u uFd  (3.8) 

3.7.1.1 Modal method 

This method is also known as the modal superposition or modal analysis. It uses 

selected eigenmodes of the system as the basis of the subspace matrix (F ). The 

main idea behind that is a few number of eigenmodes can give a good 

approximation of the system. So, the eigenvalue problem is solved at the 

beginning of each time step as equation(3.7). 

The eigen vectors iv  corresponding to the smallest eigenvalues (more energy) 

are taken to form the basis of the projection matrix as in (3.10). 

( ( ) )T l- =K u I V 0  (3.9) 

1 2[ , , ..... ]m= v v vF  (3.10) 
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The extension of this approach was done by (Slaats et al.1995) who used a 

combination of modes with second order term. The disadvantage of this method 

is that a solution of eigenvalue problem is computationally expensive especially 

at each time step because the tangent matrix changes for nonlinear system. In 

this case, two problems should be solved simultaneously (equilibrium of the 

motion equation and eigenvalue problem).  

3.7.1.2 Load dependent RITZ method 

The Load Dependent RITZ method is introduced by (Wilson et al. (1982)). It is 

a method to calculate the subspace basis based on Ritz principle. There are 

many approaches to find the starting vector (first basis) while the rest of the 

basis can be calculated by ensuring an orthogonality condition (Gram-Schmidt). 

The simplest starting vector is   a solution (vector of displacement (u )) of first 

time step considered as a first basis after normalized as equation(3.11). 

Then, solutions of sequent steps are added to the projection matrix after being 

made orthogonal to the current base vectors by Gram-Schmidt. This means that 

all base vectors should be orthogonal as equation(3.12). The advantage of this 

method is to avoid the solution of the eigenvalue problem at each time step 

such as in the modal basis method. 

( ) 1 2 3.....= ^ ^u u uF  (3.12) 

3.7.1.3 Proper Orthogonal Decomposition (POD) 

It is one of the most widely used techniques to construct a reduced subspace, 

also called Karhunen-Loéve decomposition. It uses full problem solutions 

(snapshots) to analyze the redundancy level among the degrees of freedom, 

through singular value decomposition (SVD). 

The advantage of this method is that it does not require a theory which 

describes the problem. This means that it does not require adaptation of 

algorithm for different sort of application. The disadvantage is that solving of a 

full problem must be done at least for a considerable part of the total steps (off-

1
1

1

=
u

u
u

 (3.11) 
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line). Then, the on-line part is reduced by using the parameters (basis) which 

are previously acquired. POD is well known in different fields such as weather 

forecast (Shao et al. (2009)), biology (Price et al. (2003)), fluid dynamic 

((Kunisch & Volkwein (2002), (Du et al. (2013)), and bio-mechanics (Reese & 

Radermacher et al. (2012)). 

To find a subspace based on POD, the set of m  snapshots obtained from the 

solution of the system at different instants (displacement vectors) is collected. 

( )1 2, , ..... m=u u u u  (3.13) 

 POD is an optimization tool which is used to find a set of orthogonal basis 

vectors{ }
1

k

i i
j

=
 with k m£ such that: 

{ } ( )
1

2

0 20

argmin .N
i i

m
N k

j j i ii
j

j
j j

=
=

=

-å åu u  (3.14) 

The solution of this optimization problem is given by left singular vectors of 

snapshot matrix ( )1 2, ,..... m=u u u u . The left singular vectors are found from 

singular value decomposition (SVD) as T=u FSY  whereS is diagonal matrix 

called singular value ({ }1, .... rs s  { }1 .... rs s³ ³ ), other matrices whose 

columns are orthogonal ( & TF Y ) are (left and right singular vectors 

sequentially). The projection subspace matrix is first (k ) vectors { }
1

k

i i
j

=
 of left 

singular matrixF which satisfy equation (3.7) (Vendl & Faßbender (2010), 

Carlberg & Farhat (2009, 2011)). The value of (P ) depends on user (accuracy 

requirement). 

1 1
( / ), 1

k r
POD i i PODi i
e s s e R

= =
= - £å å  (3.15) 

A comparison between previous methods (modal basis reduction, load-dependent 

Ritz method, and Proper orthogonal decomposition) was done by (Spiess(2006), 

Radermacher & Reese (2013)). From this comparison, the author decided to 

choose POD technique to construct the projection subspace. 
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3.7.2 Spatial-complexity reduction techniques 

Recently, several approaches have been proposed to deal with nonlinearities 

(most of them are empirical approaches) such as the empirical interpolation 

(Grepl et al. (2007), Gappy-POD (Vendl & Faßbender (2010), hyper-reduction 

techniques which evaluate a nonlinear system and their Jacobian at few 

locations (points) (Astrid et al. (2008), Vendl & Faßbender (2011), Ryckelynck 

(2005)). 

But, most of these techniques used a Petrov-Galerkin projection which is 

convenient for this kind of approximation (Carlberg et al. (2011)). In this 

projection, left and right subspaces are not the same. Thus, equation (3.7) 

becomes (3.16). 

( ) ( )( )   -1
1 [ ] -T j T j

i eff i i+ =u K u G ud y F y  (3.16) 

where; 

 T T= Dy F  (3.17) 

In this context, three methods for spatial complexity reduction will be 

mentioned (Discrete Empirical Interpolation, Hyper-Reduction, and Missing 

Point Estimation). The matrix (D ) will be found based on each technique with 

the emphases on Missing Point Estimation method. 

3.7.2.1 Discrete Empirical Interpolation Method (DEIM)  

It is a method to approximate nonlinear forces by a projection on subspace 

which has small dimension m<n. The subspace is spanned by bases 

1 2, ,..... m
é ù= ë ûY y y y which are obtained through POD by collecting snapshots for 

nonlinear forces (R ). This leads to: 

c»R Y  (3.18) 

 The parameter (c ) is a vector of unknown. To solve an over-determined system 

of equations(3.18), a pre-multiplying with a transpose of a Boolean matrix 

1
,......

mÃ Ã
é ù= ê úë ûP e e such as: 
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T T c=P R P Y  (3.19) 

This leads to: 

1( )T Tc -= P Y P R  (3.20) 

Then, the approximation of the force becomes: 

 1( )T T-»R Y P Y P R  (3.21) 

The advantage of multiplication with transpose of the Boolean matrix is to 

calculate only the specific entries which are selected. The selection in DEIM is 

done depending on the basis of subspace 1 2, ,..... m
é ù= ë ûY y y y  and Interpolation 

indices{ }1,..... mÃ Ã . The details of this method are presented in (Chaturantabut 

& Sorensen (2010)). Then, the (D ) matrix in equation (3.17) becomes: 

1( )T T-=D Y P Y P  (3.22) 

3.7.2.2 A priori hyper-reduction  

It is based on the selection of some equations (points) as control equations. 

These equations are selected based on a Boolean matrix 
1
,......

mÃ Ã
é ù= ê úë ûP e e  

which satisfies a balance condition in equation(3.23). 

 
Figure 3.3: Illustration of the full (W ) and reduced integration domain ( ZW ). 

Z



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int
T T T T

ext=PP f PP fF F  (3.23) 

Thus, only few elements are connected to control nodes which are the nodes in 

the middle of the reduced integration domain ( ZW  RID(Figure 3.3)). The details 

of this method are presented in (Ryckelynck (2005) & Kerfriden et al.(2011)). 

Finally, a (D ) matrix in equation (3.17) is: 

T=D PP  (3.24) 

3.7.2.3 Missing point estimation (MPE)  

This method is based on the Gappy-POD, which was introduced by (Everson & 

Sirovich (1995)). Gappy-POD or gappy-data is a method to approximate the 

data that lie in the gaps. If there is a vector (g) including some missing 

components, and also on the other hand the POD’s subspace ( n kRF ´Î ) of this 

data is available. Then the approximation of the missing vector can be done by 

introducing a boolean matrix 1( ...... ) n n
j jnP e e R ´= Î 

   whose columns contain 

the known components (n) and its rows presents all components (n ). 
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g  

Thus, the missing vector and its missing subspace are respectively: 

T
org=g P g  (3.25) 

T n kR ´= ÎPF F   (3.26) 

The approximation of ( orgg ) is (g ) 
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a=g F  (3.27) 

Furthermore, the approximation of (g ) is ( maskg ). 

mask a=g F  (3.28) 

This problem will be solved by a least-square optimization to find (a ): 

2
min mask n

-g g  

2
min

k na R
a

Î
- gF   

(3.29) 

The solution of the least square optimization (linear regression problem) is given 

by a linear system: 

a =K R  (3.30) 

where  

,T T= =K R gF F F    

Finally, the approximation (g ) can be found from equation(3.27). 

Based on Gappy-Data, different criteria were introduced to achieve hyper-

reduction such as the ones presented in (Vendl & Faßbender (2010), Astrid et 

al. (2008)) and others. Some of the criteria are based on experience of the 

system (empirical). In this work, the author selects the criterion which has fully 

mathematical meaning with modification to become more efficient. This 

criterion based on the orthogonality of a subspace is given as: 

T » IF F   (3.31) 

where; 

T» PF F  (3.32) 

To ensure the criterion(3.31), the condition number of ( )T ´F F   should be close 

to one (tolerance) or fall into small tolerance. 
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( )T TCondition number tol£PPF F  (3.33) 

The author suggests that TP P  is unit matrix when there are no missing points 

(components). Then, a sensitivity analysis is done by calculating the condition 

number for each missing point. This can be done by forcing a diagonal element 

in a unit matrix ( TP P ) which belong to this point to be zero. Finally, all 

points with low impact are eliminated. A (D ) matrix in equation (3.17) is: 

T=D PP  (3.34) 
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Chapter 4 Proposed Approaches of Reduced Order Model 

 

4.1 Introduction 

In this chapter, the different proposed approaches of reduced order model are 

presented with numerical results. It is organized to be three parts. First, simple 

numerical examples are introduced to address the necessity of an adaptive 

reduced order model. Second, the proposed adaptive strategy is introduced and 

later combined with two approaches of construct reduced basis (POD approach 

and PSS approach). Third, the adaptive hyper-reduction approach is introduced 

to increase both performance and efficiency based on POD. The later approach 

uses an adaptivity based on Dynamic-POD to avoid some problems of 

instability. 

4.2 Reduced order model and the necessity of an adaptivity 

Reduced order modeling of the nonlinear structural mechanics based on 

projection is implemented on a simple system such as Truss (restriction in the z 

direction) in Figure 4.1. The nonlinearity comes from geometrical behavior.  
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The properties of Truss system : 

E(Young’s modulus)=2e11Pa 

A(Cross section)=31.3e-4 m2  

ρ=(Density)=7850 kg/m3  

L (Length of horizontal members)=7.5m,  

P (Load) = -14e5N  

ζ (Damping ratio) = 0.01,  

∆t=0.0001  

T (Simulation time) =0.1s 

β (Newmark’s parameter)=0.25  

γ(Newmark’s parameter)=0.5 

Figure 4.1: Truss for dynamic analysis. 
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The first five modes obtained from POD analysis are presented in Table 4.1 

along with the ( PODε ) which indicates a significance of each mode based on the 

proper orthogonal decomposition. By using five snapshots only, one response 

frequency can be capture depending on the time step size of Newark scheme. 

Table 4.1: First five modes of Truss 

PODε  (%) PODεå  (%) Mode (POD-Basis) 

96.6382 96.6382 

 

2.4499 99.0881 

 

0.3543 99.4424 

 

0.2042 99.6466 

 

0.1632 99.8098 

 

In fact, the subspace constructed by the POD contains the most significant 

modes. Nevertheless, no reduced order base can approximate a system without 

some error which have been investigated in the truss system. Figure 4.2 shows 

that the error decreases with the number of POD-basis, but on other hand, 

adding new vectors to the base leads to increase the computational time. The 

truss system is considered as an ideal system for reduced order model because 

the mode does not change (the movement is in one direction).  
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Figure 4.2: Relations between POD basis and a relative error. 
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The properties of T-Beam system : 

E(Young’s modulus)=0.5e9Pa 

v(Poisson’s ratio)=0.45 

ρ(Density)=1600 kg/m3  

ζ (Damping ratio) = 0.01,  

∆t=0.005s  

T (Simulation time) =2s 

β (Newmark parameter)=0.25  

γ(Newmark parameter)=0.5 

q1 (Load) = 5e6N  

q2 (Load) = 5e6N  

d(Fixed support)=restriction for all directions 

Figure 4.3: T-Beam model.  

 

Figure 4.4: load intensity vs. time for T-Beam model 
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In reality, more complex structures have a different behavior as POD modes are 

configuration dependent and thus change throughout the simulation. An 

example of such structures can be seen in Figure 4.3, which depicts a T-beam of 

nonlinear Neo-Hookean hyper-elastic material. Furthermore, the load intensity 

with the load can be found in Figure 4.4 

Table 4.2: First ten modes of T-Beam 

PODε  

(%) 

PODεå  

(%) 

Mode 

(POD-Basis) 
PODε  

(%) 

PODεå  

(%) 

Mode 

(POD-Basis) 

60.01 60.01 

 

2.48 94.34 

 

14.04 74.05 

 

1.85 96.19 

 

7.80 81.85 

 

1.16 97.35 

 

5.90 87.75 

 

0.58 97.93 

 

4.11 91.86 

 

0.30 98.23 

 

 The POD modes can be found in Table 4.2. The computing of POD-modes for 

this structure using snapshots over all time domain leads to an average 

subspace. While, proper orthogonal decomposition is based on least square 

optimization. This leads to that a subspace is not able to reflect the 

approximation of the system at different configurations. For this reason, an 

adaptive strategy is introduced in the next section. 
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4.3 An adaptive reduced order model 

4.3.1 An adaptive strategy  

An adaptive strategy is introduced to perform corrections on the reduced space 

during the process. The adaptivity is independent from the method of 

constructing the subspace (F ).  The overview of the system is illustrated in 

Figure 4.5. The full system is solved for a certain number of time steps (5 steps) 

then the projection subspace is constructed based on the snapshots (point A). 

Second, the adaptive reduced order model is performed for the rest of 

simulation. In fact, the adaptivity leads to increase subspace dimension. For 

that reason, a new subspace should be constructed when the subspace dimension 

reaches a certain size (
stableΦn ) as in the point (B). 

 

Figure 4.5: An overview of the system. 

 A: the first subspace ( incrementΦ ) is computed based on all snapshots of 

processing time which are converged solutions of full system. 

 (A-B or B-B): the adaptivity is done when it is necessary (see notice). 

 B: A subspace ( incrementΦ ) reaches a maximum size (
stableΦn ). This is due 

to an adaptivity which leads to increase the subspace. For that, a new 

subspace should be computed based on (POD or Proper snapshots 

selection (PSS)) approach.  

 

Notice: In general, there are two positions to check the requirement for 

adaptivity. The first one is inside Newton iteration (section 4.3.1.1) and the 

second one is at the end of each time step (section (4.3.1.2). 

Full  System 

A B B B 

An adaptive (ROM) System 

Start 

Time 
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4.3.1.1  An iterative adaptivity-Error analysis 

The adaptivity inside iteration is called iterative adaptivity-Error analysis. 

It is necessary when the error between full and reduced system is high. This 

error can be checked from the convergence criteria ((4.1), (4.2), and (4.3)) and 

other criteria ((4.4), (4.5)) as:  

                               0
0

( ) , ( ) nerror error tol where= £ Î
G

G G G
G

  (4.1) 

     

              
0

0 0 0

( ) , ( )R
R R R

R
nT

R R

error error tol

where and G F

= £

= Î

G
G G

G

G GF 
 (4.2) 

( ) ( )                            0
0

, , n
uerror error tol where

D
D= £ Î

u
u u u u

u
  (4.3) 

where G  is the residual of the full space, RG is the residual of the reduced 

space, u  is a displacement. 

( ) ( )
( ) ( )          / , / 0 1R

R R

error
ratio ratio k and k

error F F= £ < £
G

G G G G
G

 (4.4) 

( ) ( )
( ) ( )          / , / 0 1old old r r

old

error
ratio ratio k and k

error
= £ < £

G
G G G G

G
 (4.5) 

The adaptivity is necessary, if one of the previous criteria is not satisfing after 

certain number of iterations (2 iterations). Then, the adaptivity will be done by 

adding an error between a full and a reduced space to a projection subspace 

(F ) by using Gram-Schmidt. The main idea is to split the solution of the full 

space into two complementary subspaces as: 

        , n
K KwhereF F= + Îu u u u u   (4.6) 

where u (solution of a full space), Fu (solution of reduced space), and Ku  

(error) 

1 1( ( ))K eff eff R RF
- -= - = -u u u K G K GF   (4.7) 

 Then, this error should be added to a subspace as in Figure 4.6. 
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4.3.1.2  An incremental adaptivity 

The adaptivity at the end of the time step called an incremental adaptivity. It is 

done based on the information which is obtained from iterations of previous 

step. This information helps to assess and improve incrementΦ  for the next time 

step. The incremental adaptivity is done based on three cases: 

1- If the number of corrections inside iteration iterationn   is a greater than a 

certain number ( nk = 2) then: 

 The incrementΦ  is increased by adding one basis. This basis will be 

the orthogonal of the converged solution (U ^ ). 

Time step 1, 2…… 

       incrementΦ= Φé ùë û   
 Iterations 1,2,3,..............  

   If criteria (4.1, 4.2, 4.3, 4.4,and 4.5) are not satisfied  then:   

- compute ku  & make it orthogonal  k
^u with all bases in Ф and 

added to Ф as 

(1) (n) (1) ( )

(1) (n) (1) ( )

(1) (n) (1) ( )

(1) (n) (1) ( )

increment increment k k n

increment increment k k n

increment increment k k n

increment increment k k n

F F F F

F F F F

F F F F

F F F F

^ ^

^ ^

^ ^

^ ^

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ë û

 

 

 

   
End  

       

        - Reject all kF
^  columns from Ф 

        - niteration = Number of kF
^  columns 

        - U= a converged solution 

incrementΦ Φé ù= ë û  check the necessity of an incremental adaptivity (section 4.3.1.2) 

End 

Figure 4.6: Illustration of an adaptivity inside the iteration’s loop. 

2-  If the number of corrections inside iteration iterationn   is equal or  less than a 

certain number ( nk = 2) then: 

 The incrementΦ  is enriched without adding any basis   vector 

(replace the last vector with the orthogonal of the converged 

solution (U ^ )). 
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3 - If the step 2 was repeated sequentially over a certain number of steps 

( stablen =25 or if the dimension of incrementΦ  reaches a certain size maxn  = 

50).Then: 

 The incrementΦ  is reconstructed. 

 

4.3.2 An adaptive reduced order model based on POD & BFGS 

method 

The previous adaptive strategy was combined with BFGS method to avoid 

computing the tangent stiffness matrix several times. Some extra criteria were 

added to avoid a precision problem with the BFGS formula when the 

displacement or residual vectors reach small values (close to zero) in the 

denominator. This would lead to high component values of the new secant 

matrix. The BFGS formula in reduced space will be: 

( ) ( )
( )

( ) ( )

1

1

1

1

i i

i i

k i

k k

i

k

R R

R R R R R

eff R eff R R
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eff R eff RR R

eff R i eff R R T T
R eff R

D

D D

D

d

D

D D d

D DD D
D D

D d D d

-

-

-

-

= -

= -

=

= + -

u u u

G G u G u

K K u u

K KG G
K u K u

G u K u

 (4.8) 

To ensure a correct update of the tangent matrix, the following conditions are 

applied: 

( ) ( )            and            R BFGS BFGStol tol£ £G uerror error  (4.9) 

                            and           
k

T T
R eff R

D
Dd D dDG u K u     (4.10) 

 

Conditions (4.9) represent the relative error in the reduced residual vector and 

the displacement vector. These conditions are more stable than a direct 

denominator analysis. Furthermore they are non dimensional conditions, which 

avoid a tolerance change due to problem dimension. Conditions (4.10) are used 

to keep the new secant matrix positive definite. 



Chapter 4  - Proposed Approaches of Reduced Order Model 39 

  

The properties of column system : 

E(Young’s modulus)=0.5e9Pa 

v(Poisson’s ratio)=0.45 

ρ(Density)=1600 kg/m3  

ζ (Damping ratio) = 0.01,  

∆t=0.005s  

T (Simulation time) =5s 

β (Newmark parameter)=0.25  

γ(Newmark parameter)=0.5 

q1 (Load) = 3.63e6N (X-direction) 

q2 (Load) = 3.63e6N (Y-direction)  

d(Fixed support)=restriction for all 

directions 

Figure 4.7: Column model 

 

To study the convergence and accuracy of this approach for reducing the 

computational effort and time of the system, two models are simulated. The 

first model is a column of Neo-Hookean material as seen in Figure 4.7 which is 

discretized by a mesh with 12302 nodes and 36906 degrees of freedom. The 

different loads intensitis with the time are presented in Figure 4.8. 

 

q2 q1 

d 

5m 

0.5m 0.5m 
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Figure 4.8: load intensity vs. time for column model 

(a) 

 

(b) 

 
Figure 4.9: Column model (a): Displacements (m) at t=0.0825s. (b): 

Displacements (m) at t=1.0950s. 

The second one is a plate of Neo-Hookean material as seen in Figure 4.10 which 

is discretized by a mesh with 25536 nodes and 76608 degrees of freedom. The 

different loads intensity with the time is presented in Figure 4.11. The 

comparison is made for each model among solving the full system and reduced 

order system.  
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The properties of plate system : 

E(Young’s modulus)=0.5e9Pa 

v(Poisson’s ratio)=0.45 

ρ(Density)=1600 kg/m3  

ζ (Damping ratio) = 0.01,  

∆t=0.005s  

T (Simulation time) =5s 

β(Newmark parameter)=0.25  

γ(Newmark parameter)=0.5 

 

q11 (Load) = -9.8e6N (X-direction & Z-direction) 

q12 (Load) =  9.8e6N (Y-direction)  

q12 (Load) =  -9.8e6N (Z-direction)  

q21 (Load) =  -9.0e6N (Y-direction & Z-direction)  

q22 (Load) =  9.0e6N (Y-direction)  

q22 (Load) =  -9.0e6N (Z-direction)  

d1(Fixed support)=restriction for directions (Y&Z) 

d2(Fixed support)=restriction for all directions(X&Z) 

d3(Fixed support)=restriction for all direction(Z) 

d4(Fixed support)=restriction for all direction(Z) 

Figure 4.10: Plate model 
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Figure 4.11: load intensity vs. time for Plate model 

(a) 

 

 

(b) 

 
Figure 4.12: Plate model (a): Displacements (m) at t=0.8550s. (b): 

Displacements (m) at t=1.4250s. 

The reduced system is obtained by Galerkin projection with and without 

reduced BFGS. Furthermore, the convergence of all systems is shown below. 
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Tables 4.3 and 4.4 present the processing time, iterations and corrections related 

to different residual vector tolerances, the POD times and reduced BFGS 

updates. 

 

 

Table 4.3.a: An overview of the column model results (POD) 

 Full Reduced Reduced Reduced 

Tolerance - tol 1.00E-06 1.00E-06 1.00E-04 1.00E-02 

No. Iterations 7412 18231 14976 14334 

No. Corrections - 3816 2602 2316 

No. POD - 5 3 1 

Total Time(s) 30730.84 17717.83 11874.87 10899.09 

Time per step (s) 15.36 8.85 5.93 5.446165 

Total Time (%) 100.00 57.65 38.64 35.47 

 

 

Table 4.3.b: An overview of the column model results (BFGS) 

 Full Reduced 

BFGS 

Reduced 

BFGS 

Reduced 

BFGS 

Tolerance - tol 1.00E-06 1.00E-06 1.00E-04 1.00E-02 

No. Iterations 7412 17784 14724 14534 

No. Corrections - 3816 2601 2298 

No. POD - 5 3 0 

No. BFGS - 7996 8017 8089 

Total Time(s) 30730.84 17653.48 11865.32 10853.64 

Time per step (s) 15.36 8.823316 5.929536 5.423401 

Total Time (%) 100.00 57.45 38.61 35.32 
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Table 4.4a: An overview of the Plate model results (POD) 

 Full Reduced Reduced Reduced 

Tolerance - tol 1.00E-06 1.00E-06 1.00E-04 1.00E-02 

No. Iterations 6627 16502 16158 13710 

No. Corrections - 4052 3929 2609 

No. POD - 4 1 0 

Total Time(s) 99051.08 66350.37 65442.26 43719.16 

Time per step (s) 49.52 33.16 32.71 21.85 

Total Time (%) 100 66.99 66.07 44.14 

 

Table 4.4.b.: An overview of the Plate model results (BFGS) 

 Full Reduced 

BFGS 

Reduced 

BFGS 

Reduced 

BFGS 

Tolerance - tol 1.00E-06 1.00E-06 1.00E-04 1.00E-02 

No. Iterations 6627 16416 16028 13569 

No. Corrections - 4052 3929 2642 

No. POD - 4 1 0 

No. BFGS - 6540 6917 6598 

Total Time(s) 99051.08 65898.83 65157.22 43728.29 

Time per step (s) 49.52 33.09 32.57 21.85 

Total Time (%) 100 66.53 65.78 44.15 

 

In both models (column and plate), the processing time of each time step in the 

case of the full system is greater than the reduced system as seen in Figure 4.13. 

The dimension of the subspace changes during the computational process as 

seen in Figure 4.14. This is due to the change of implicit modes in snapshots. In 

the same way, the number of corrections related to change the configuration is 

given in Figure 4.15. Therefore, the correction increases when the configuration 

changes significantly in a short period due to the large displacements. 
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(b) 

Figure 4.13: Time per step vs. number of time step (a): column model. (b): plate 

model. 
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Figure 4.14: Dimension of subspace vs. number of time step 

(a): column model. (b): plate model. 

The difference of the convergence between the full and the reduced system can 

be noticed in Figure 4.16, in which the full system has quadratic convergence in 

the most of time (except when loads are applied). The reduced system has 

super-linear convergence due to projection.  
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Figure 4.15: Number of corrections vs. number of time step 

(a): column model. (b): plate model. 

The reduced BFGS only has some meaningful effect in high displacements, when 

the nonlinearity is extremely strong tending to linear convergence. In general 

appearance, the reduced system based on projection leads to increase the 

number of iterations but on the other hand it is still very fast compared with 

the full system (Figure 4.13 and Figure 4.16). 
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Figure 4.16: Iteration vs. number of time step 

(a): column model. (b): plate model. 

To measure the error, this work defines the relative error of the displacements 

for each time step according to the equation(4.11): 

               Re
Re ,duced Full n

duced Full
Full

Relative error where
-

= Î
u u

u u
u

  (4.11) 
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where Reducedu  represents the displacement vector obtained from the reduced 

model and Fullu  the displacement vector obtained from the full model. 
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Figure 4.17: Relative error vs. number of time step 

(a): column model. (b): plate model. 

The relative error of displacement increases proportionally with increasing the 

tolerance of corrections for both reduction procedures (POD with or without 

BFGS) as seen in Figure 4.17a and Figure 4.18a.  
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Figure 4.18 Relative error vs. number of time step 

(a): column model. (b): plate model. 

In Figure 4.17b and Figure 4.18b, the relative error does not change with the 

changing of tolerance from 2 seconds of simulation in the plate model. This 

happens due to that, the number of implicit modes is no significant to represent 

a strong local nonlinearity. It is possible to increase the maximum dimension of 

the reduced basis or reduced POD tolerance to minimize this effect. However, 
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the relative error (around one percent) is still a small error. Furthermore, Figure 

4.19 presents the number of iterations at each time step for different tolerances 
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Figure 4.19: Iteration by using BFGS vs. number of time step 

(a): column model. (b): plate model. 
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4.3.3 An adaptive reduced order mode by Proper Snapshots 

Selection (PSS) Method 

The PSS method is a new approach to create and to enhance approximation 

subspaces. The main idea is to build a sequence of subspaces with a minimum 

dimension based on Ritz vectors from selected snapshots. 

In the PSS method, Ritz vectors are generated through a selection of most 

significant snapshots. The selection procedure is similar to methods that use 

singular values to measure and compare energy among snapshots (eg. POD). 

However, this similarity does not mean that the PSS method compute singular 

vectors which leads PSS to save substantially a processing time.  

The PSS is developed in this research for two functions. The first one is to 

reconstruct a subspace and the second one is to enrich the subspace. The 

concrete idea is to avail from stored snapshots (during the processing) for 

generating Ritz vectors. This will avoid expensive computations of singular 

vectors, usually performed in POD analysis. However, the procedure of selecting 

most meaningful vectors (snapshots) is based on the analogy of POD method as 

it’s shown below. To start the PSS approach, it is necessary to define the 

snapshots matrix (U) as: 

  
1,...,

n n
n

F
F

´é ù= Îê úë ûU u u   (4.12) 

Snapshots are the previous Fn  displacement vectors which are collected from 

the previous Fn  time steps. where 1u  is the oldest vector and nF
u  is the newest 

vector. To become simpler for an understanding, a mask operator (Z ) is 

introduced as: 

( )                         1, , 1 0n n
n i idiag where orF F
F

´= ¼ Î = =Z z z z z  (4.13) 

The diagonal matrix (4.13) is look like a filter. So, 1i =z  when the 

displacement vector is relevant to represent the subspace, otherwise iz 0= . A 

mask operator (Z )has the following properties: 

                  *, ,T T T T pand where= = = = ÎZ Z Z Z Z ZZ Z Z Z Z p   (4.14) 

Multiplying (4.13) by (4.12), we obtain: 
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  n nF´= ÎU UZ   (4.15) 

Next, the matrices 

   n nT F F´= ÎW U U   (4.16) 

   n nT F F´= ÎW U U   (4.17) 

are defined. 

A direct relation between (W ) and (W ) can be found easily. These matrices 

are similar to a correlation matrix from statistical point of view. The difference 

between them is the key to evaluate snapshots. To reduce the operations, it is 

convenient to follow these considerations: 

( )T=W UZ UZ  (4.18) 

( )T T=W Z U U Z  (4.19) 

T= =W Z WZ ZWZ  (4.20) 

Initially, the analysis is necessary to find snapshots that have significant ranks. 

This can be done by the comparison between matrices W and W as: 

1- Calculating the eigenvalues of both matrices as s,s   

2- Calculating the  ratios M and M with respect to tolerance (tolPSS) as:   

                       
1

1

U

n

i
i n

PSS in

i
i

tol where

F

F

= +
+

=

= £ Î
å

å
M

s

 s

s

  (4.21) 

 Un  is the number of eigenvectors. This number does not mean the subspace 

dimension in the PSS, but it is considered as a reference of evaluation. M  is 

calculated with respect to each individual snapshot by making (zi=0) for the 

particular snapshot and the rest (zi=1).  

                  
1

1

U

n

i
i n

PSS in

i
i

tol where

F

F
s= +

+

=

= £ Î
å

å
M

s

s

  (4.22) 
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Un  represents the number of eigenvectors. The comparison will be evaluated for 

each snapshot based on two conditions (4.23) and(4.24): 

U U=n n  (4.23) 

U U>n n  (4.24) 

If the condition (4.24) is satisfied, then a certain snapshot will be considered in 

the subspace. Otherwise, a snapshot will not take a part in the subspace (Ritz 

Vectors which computed based on selected snapshots). As mentioned before in 

the section of an incremental adaptivity, the PSS is used for enrichment or to 

reduce a subspace as in the next two sections: 

4.3.3.1 PSS to enrich the projection matrix (PSSe)  

The PSS is evaluated at the end of each step which means the analysis is just 

made by comparing a snapshot from the previous step with the current step. If 

the condition (4.23) is satisfied, the current vector replaces the previous vector. 

Otherwise, the current vector is added to the projection matrix. The main idea 

is to check whether the vector of the current step is meaningful to the subspace 

or not. Besides, this analysis is simpler and spends less time processing 

consequently. 

4.3.3.2 PSS to reduce the projection matrix (PSSr)  

The PSSr is required to construct a new subspace when the subspace reaches a 

maximum dimension (nmax = 50) or becomes stable (n �stable =25) as mentioned 

before in the section of an incremental adaptivity. The idea is to start analyzing 

all snapshots from the oldest to the newest snapshots. This analysis is done to 

force the newest snapshots to be more representative (causing less instability). 

4.3.3.3 PSS’s tolerance and weighted snapshots 

Due to different functions of the PSS (PSSe & PSSr), it is necessary to analyze 

the snapshots energy with respect to the following inequality: 

PSSe PSSrtol << tol  (4.25) 

This difference is necessary because an enrichment analysis (PSSe) is much 

more sensitive than the reduced analysis (PSSr). The PSS solves the problem of 
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increasing a subspace based on most significant snapshots (vectors of 

displacement field) which arises during a configuration change. Therefore, a 

selection of the most significant snapshots is based on the variation between 

them (The newest snapshot has high weight compare to the oldest one). The 

function of the weight was selected to be a redial basis function which is more 

convenient to the most of variation problems as: 

( )
                                    

2

2

-

2 0 1
i n

i ie where
F-

+= Î < £
b b

tg g  
(4.26) 

                         ,i i n n i nand where
F F F += = Îu ub b b b   (4.27) 

( )
( )

                                        

-1
2

1

-

- 1

n

i n
i where

n

F

F

F

=
+= Î

å b b
t t   

(4.28) 

1,...,
nT

n
F

F

é ù= Îê úë ûg g g   (4.29) 

where nF
b  is the newest snapshot norm, ib  are previous snapshots norms, t  is 

the standard deviation related to the newest snapshot norm. The weight of each 

snapshot multiplies by the snapshot which belongs on it: 

 
1 1,...,

n n
n n

F
F Fg

´é ù= Îê úë ûU u ug g   (4.30) 

gU  is ready to make the PSS analysis (equations (4.12) to (4.24)). To reduce 

the processing, it is recommended to change the equation (4.16) to the weight 

form (4.33) as: 

  n nT F F
g g g

´= ÎW U U   (4.31) 

  n nT F F´= ÎH gg   (4.32) 
  n nF F

g
´= ÎW H W   (4.33) 

Through the Hadamard (or Schur) product, the eigenvalues can be found. To 

study the convergence and accuracy of this approach for reducing the 

computational effort and time of the system, two models are simulated. The 

first model is a column of Neo-Hookean material as seen in Figure 4.7. It is 

discretized by the mesh with 12302 nodes and 36906 degrees of freedom.  
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The properties of cube system: 

E(Young’s modulus)=0.5e9Pa 

v(Poisson’s ratio)=0.45 

ρ(Density)=1600 kg/m3 

ζ (Damping ratio) = 0.01, 

∆t=0.005s 

T (Simulation time) =5s 

β (Newmark parameter)=0.25 

γ(Newmark parameter)=0.5 

q1 (Load) =  9.0e11N (X-direction) 

q2 (Load) =  9.0e11N (Y-direction) 

q3 (Load) =  -9.0e11N (Z-direction) 

q4 (Load) =  -9.0e11N (X-direction) 

d1(Fixed support)=restriction for all directions 

d2(Fixed support)=restriction for directions(Y&Z). 

d3(Fixed support)=restriction for direction(Z). 

d4(Fixed support)=restriction for direction(Z). 

Figure 4.20: Cube model 
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Figure 4.21: Load intensity vs. Time 

a) 

 

(b) 

 
Figure 4.22: Cube model (a): Displacements (m) at t=0.1350s. (b): 

Displacements (m) at t=2.1025s. 
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The second one is a cube of Neo-Hookean material as seen in Figure 4.20 which 

is discretized by the mesh with 25536 nodes and 76608 degrees of freedom. The 

different loads intensity with the time is presented in Figure 4.21.   

The comparison between the reduced system and the full system for both 

models are presented in Table 4.5 and Table 4.6. This comparison includes 

different reduced order model parameters such as processing time, iterations, 

corrections, and number of used PSSe & PSSr. 

Table 4.5: An overview of the column model results 

  Full Reduced Reduced Reduced 

Tolerance – tol 1.00E-06 1.00E-06 1.00E-04 1.00E-02 

No. Iterations 7412 18185 15421 14069 

No. Corrections - 4310 2964 2352 

No. PSSr - 19 16 30 

No. PSSe - 1984 1994 1997 

Total time (s) 30730.84 18802.04 13039.77 10513.42 

Time per step (s) 15.36 9.39 6.517224 5.253907 

Total time (%) 100.00 61.18 42.43 34.21 

Table 4.6: An overview of the cube model results 

  Full Reduced Reduced Reduced 

Tolerance – tol 1.00E-06 1.00E-06 1.00E-04 1.00E-02 

No. Iterations 6208 12896 10822 10208 

No. Corrections - 2777 1870 853 

No. PSSr - 4 5 4 

No. PSSe - 1987 1990 1983 

Total time (s) 97019.75 40558.884 27408.84 12982.73 

Time per step (s) 48.51 20.27 13.71 6.49 

Total time (%) 100.00 41.80 28.25 13.38 

For both models (column and cube), the processing time of each time step is 

high in case of a full system compared to  the reduced system as seen in Figure 

4.23. 
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Figure 4.23: Time per step vs. number of time step (a): column model. (b): cube 

model. 

The dimension of the subspace changes during the computational process 

(Figure 4.24). In fact, this is related to change of implicit modes in snapshots.  
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Figure 4.24: Dimension of subspace vs. number of time step (a): column model. 

(b): cube model. 

In the same way, the number of corrections is related to changing of 

configurations (modes) as seen in Figure 4.25. It means that the correction 

increases when the configuration changes significantly in a short period due to 

the large displacements. 
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The difference between the convergence of the full and reduced system can be 

noticed in Figure 4.26. The full system has quadratic convergence in the most of 

time except when the loads are applied, while the reduced systems have 

superlinear convergence. 
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Figure 4.25: Number of corrections vs. number of time step 

(a): column model. (b): cube model. 
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However, iterations are not significant when the corrections are few. In general, 

the reduced system is faster than the full system. Indeed, the number of 

iterations in the reduced system is greater than the full system (compare Figure 

4.23 with Figure 4.26). To measure the error, this work defines the relative error 

of displacements for each time step. The relative error of the displacement 

increases proportionally with increasing the tolerance of reduced system problem 

as seen in Figure 4.27 a. 
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Figure 4.26: Iteration vs. number of time step (a): column. (b): cube. 
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In Figure 4.27b, the relative error does not change with the different tolerances 

since the beginning of the simulation in the cube model (due to initial impact 

load). This happens due to the number of modes implicit in the snapshots are 

not significant to represent a strong local nonlinearity that happens in 0, 0.5, 1 

and 1.5 second of simulation. Increasing the maximum dimension of the reduced 

space can minimize this effect. However, a relative error is less than one percent.  
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Figure 4.27: Relative error vs. number of time step (a): column model. (b): cube 

model. 
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4.4 An adaptive Hyper-reduced order model 

Unfortunately, a classical projection approach is not efficient in the nonlinear 

model reduction because it is not necessary to capture a nonlinearity of the 

problem. There are two main reasons to adaptive a subspace; changing of mode 

(configuration) and strong local nonlinearity. The overview of the adaptivity is 

illustrated in Figure 4.28. Actually, the author combined adaptivity based on 

Dynamic-POD with hyper-reduction based on missing point Estimation (MPE). 

 
Figure 4.28: An adaptive Hyper-ROM strategy 

 A: a full system is solved and a collecting of snapshots is done to 

construct a subspace. 

 

 1: a POD’s subspace is constructed based on weighted snapshots. Then, a 

selection of Boolean matrix based on hyper reduction (missing point 

estimation) is done. 

 

 B: a hyper reduction system (Petrov-Glarkein projection). 

 

 2: an error of model reduction is high which means the mode change or 

effecting of strong non-linearity. 

 

 C: a subspace which obtained in 1 with Dynamic-POD without hyper 

reduction is implemented (Glarkein projection). Then, a collection of 

snapshots (solution of the system) and weighted of it. 

Full System 

1 2 1 

An adaptive (Hyper-ROM) 

Start 

Time 
A B C B 
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4.4.1 The Dynamic-POD  

It is a new approach for improving a projection based on POD subspace (F ). A 

projection of the nonlinear system on subspace by using a classical POD is good 

when a structural mode doesn’t change or when strong local non-linearity 

doesn’t occur.  

The main idea of Dynamic-POD is based on adding one vector to subspace (F ) 

when the error is high during iteration and at the end of each step. But, a size 

of subspace (F ) is always stay (kth +1) which means that the adding of new 

vector replace the previous vector.  The vector which is added should be 

orthogonal with all kth vectors in subspace (F ). The orthogonality of adding 

vector is done by using Gram-Schmidt concept. There are some ideas were 

arisen to increase subspace dimension by adding some vectors such as 

(Kerfriden et al (2011)) are not good, because the system may be shifted which 

leads the system to become unstable after some steps. There are two position of 

adding a vector to a subspace. First position is that, adding an error vector 

when there is no convergence of the problem after certain number of iteration. 

The second one is that, adding a solution to a subspace at the end of the time 

step. 

4.4.2 Weighted Snapshots  

It is an approach to construct a subspace based on the suitable snapshots. This 

method is more suitable with correction of subspace (Adaptive subspace). A 

constructing of a subspace based on most significant snapshots related to mean 

vector of displacement field (U) is suggested to get snapshots which are more 

close to mean value. This will help POD’s optimization function (eq.(3.14)) 

which is based on least square optimization to be near optimum situation. The 

selection of most significant snapshots is based on the variation between each 

snapshot and mean vector (Um). The closest snapshot to the mean vector (Um) 

has a high weight ( ig ) and consequently depending on the variation. The 

function of the weight was selected to become similar to normal distribution 

(Gaussian distribution) function which is more convenient for most of variation 

problems. 
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where, ( ib ): norm of arbitrary vector (snapshot), ( nF
b ): norm of mean vector 

(Um), ( t ): standard deviation of the snapshots norm., (e ): Natural exponential.  

The weight of each snapshot is multiplied by snapshot which belongs to it. This 

procedure will change the energy of snapshots depending on a significant. 

Finally, the new snapshots are ready to construct subspace based on POD.  

 

 

 

The properties of T-Beam system : 

E(Young’s modulus)=0.5e9 Pa 

v(Poisson’s ratio)=0.45 

ρ(Density)=1600 kg/m3  

ζ (Damping ratio) = 0.01 

∆t=0.005s  

T (Simulation time) =2s 

β (Newmark parameter)=0.25  

γ(Newmark parameter)=0.5 

q1 (Load) = 5e6N  

q2 (Load) = 5e6N  

d(Fixed support)=restriction for all directions 

Figure 4.29: T-Beam model 
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Figure 4.30: load intensity vs. time for T-Beam model. 

 

a) 

 

 

(b) 

 
Figure 4.31: T-Beam model (a): Displacements (m) at time step=35. (b): 

Displacements (m) at time step=245 
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To study the hyper-reduction approach two models were simulated. The first 

one is the column model of Neo-Hookean material in Figure 4.7 and T-beam 

model of Neo-Hookean material in Figure 4.29. 

 

Table 4.7: An overview of the column model results 

 Full Reduced Reduced Reduced 

Tolerance – tol 1.00E-06 1.00E-06 1.00E-04 1.00E-02 

No. Iterations 7412 18185 15987 13289 

No. Corrections - 1084 842.6948 697 

No. MPE - 9 5 3 

Total time (s) 30730.84 14109.69 12505.61 9297.07 

Time per step (s) 15.37 7.05 6.25 4.645431 

Total time (%) 100.00 45.91 40.68 30.2503 

 

Table 4.8: An overview of the T-Beam model results 

 Full Reduced Reduced Reduced 

Tolerance – tol 1.00E-06 1.00E-06 1.00E-04 1.00E-02 

No. Iterations 1521 4128 3629.148 3266.233 

No. Corrections - 353 306.9846 276.2861 

No. MPE - 12 8 7 

Total time (s) 594.07 464.77 411.93 370.73 

Time per step (s) 1.49 1.16 1.03 0.94 

Total time (%) 100 78.23 69.33 62.39 

The adaptive hyper reduction approach seems to be a promising technique to 

reduce the computation time. In fact, this can be seen in the column model in 

Figure 4.32a. But, it is an inverse in Figure 4.32b for the T-beam model due to 

that, the number of constructing a hyper reduction system (matrix (D)) is 

computationally expensive. This is clear from the peaks in the Figure 4.32 when 

the computational time is high.   
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Figure 4.32: Time per step vs. number of time step (a): column model. (b):     

T-Beam model. 

The number of corrections based on adaptivity (Dynamic-POD) is high due to 

the fact that the subspace dimension does not increase with the adaptivity. This 

can be seen clearly in Figure 4.33 for both systems.  
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Figure 4.33: Number of corrections vs. number of time step (a): column model. 

(b): T-Beam model. 

Compared to the previous approaches, the hyper reduction contains more 

corrections in some iteration and no corrections in other iterations. This is in 

fact due to reconstruct a reduced subspace simultaneously which will give a 

good approximate of the system. The hyper reduction approach has more 
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iteration than the full system. This is related to the projection which will never 

give a quadratic convergence. The results can be seen in Figure 4.34, Figure 

4.35, and Figure 4.36. 
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Figure 4.34: Iteration vs. number of time step (a): column model. (b): T-Beam 

model. 
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Figure 4.35: Absolute error vs. number of time step (a): column model. (b): T-

Beam model. 
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Figure 4.36: Relative error vs. number of time step (a): column model. (b): T-

Beam model. 
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Chapter 5 Machine Learning Approach 

 

5.1 Support vector machine (SVM) 

It is probably the most widely used algorithm in the field of machine learning. 

It is based on the kernel learning approach, the pattern recognition and the 

optimization theory (Vapnik (1995)). The performance of learning is limited by 

three sources of error (an approximation error, an estimation error, and an 

optimization error) (Bottou & Lin (2007)). Furthermore, the scale of the 

problem (learning problem) has also a significant effect on the limitation of 

SVM. The SVM can relate to two features, the support vector for the 

classification purpose, and the support vector for the regression purpose. 

5.1.1 Support vector for classification 

The earlier work of pattern recognition was linear classification (Nilsson (1965)). 

The classification of pattern ( x ) is performed by giving a class ( 1y =  ). The 

linear classification is the dot product of (inner product or scalar product) as: 

( )   Tf x w b= +x  (5.1) 

where w is known as the weight vector, and b is the bias.  

        

     

1, 1

1, 1

T

T

w b if y

w b if y

+ ³ =

+ £ - = -

x

x
 (5.2) 

The previous two constraints can be combined as: 

( ) 1Ty w b+ ³x  (5.3) 

To construct a hyper plane which is proposed by (Vapnik &Lerner (1963)), the 

bias 0b =   is assumed. Then, the hyper plane becomes a plane which contains 

all points perpendicular to w and satisfied 0Tw =x   as it is shown in Figure 5.1.  
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Figure 5.1: a linear classification (SVM) 

The transfer of a hyper plane away from the origin along a vector (h ) leads to 

that the equation of hyper-plane will be( - ) 0Th w =x , Tb h w= , 
b

h
w

= .  

 

Figure 5.2: the margin of linear separable case with circled data points are the 

support vectors (SVM) 

Thus, it is possible to construct more hyper-planes than a separate hyper-plane 

as in Figure 5.2. The distance between each hyper-plane and separate hyper 

plane is  
1

w
 . Therefore, the total distance will be

2
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To find the hyper-planes, the optimization problem in (5.4) should be solved. In 

fact, the name of support vector comes from the data (points) which lie on the 

hyper plane and are called support vectors (Figure 5.2). 

                   

                   

2

,

1

2
: ( ) 1, 1, 2, 3,...

w b
T

i i

minimize w

subject to y w b i+ ³ =x
 (5.4) 

The previous optimization problem can be solved with quadratic optimization. 

Therefore, the transformation of the problem to dual problem can be done by 

reformulating the problem using dual form (a saddle point problemmin maxwi a ) 

as: 
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N
T

i i i
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w b w y w b ia a
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é ù= - - - =ê úë ûå x  (5.5) 

Once the objective function is convex, the solution can be found by derivative 

with respect to (w ) 
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and with respect to (b ) as well 
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Inserting equations (5.6) and (5.7) into equation (5.5) leads to:  
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(5.8) 

The dual problem depends only on the inner product T
i jx x . According to the 

theory of duality, the dual problem will be concave when the original objective 

function is convex problems. Therefore, the unique solution of the original 

problem is the unique solution of the dual problem (duality gap is zero). 
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The KKT (Karush-Kuhn-Tucker) conditions are required to be satisfied to solve 

the saddle point problem. They can be found by the previous derivatives with 

respect to &w b to be zero. Furthermore, the constraints are part of these 

conditions and also the Lagrange multipliers are non-negative. Finally, the 

important constraint is called “complementary slackness” which should be 

satisfied too. 
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( ) - 1 0Ty w b+ ³x  (5.11) 

  ( )0i Lagrangemultiplier conditiona ³  
(5.12) 

      ( ) 1 0 ( )T
i i i complementaryy slaw nessb cka é ù- - =ê úë ûx  

(5.13) 

In case of non-separable (nonlinear SVM) situation: 

To separate the data easily, the mapping of the data from the initial space to 

the feature space is required ( ( )xjx ). This can be done by finding the 

inner product through the kernel function as:  

( ) ( )
( ) ( ) ( )
( ) ( )
( )
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 (5.14) 

The equation (5.8) will become as the equation (5.15) in case of nonlinear SVM:  

( )        
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(5.15) 

In case of soft margin: 
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The slack variable (z ) should be added to the constraint which allows for 

violations of the constraint. Thus, The penalty function ( i
i

C zå ) also should by 

add to the objective function as:  
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The optimization problem can be reformulated to be as: 
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Then, the KKT (Karush-Kuhn-Tucker)  
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     (  ( ) 1 )0T
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=0   (   )i i complementary slacknessm z  (5.25) 

5.1.2 Support vector for regression. 

The main purpose of support vector regression (SVR) is to find a function 

( f  (x) ) from training data { } (x , y ), ........(x )1 1 , yL L   that has at most deviation 
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(e ) from the actual target ( iy ) as shown in Figure 5.3. The convex optimization 

problem is: 
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Figure 5.3: Support vectors regression (SVR). 

The slack variables ( *,i ix x  ) are introduced in the case of the soft margin by 

(Cortes & Vapnik (1995)). Thus, the optimization problem will become as :  
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The constant 0C >  can be found by a trade-off between flatness of 

function ( )f x  and deviation larger than (  function insenstive loss
e

e x- )as:  
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The dual problem formulation of the previous optimization problem (5.27) is 

written as:  
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where (  ) is a lagrangian, and ( * *, , ,i i i ih h a a ) are Lagrange multipliers. 

* *, , , 0i i i ih h a a ³  (5.30) 

Following the saddle point condition, the derivative of lagrangian with respect 

to ( *, , ,i iw b x x ) should vanish as:  
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Substituting equations (5.31), (5.32) and (5.33) into (5.29) leads to dual 

problem (5.34).  
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Thus:  

   ,     f(x)=    * *

1 1
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5.1.3 Multi-output Support Vector Regression (M-SVR). 

It is an expansion of the single-output regression in the previous section. There 

are different models in the literatures such as neural networks which are used to 
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estimate parameters (regression). Neural networks have poor performance with 

few data points (Smola & Schölkopf (2004)). So, The M-SVR can be an 

alternative. Its formulation can be derived similar to the support vector 

regression and based on (Sanchez-Fernandez et al. (2004) and, Tuia et al. 

(2011)).  Hence, the lagrange formulation is: 
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The insensitive loss function ( ( )iL u ) for multidimensional case: 
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To solve the optimization problem(5.36), the iterative reweighted least-squares 

(IRWLS) method is used for each iteration (k ). First, the approximation of 

equation (5.36) is done by using first order Taylor expansion of ( ( )L u ) such as:  
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Thus, the quadratic approximation can be constructed from the equation (5.38). 
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where 
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( t ) is a sum of constant terms which independent from (w ) and (b ). To obtain 

(w ) and (b ), the solving of a weighted least square problem (5.39) is required. 

This can be done by derivative with respect to w  
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and with respect to b  
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This will lead to a linear system of equation (5.43).  

  1

T T j T j
a a
T T j T j

D a w D y

a a b a y

j j I j j

j

é ù é ùé ù+ ê ú ê úê ú =ê ú ê úê ú
ê ú ê úê úë û ë û ë û

 (5.43) 

where ( 1,....,Qj = ), ( 1( ),......., ( )
T

nj j jé ù= ë ûx x ), ( 1, .......,
T

na a aé ù= ë û ), 

( ) ( )a iij
D a i jd= - ,  and (1) is an all-one column vector. The linear system 

(5.43) requires a nonlinear mapping ( ' '( , ) ( ) . ( )Tk j j=x x x x ).  Thus, the learning 

problem will be a linear combination of the training data in feature space 

(representer theorem (   ( ) . .j j T j
i

i

w j b j b= =å x )).  Then, the equation 

(5.43) will be:  

  1 1

1

j j
a

T T j T j

K D y

a K a b a y

b- é ù é ùé ù+ ê ú ê úê ú =ê ú ê úê ú
ê ú ê úê úë û ë û ë û

 (5.44) 

where ( ,( ) ( , )i j i jK k= x x ) is a kernel matrix. The solution of the problem is 

found, iteratively. In the beginning, the values of (  & bb ) are equal to zero 

and the variables (   &u a ) are computed. Then, the linear system (5.44) is 

solved for (   & bb ) with fixed value of the variable (a ). This operation is 

repeated iteratively until the convergence is satisfied. 

5.1.4 Numerical example of M-SVR. 

The column in Figure 5.4 is used as a numerical model. The system was divided 

into 183 parts to make the regression easily. The input of each part are the 

degrees of freedom (DOF=231) which contain the applied load (external loads). 

Thus, the applied loads are taken into account for the regression as:  
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                      1 1(1 ) n
t t tU P U+ +´ + 

OutputInput
  

(5.45) 

where ( tU ) is a displacement vector of  degrees of freedom which contains 

applied loads (DOF=231) at the end of time step (t) (converged solution), (1) 

is an all-one column vector, ( 1tP + ) is a vector of applied force of freedom which 

contains applied loads at the next time step (t+1), ( 1tU + )is a displacement 

vector (converged solutions) for particular part (n), and  (n) is an indication of 

the parts (n=1,…. 183((200DOF for 182)+143DOF)).  

  

The properties of column system : 

E(Young’s modulus)=0.5e9Pa 

v(Poisson’s ratio)=0.45 

ρ(Density)=1600 kg/m3  

ζ (Damping ratio) = 0.01,  

∆t=0.005s  

T (Simulation time) =5s 

β (Newmark parameter)=0.25  

γ(Newmark parameter)=0.5 

q1 (Load) = 3.63e6N (X-direction) 

q2 (Load) = 3.63e6N (Y-direction)  

d(Fixed support)=restriction for all directions 

Figure 5.4: column beam model 

The different parts of the system were trained with the regression parameters 

(Epsilon (ε) = 0.1, C=10, Kernel is a redial basis function (RBF) with 

q2 q1 

d 

5m 

0.5m 0.5m 
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parameter (γ) = (10-100). The M-SVR still an approximation system. 

Therefore, it is combined with a Newton method. Thus, the new model can give 

the accurate solution. The Figure 5.5 shows the schematic overview of the 

algorithm. 

 
Figure 5.5: Illustration of M-SVR model. 

The advantage of surrogate model (M-SVR) can be seen from the number of 

iteration of the system and the total time of computation for each time step as 

it is observed in Figure 5.6.  

Table 5.1:An overview of column model results (M-SVR) 

 Full M-SVR 

Tolerance - tol 1.00E-06 1.00E-06 

No. Iterations 7412 3748 

Total Time(s) 30730.84 19684.08 

Time per step (s) 15.36 9.84 

Total Time (%) 100.00 64.06 

 

M-SVR Model 
(Approximation of the solution) 

Newton-Iterations 

Converge 
No

-Converged solution (Displacement-vector) 
-Load-Increment for the next time step 

Yes 
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Figure 5.6: Comparison between Full model and M-SVR model. 
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Chapter 6 Comparison, Conclusions and 

Recommendations 

 

6.1.1 Comparison of different approaches  

The comparison of different reduced model approaches is done for the column 

model as shown in Figure 6.1. It can be clearly seen that the hyper reduction 

approach based on missing point estimation seems to be the best. In fact, the 

hyper reduction approach is good when the system configuration does not 

change a lot otherwise it can be the worse approach. This is related to that the 

computing of the masked operator (matrix (D )) is computationally expensive, 

especially when the subspace change a lot. The POD approach with or without 

BFGS is almost close to each other. 
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Figure 6.1: comparison of different reduced model approaches based on column 

model. 

The proper snapshots selection approach is almost close to POD approach from 

the computation time but it is required less adaptation of the subspace. This is 

in fact related to that the subspace which constructed by PSS is well 
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representative to the system of interest when it is compared with POD’s 

subspace. 

Support vector machine approach is considered as one of the alternative 

approach of reduced order model. Its disadvantage is that it requires training of 

the system and its sensitivity is high with small change of the loading 

parameters. Furthermore, its training is time consuming and it is still a black 

box.    

6.1.2 Conclusions   

In this research, one of the challenging problems in the field of computational 

mechanics called reduced order model is studied for nonlinear structural 

mechanics systems. Therefore, different proposed approaches were introduced to 

ensure the performance and accuracy. These approaches were suggested to avoid 

problems of the classical approaches such as configuration changes with the 

time. The proposed approaches are compared in the previous section. All 

approaches except the machine learning approach can be classified as a 

projection based reduced order model.  

The first approach is an adaptive reduced order model based on Proper 

orthogonal decomposition (POD) while it considered the best technique to 

construct a projection subspace. The adaptivity is necessary for the POD’s 

subspace while the POD is based on least square optimization. Furthermore, the 

computing of POD’s subspace required the computing of the singular value 

decomposition which is computational expensive. Therefore, this approach was 

combined with BFGS method to increase the performance while BFGS compute 

the tangent matrix based on secant formulation. In fact, The combination of 

this approach with BFGS leads to almost the same computational time because 

BFGS has a super convergence and also the projection will leads to further 

approximation. This will lead to more corrections (adaptivity). 

The second approach is adaptive reduced order model base on Proper Snapshots 

Selection (PSS). This approach is following the same adaptivity with the 

previous approach. But, the projection subspace was constructed by the suitable 

snapshots as RITZ based method. This will lead to avoid the computing of 
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singular value decomposition such as POD. The construction and the 

adaptation of the projection subspace were done based on the sensitivity 

analysis. The dimension of projection subspace based on PSS is bigger than the 

projection subspace based on POD but the PSS’s subspace is better 

approximation for the system  (less corrections) when it is compared with 

POD’s  subspace. 

The third approach is adaptive hyper- reduced order model. This approach is 

based on the hyper reduction technique called missing point estimation (MPE), 

which is based on POD. It is elimination of some rows from both residual vector 

and tangent matrix before projection. This will lead to reduce the 

computational time while the algebraic system becomes more sparse. 

Furthermore, the new adaptive strategy called Dynamic-POD is suggested to 

avoid the stability which may appear from the adaptivity in the case of strong 

local nonlinearity. This approach has a disadvantage when the configuration of 

the system changes a lot with the time. This is due to that the finding of 

elimination rows is based on subspace which will change due to changing the 

configuration (mode). 

The forth approach is a machine learning approach based on multi support 

vector regression (M-SVR). It is good for some problems in mechanics when the 

simulations are repeated. Their disadvantages are highly sensitive to the 

changing of parameters, high training time, and black box.   

6.1.3 Limitations and future research  

The limitation of the proposed approaches is for the structural mechanics 

system with strong local nonlinearity such as contact problem, plasticity with 

finite strain. This kind of nonlinearity needs more studies to find a robust 

reduced order model due to the fact that the Jacobi matrix of such systems has 

bad conditional number. Therefore, it will be difficult to get a good 

approximation by projection based technique even with use the partition 

techniques. Furthermore, it can not approximate the Jacobi matrix by using the 

secant formulation such as BFGS method. 
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The solution of the previous kind of problem is a domain decomposition 

technique such as Finite Element tearing and Interconnecting (FETI). So, the 

entire structure can be divided into sub domains. Then, a reduced order model 

will implement in the regions when linear and weak nonlinear problems are 

appearing. 

In fact, this approach (FETI) needs computational time to combine the sub- 

domains together. Finally, the further research is required for such high strong 

local nonlinearity problem in structural mechanics  
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Appendices 

A. Programming Details 

The algorithm is implemented in MATLAB platform and software compiled 

with C++ code linked by MEX function. The software is responsible for 

generate and assemble the stiffness matrix and internal force vector. All the 

rest, it is developing in MATLAB including matrix operations and linear system 

solve. The parallel processing with shared memory is applied in the MATLAB 

platform through its parallel computing toolbox applied in the linear system 

solver. The pre-processing and post-processing is developed in the GiD software. 

All examples are processed in a personal computer with processor of 8 cores. 

Both reduced and full models keep a parallel processing in the same parts of the 

code for a fair comparison. 

B. Parameters related to adaptive model order reduction 

(POD&BFGS). 

kn     
2  k  0.001 

stableΦn  10  kr  0.95 

stablen  25 
PODtol  1e‐3 

maxn  50 
BFGStol  1e‐8 

Rtol  1e‐6 
utol  

1e‐6 

 

C. Parameters related to adaptive model order reduction 

(PSS). 

kn     
2  k  0.001 

stableΦn  10  kr  0.95 

stablen  25 
PSSrtol  1e‐3 

maxn  50 
PSSetol  1e‐6 

Rtol  1e‐6 
utol  

1e‐6 
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