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Zusammenfassung
Im Rahmen dieser Dissertation wurde ein 3D-Simulationsmodell entwickelt um Biofilme in
einem Multi-Physik-Framework durch Smoothed Particle Hydrodynamics (SPH) in einem
Kontinuumsansatz zu untersuchen. Biofilme an sich sind Ansammlungen von Mikroorgan-
ismen, wie beispielsweise Bakterien. Die Bildung eines Biofilms ist ein komplexer Prozess,
da mehrere physikalische Phänomene miteinander in Verbindung stehen, welche auf un-
terschiedlichen Zeitskalen stattfinden. Einerseits wird das Wachstum von Biofilmen durch
biologische Reaktionen sowie Stoffdiffusion vorangetrieben. Andererseits wird der Biofilm
durch Fluidströmungen deformiert und an der Grenzschicht finden Erosionsvorgänge statt.
Letztere stellen eine Fluid-Struktur-Interaktion (FSI) mit einer deformierbaren Struktur dar.
Die geometrische und numerische Komplexität, die aus diesen Phänomenen hervorgeht birgt
schwerwiegende numerische Komplikationen und Herausforderungen bei der Lösung mit
netzbasierten Verfahren wie den Finiten Volumen (FV) oder Finiten Elementen (FE). Solche
Probleme werden im Allgemeinen als Netzverzerrung bezeichnet. In dieser Arbeit wird die
Lösung auf Basis von SPH berechnet, einer aktuellen, netzfreien Methode. SPH-basierte
Computermodellierung findet in der biologischen Anwendung bisher kaum Erwähnung,
obwohl das Verfahren besonders robust bei der Erfassung von grenzschichtbezogenen
Prozessen ist. Tatsache ist, dass SPH aufgrund ihrer adaptiven Lagrangeschen Beschreibung
von Kontinua ein vielseitiges Werkzeug für Probleme ist, deren Geometrie dynamischen
temporären Veränderungen unterliegt. Aufgrund seiner partikelbasierten Natur lassen sich
auf einfache Art und Weise komplexe Interaktionen und Ad-hoc-Regeln zwischen den
Partikeln implementieren. Dies ist der Fall für Probleme mit gekoppelten Gleichungen
in unterschiedlichen Zeit- und Längenskalen. In dieser Arbeit werden alle verschiedenen
physikalischen Phänomene, die eine Rolle bei der Bildung von Biofilmen spielen im
Rahmen von SPH umgesetzt. Neben der numerischen Simulation wurden Experimente
von unserem Partner an der Medizinischen Hochschule Hannover (MHH) durchgeführt.
Die erhaltenen numerischen Ergebnisse zeigen gute übereinstimmungen mit den exper-
imentellen und veröffentlichten Daten. Dies zeigt, dass das Modell die räumliche und
zeitliche Entwicklung von Biofilmen korrekt vorhersagen kann. Das entwickelte Modell
kann dazu genutzt werden schädliche Biofilme zu kontrollieren sowie gewünschte Biofilme
besser nutzbar zu machen.

Schlagworte: Biofilm, Multiphysics, Smoothed Particle Hydrodynamics, Fluid-Solid Inter-
aktion
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Abstract
In this dissertation, a state-of-the-art 3D computational model has been developed to
investigate biofilms in a multi-physics framework using smoothed particle hydrodynamics
(SPH) based on a continuum approach. Biofilms are in fact aggregation of microorganisms
such as bacteria. Biofilm formation is a complex process in the sense that several physical
phenomena are coupled and consequently different time-scales are involved. On one hand,
biofilm growth is driven by biological reaction and nutrient diffusion and on the other hand,
it is influenced by the fluid flow causing biofilm deformation and interface erosion in the
context of fluid and deformable solid interaction (FSI). The geometrical and numerical
complexity arising from these phenomena poses serious complications and challenges in
grid-based techniques such as finite element (FE). Such issues are generally referred to
as mesh distortion. Here the solution is based on SPH as one of the powerful meshless
methods. SPH based computational modeling is quite new in the biological community
and the method is uniquely robust in capturing the interface-related processes of biofilm
formation especially erosion. The fact is that SPH is a versatile tool owing to its adaptive
Lagrangian nature in the problems whose geometry is temporarily dynamic. Moreover,
its mesh-less feature is considered to be favorable in interpreting the method as a particle
based one. Hence, it is quite straight forward to incorporate complex interactions and
ad-hoc rules at the particle level into the method. This is the case for the problems with
coupled governing equations with different time and length scale. In this thesis all different
physics which account for biofilm formation have been implemented in the framework of
SPH and one can say that this tool is purely SPH based. Besides the numerical simulation,
experiments were conducted by our partners in the medical school of Hannover. The
obtained numerical results show a good agreement with experimental and published data
which demonstrates that the model is capable of predicting overall spatial and temporal
evolution of the biofilms. The developed tool can be employed in either controlling the
detrimental biofilms or harnessing the beneficial ones.

Keywords: Biofilm, Multi-Physics, Smoothed Particle Hydrodynamics, Fluid-Solid Interac-
tion
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Chapter 1

Introduction

1.1 Motivation

If you were born in 2500 BC and suffered from dental caries, you would definitely believe
that the ”teeth worm” caused some cavities in your teeth, see GERABEK (1999). If you had
the chance to live in 350 BC where Aristotle lived, he might advise you not to eat too much
sweats because he had found that the sweaty materials cause decay of teeth, see NEWBRUN

(1982). It may be surprising to know that the mystery of dental caries was uncovered until
17th century where Antonie van Leeuwenhoek, a Dutsch salesman who became later the
father of microbiology, could observe for the first time the tiny living things in the oral
cavity. They were swarming in the teeth surface had tenaciously anchored themselves to
that. At that time he called them animalcules. Today we know that these microorganisms are
in fact the bacteria which form biofilm, see PERCIVAL ET AL. (2011). Such bacteria exist in
the oral cavity almost since the moment of passing through the birth. Hundreds of them live
there and wait until the teeth erupt. As soon as they find the teeth, they colonize its surface
and form a biofilm. If they have sufficient time and good environmental condition, they may
convert to a dental plaque and finally contribute to dental caries. The early stages of biofilms
formation are reversible, see ROSAN & LAMONT (2000). It means that they can be washed
out by the external forces such as brushing and rinsing the teeth or even the natural flow
of saliva. However, when they are matured, they turn into a heterogeneous material which
adheres to the teeth and need for more serious treatment in order to be removed. The medical
infections caused by the biofilms incur billions of dollars every year in the world, see WANG

& ZHANG (2010).

The research on biofilms has been motivated by the aim of predicting their development in
order to finally either hamper the formation of detrimental ones such as dental plaque or tailor
the beneficial ones to employ them in the industrial applications such as water treatment
units. It is known qualitatively that the biofilms strongly interact with their environment.
Nevertheless researchers have endeavored to simulate their behavior quantitatively by means
of mathematical and computational tools. In last three decades, a great deal of the literature
has been dedicated to the biofilms modeling. The goal is to understand better the physics
behind the biofilms and shed light on complex experimental results.

1
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1.2 What are biofilms?

A simple definition of biofilms is ”microorganisms attached to a surface”. For a more precise
and complete description, one can say that they are ”a layer of prokaryotic and eukaryotic
cells anchored to a substratum surface and embedded in an organic matrix of biological ori-
gin”, see BOYLE (1991). Prokaryotes (bacteria and archaea) are estimated to encompass
approximately half of the extant biomass in the universe in terms of the numbers. Each hu-
man hosts about 100 trillion microbes (bacteria and archaea), ten times more than human
cells, see KLAPPER & DOCKERY (2010). It has been estimated that more than 99 percent
of all bacteria on the earth live in the ”slime city” (biofilm form), see COGHLAN (1996).
The biological ground because of which the bacteria tend to grow in clustered populations
instead of individually wandering, is that this type of living make them more resistant to
the environmental and external threats and consequently increases the chance of survival for
them. In fact, Biofilm is a form of life for the bacteria with which they can adjust their needs
more easily to accommodate highly diverse environments, see PERCIVAL ET AL. (2011).
Nonetheless, such a collective behavior does not necessarily mean altruism and there is al-
ways a conflict of interests between the fitness of the individual bacteria and the fitness of
a group of them. It leads to a twofold interaction between the bacteria, namely cooperation
and competition. This concept has been referred to in KREFT (2004). Such complicated
interactions that exist merely among living beings make the simulation of them much more
challenging in terms of mathematical modeling. In this work, the focus is mainly on the bac-
teria which cause biofilm formation in the oral cavity on the surface of the dental implants
and teeth.
Biofilm development is a multi-stages process, see PALMER & WHITE (1997), O’TOOLE

ET AL. (2000). At least four distinct stages have been identified:

1- Formation of conditioning film
The aqueous solid-fluid interface is coated by the chemical organic agents which are present
in the fluid medium. In other words, the surface is conditioned and its chemical properties is
prepared to be colonized by the planktonic bacteria. In addition to the chemical composition
of the interface, the micro-topography of the surface is important. It has been proven that the
more the roughness of a surface is, the more the bacterial adhesion occurs, see CHARACKLIS

ET AL. (1999a). The reason is that the tiny crests and valleys at the surface play the role of
shields for the attached bacteria and protect them from the fluid flow forces. Furthermore,
the effective total area of the surface increases due to the surface roughness and it enhances
the mass transport mechanisms, see CHARACKLIS ET AL. (1999b). Besides the surface
roughness, the physichemical characteristics of the surface such as its hydrophobicity,
wettablity, surface energy and polarity contribute to the attractive forces between the surface
and the bacteria. It has been discovered that the surfaces made of hydrophobic and non-polar
materials such as Teflon are colonized more quickly by the bacteria, see FLETCHER &
LOEB (1979), PRINGLE & FLETCHER (1983). In the oral cavity, the platform of dental
plaque is a salivary pellicle covering the tooth enamel surfaces. This comprises mainly
of organic molecules such as proteins and is indeed an active conditioned interface which
behaves like a receptor for the freely swimming Streptococcus mutans, a type of bacteria
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in the mouth which is the major etiological agents in dental biofilm, see PALMER ET AL.
(2007), DONLAN (2002).

2- Initial reversible attachment of the bacteria to the conditioned surface
It has been found that the initial attachment of the planktonic bacteria is driven by the
Van der Walls and electrostatic forces which take place in length scales of order tens
of nanometers. It is still a not truly understood phenomenon and rare computational
modeling can be found in the literature. Nevertheless some researchers employed the-
ories like DVLO (DerjaguinLandauVerweyOverbeek) incorporating Van der Waals and
electrostatic forces to simulate initial adherence of bacteria, see MARSHALL ET AL.
(1971), HERMANSSON (1999). This phase is considered to be reversible. It means
that there is a weak bond between the bacteria and the surface and hence the bacteria
can be removed by even soft rinsing. If repulsive forces are larger than the attractive
forces, the bacteria will detach from the surface. This is more likely to happen especially
in the case that the conditioning film is not formed completely, see GARRETT ET AL. (2008).

3- Irreversible adhesion and growth
The next stage is so-called irreversible adhesion in which an Extra Polymeric Substance
(EPS) is produced by the bacteria and glue them together firmly, see DUNNE (2002). The
structure of the microbial agents (bacteria) due to the presence of flagella in their bodies
and also the amount and the composition of the EPS has a great impact on the strength
of the developed biofilm. EPS may constitute 50 to 90 percent of the total biofilms, see
FLEMMING ET AL. (2000). EPS is in fact the medium through which the bacteria not
only absorb the diffused nutrient, but also communicate with each other. This intercellular
communication is done via a released chemical material conveying a special signal. This
mechanism is called ”Quorum Sensing” which enables the bacteria to monitor the density
in their neighborhoods and control the expression of genes accordingly, see WATERS &
BASSLER (2005). The biofilm grows as a result of the EPS generation, bacteria division and
growth of the individual bacteria. EPS influences strongly the physical material properties
of the biofilm as a heterogeneous material. In this stage, the micro and meso-scale physical
phenomena such as diffusion, advection, reaction and mechanical stress distribution become
important and play a role in the growth process, see KLAPPER & DOCKERY (2010).

4- Detachment
once the biofilm matures, some parts of it may be detached due to several causes. Some
times, external forces such as the induced shear from the surrounding fluid or external inter-
vention lead to the rupture and detachment of the biofilm. In the case that there is a shortage
of nutrient in a certain part of the biofilm, detachment is a survival mechanism by which the
bacteria migrate with the hope of gaining more food somewhere else. In some cases, the
root of detachment is in quorum sensing and in fact it is like a consensus among all bacteria
in the biofilm in order to do gene expression. Regardless of the origin of detachment, it is
an interfacial process which causes material transfer from the biofilm to the bulk fluid. The
detached bacteria floated in the fluid can land on another point of the surface and reattach
themselves to it. In such a case, they are like a seed for a new biofilm formation. In general
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Figure 1.1. Different stages of the biofilm development (from www.boundless.com)

the detachment process takes place in parallel with growth process, see DONLAN (2002).
Figure (1.1) illustrates the different stages of biofilm formation schematically.

1.3 Background and state of the art

Although a Biofilm can be simply described as the aggregation of microorganisms, its for-
mation and evolution is quite complex in a mathematical framework due to the fact that it is
governed by various physical phenomena. Indeed, the formation of biofilm is a multi-physic
and multi scale problem, see WANG & ZHANG (2010). Aside from the experimental study
of the biofilms that has an old history (since 17th century as mentioned before), early at-
tempts to mathematically model the biofilms date back to the late 1970s and early 1980s,
see WILLIAMSON & MCCARTY (1976), RITTMANN & MCCARTY (1982), WANNER &
GUJER (1986). In these works, it was tried to develop a one dimensional system of par-
tial differential equations describing the biofilm growth. Since then, a variety of methods
have been proposed to model two and three dimensional biofilm, all of which fall into either
continuum-based, see PICIOREANU ET AL. (1999), PICIOREANU ET AL. (2000), PICIORE-
ANU ET AL. (2001a), ALPKVISTA & KLAPPER (2007), DILLON ET AL. (1996) or Hybrid
discrete-continuous models that are known as Individual-based methods (IBM), see KREFT

ET AL. (1998), KREFT ET AL. (2001), PICIOREANU ET AL. (2004a). There are also some
Cellular Automaton (CA) models which are conceptually more or less similar to the IBM in
this sense that the overall behavior and spatial structure of the biofilm come out of the bi-
ological interactions taking place at the individual level between discrete agents, see TANG

& VALOCCHI (2013), PICIOREANU ET AL. (1998), PIZARRO ET AL. (2001), NOGUERA

ET AL. (1999). In spite of being simple, such agent based models are capable of reproducing
quite complex morphologies such as finger-like and fractal shapes of biofilm in case that
biofilm growth is governed by the diffusion-limited aggregation (DLA) models in which the
nutrient diffusion is the dominant process, see FUJIKAWA & MATSUSHITA (1989).
It might be noteworthy to mention that agent based methods are more appealing to the biolo-
gists because of their inherent simplicity and capacity to incorporate new local ad-hoc rules
being inspired from biology such as bacterial binary division, attachment and detachment
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of the bacteria. Furthermore, handling multi species biofilm is not a big deal by defining
local interactions between different type of agents, see PICIOREANU ET AL. (2004b). Nev-
ertheless drawbacks of these methods are the introduced stochastic effects and geometrical
anisotropy due to the arbitrariness of the local rules which make the results less physical. So
many parameters challenge predictiveness of such models. Non-trivial error estimation and
more aesthetically driven results oppose mathematical and physical predictions, see EBERL

ET AL. (2001).
Recalling the different stages of the biofilm development, it should be expressed that there
are overwhelming references in the literature in which the third and fourth step of the biofilm
formation (growth and detachment) have been computationally tackled, whereas very rare (in
fact no) robust computational work can be found relevant to the first and second stages (con-
ditioning film and initial colonization). The reason is that their underlying physics lies in
two different frameworks. The first and second stages are phenomena which take place in
nano scale, while the third and fourth one are in micro and meso scale. The mathematical
framework of the former is at molecular level, while that of the latter is continuum mechan-
ics. From now on, it is assumed that the initial attachment of the biofilm is a priori and we do
not discuss it anymore. In practice, the early data collected from the experiment after a very
short exposure time (about an hour or less), see FLETCHER & LOEB (1979) and PRINGLE

& FLETCHER (1983), can be regarded as the initial condition of the biofilm for numerical
simulation. In this thesis the focus is on the third and the fourth stage of biofilm develop-
ment, namely growth and mechanical response of the biofilm (deformation and detachment)
in a continuum-based approach.
To discuss more effectively what has been done with regard to biofilm simulation in the lit-
erature, the physics behind the process needs to be deeply understood. This helps us to know
the well investigated aspects and also lesser studied ones. Biofilm computational models are
based on three principal concepts. First, transport mechanisms (diffusion-advection) which
bring nutrients to the biofilm. second, biological consumption and consequently growth
mechanisms which directly contribute to the biofilm structural form. Third, biofilm-fluid in-
terface related mechanisms that account for the effect of the surrounding fluid on the biofilm
in terms of deformation and detachment.
The first mechanism has been well developed in a continuum-based frame work in all exist-
ing previously mentioned references.
The second mechanism is exactly the point where the two different approaches, i.e Individual
based and continuum based methods, branch. The main idea of the agent based methods for
growth is that discrete elements mimicking bacteria grow and afterward a contact model han-
dles the overlaps between the agents and results in an overall expansion of the system. It is
called ”shoving mechanism”. The most recent open source simulator for biofilms using such
individual based methods is called iDynoMiCS (Individual based Dynamics of Microbial
communities Simulator) developed in Java language, see LARDON ET AL. (2011). When
it comes to a continuum framework for the biofilm growth, almost all researchers assume
the biofilm to behaves like a viscous fluid with a mass source term, see CUMSILLE ET AL.
(2014), DOCKERY & KLAPPER (2001), COGAN (2007). This assumption is reasonable, al-
though the biofilm is apparently a solid-like material. The fact is that the characteristic time
scale of the biofilm growth is so larger than its relaxation time scale. Hence, in practice
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no residual stresses remains inside the biofilm after the growth and it is fully relaxed like a
viscous fluid, see JONES & CHAPMAN (2012). It should be noted that the residual stresses
are generally an inevitable resultant of biological soft tissues growth, if they are assumed
to behave like a viscoelastic solid. This has been extensively studied by the researchers in
a robust continuum framework, see KROON ET AL. (2008), KUHL & HOLZAPFEL (2007),
AMBROSI ET AL. (2011), TABER (1998).

The third and the least understood mechanism is the one occurring at the interface of the
fluid and biofilm . The fluid flow exerts forces to the biofilm and erodes or sloughs it which
change its architecture significantly. This process is of great importance, since it contributes
to the biofilm development in an opposite way in comparison to the biological growth. Thus,
it results in the material removal and in some cases a final balance between detachment and
growth process is reached. It can keeps the overall biofilm architecture more or less constant,
see HORN ET AL. (2003). Although the induced stresses and deformation and even triggered
small vibrations in the biofilm are not an important factor in its shape, it is necessary to do a
stress analysis embedded in a fluid-structure interaction (FSI) analysis in order to correctly
capture the failure and detachment process in the biofilm, see PICIOREANU ET AL. (2001b),
DUDDU ET AL. (2009). Furthermore, the effect of the detached material forming streamers
and also its oscillation characteristics, have been taken into account by some researchers, see
STOODLEY ET AL. (1998), STOODLEY ET AL. (1999), TAHERZADEH ET AL. (2010). In
EBERL ET AL. (2000) it was argued that the movement of a flexible streamer contributes to
an increase in mass transfer of the nutrient from the bulk liquid to the biofilm. The biofilm
response to the external forces has been modeled using FEM in conjunction with a fluid
flow solver in BÖL ET AL. (2009). In this reference, the geometrical profile of the biofilm
is reconstructed from the stacks of Confocal Laser Scanning Microscopy (CLSM) and the
stress analysis is done using an FEM software incorporating detachment via the deletion of
elements. However, some researchers have preferred to use particle based methods such as
discrete breakable spring-damper elements to simulate the biofilm interaction with the fluid
flow, see ALPKVIST & KLAPPER (2007), and also Dissipative Particle Dynamics (DPD) as
a Lagrangian stochastic approach, see XU ET AL. (2011). Besides these approaches, some
models are relied on empirical or semi analytical ”detachment functions” inspired from the
1D biofilm modeling in which the detachment rate is propositional to h2 where h is the local
biofilm thickness. Of course, this method introduces some unknown parameters that need to
be identified for each problem, see XAVIER ET AL. (2005). It is noteworthy to know that
in iDynoMiCS, the fluid flow is not resolved and a constant boundary layer for the nutrient
diffusion in the fluid along with such detachment functions has been implemented, instead
LARDON ET AL. (2011).

Regardless of the method, the presence of moving and varying boundaries in biofilm-fluid
interface and how to handle it, is a complex task, especially in 3D in grid based schemes.
It needs to be dealt with in an accurate and efficient way. In DUDDU ET AL. (2008) this
issue has been addressed using a level set method in the Extended Finite Element framework
(XFEM).

The aim of this work is to develop and present a unified computational approach for the
biofilm formation modeling based fully on the Smoothed Particle Hydrodynamic (SPH)
method. SPH was firstly introduced in GINGOLD & MONAGHAN (1977) and LUCY (1977)
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for astrophysical applications and nowadays has been applied to simulate several physi-
cal processes such as diffusion-advection, see CLEARY & MONAGHAN (1999), ZHU &
FOX (2001), ARISTODEMO ET AL. (2010), fluid flow, see MONAGHAN (1994) GOMEZ-
GESTEIRA ET AL. (2010), hydraulic terrain erosion, see KRIŠTOF ET AL. (2009), reactive
transport and precipitation, see TARTAKOVSKY ET AL. (2007), solid deformation, see GRAY

(2001), LIBERSKY ET AL. (1993) and FSI analysis, see ANTOCI ET AL. (2007). Although
most of these processes are conceptually involved in the biofilm formation, to the best of
author’s literature surveying, this work is the first one in which the biofilm formation as a
multi-physics phenomenon has been modeled using a fully SPH based method.

1.4 Structure of this work
This work contains three main more chapters as follows: In the second chapter, first the ba-
sic assumptions behind the mathematical modeling of the physical phenomena behind the
biofilm formation are explained. Then, the two concepts of ”hypo-elasticity” and ”contin-
uum growth theory” are elaborated in more details, since they are the foundations of this
work and also lesser-known in comparison to solid deformation using a hyper-elastic ap-
proach. For the sake of conciseness and avoiding redundancy, the basic principals of the
continuum mechanics and non-practical equations are assumed to be known and hence are
not repeated. Instead, the practical governing equations are presented and the readers have
been referred to numerous good available textbooks for more details. The third chapter starts
with a brief review of the SPH method. In the remainder of this chapter, the SPH method is
applied to the governing equations derived in the former chapter in order to discretize them.
Moreover, the numerical implementation, solution procedure, numerical difficulties and the
associated remedies are discussed in detail. Additionally, an error estimation analysis of the
SPH method is presented in this chapter. In the fourth chapter, first some benchmark numer-
ical examples are provided in order to validate the numerical developed code. Then, further
2D and 3D exemplary cases are simulated for the biofilm growth, biofilm deformation and
erosion. The achieved results are compared with those of experiments conducted by our part-
ners in the medical school of Hanover and also available data in the literature. At the end,
we conclude the dissertation in the fifth chapter with the outcomes of this work. Besides, the
possible extensions for the future researches are suggested.
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Chapter 2

Mathematical framework and governing
equations

In this chapter, first the geometrical description of the problem is presented. Then the un-
derlying physical processes are discussed along with the associated assumptions. Before we
proceed with the governing equations, an introductory section is dedicated to the ”mechanics
of volumetric growth”. The reason is that its mathematical framework is rather a new concept
in continuum mechanics and not every body is familiar with. Furthermore, hypo-elasticity
that is the basis for solid deformation in this work is discussed thoroughly in the following
section, because rarely is the hypo-elastic approach used in standard and well-known com-
putational methods such as FEM. To avoid redundancy, no further details on kinematic of
deformation and fundamental laws of thermodynamics in continuum mechanics is provided.
The readers may refer to several available good books on that, e.g. see HOLZAPFEL (2000).
Instead, the final and practical balance equations are taken and the computational aspects of
the governing equations based on SPH are more elaborated on.

Figure 2.1. Experimental set-up, Medical school of Hanover (MHH) by Henryke
Rath

9
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Bacteria and

nutrient supply

Flow chamberOutlet

Figure 2.2. Schematics of the experimental set up and sub-domains of the RVE

2.1 Spatial domain and geometry

In this study, The numerical results for the biofilm growth are validated by the experimental
data. The main part of the experimental set-up conducted by our colleagues of the medical
school is a flow chamber which is fed with a peristaltic pump. At the center of it, there is a
Titan plate where the biofilm can form on. The size of the titan plate is 12mm× 12mm, see
figure (2.1). Due to the computational costs of resolving the full macro scale, the simulation
is limited to several tens micron in each spatial direction. This small region can be considered
as a Representative Volume Element (RVE) at micro-scale. In practice, the modeled domain
is expected to be equal to the zooming area where the experimental data are gathered using
Scanning Electron Microscopy (SEM). Figure (2.2) illustrates a schematic view of the whole
experimental set-up and also the RVE.

The spatial whole domain in the RVE is divided into two subdomains (compartments) i.e the
fluid compartment Ωf and biofilm compartment Ωb. The interface between these two Γfb
is the surface where the field variables are coupled. Unknown field variables in Ωf are the
velocity and nutrient concentration and in Ωb are the advective movement which determines
the biofilm geometrical profile due to the growth phenomena and the nutrient concentration.
These unknown field variables must be computed using mathematical governing equations in
conjunction with appropriate boundary conditions. In the next section, the physical processes
and principal assumptions behind the mathematical modeling is explained.
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2.2 Overview of the physical processes and the fundamen-
tal assumptions

In order to establish an appropriate model for the biofilm development, we need to under-
stand the physics behind it and be fully aware of the associated assumptions. The growth of
the biofilm is a biological-mechanical process in which there is a continuous mass genera-
tion. This mass expands and and leads to biofilm growth. Due to this fact that the overall
mass in the whole RVE must conserve, the newly produced biomass is nothing else than
the consumed mass which has been dissolved in the fluid (nutrient). The transformation of
mass from the nutrient from into living biomass is performed by the bacteria (biofilm) via
the growth process. The new configuration of the biofilm results in new interface Γfb and
it creates new geometrical boundary conditions for the fluid. It affects not only the velocity
field but also the concentration of the nutrient. Furthermore, the fluid flow has a dual effect
on the biofilm. From one hand it provides the biofilm with the nutrient (a positive role in
feeding the bacteria) and on the other hand, it applies shear forces on the biofilm and deform
it. If the induced stress are sufficiently large, some parts of the biofilm may be removed
by the flow (a negative role in destroying the biofilm). So we face a coupled multi-physics
problem which encompasses fluid flow, diffusion-reaction-advection, mechanical deforma-
tion, growth and erosion. At the first glance, the problem is so complicated and different
physical processes are so interwoven that it seems to be unsolvable. However, a closer and
deeper look at it, reveals that we have a clear separation of time scales associated to different
processes, see PICIOREANU ET AL. (2000), HAUSER & VAFAI (2013). Figure (2.3) shows
the typical ranges of characteristic times for processes that take place in a biofilm system.
An order of magnitude argument for the time scales helps us to realize that the biofilm be-
havior is narrowed down to the time period of modeling we are interested in. In other words,
depending on the temporal size of ” observation window” some physical process might be
excluded from the modeling. This leads to the assumption that all fast processes (the ones
with smaller time scale) such as fluid flow and nutrient diffusion reach their steady state
(temporally homogenized) value when a slower process (the ones with large time scale) such
as biofilm growth is taking place. In fact it is the main idea of temporal homogenization YU

& FISH (2002) and consequently different processes could by solved efficiently in a stag-
gered and nested manner without scarifying the ”accuracy”. The key assumptions for the
modeling of the biofilm in this work are as follows:
1- In this work the focus is on the dental biofilms. Although it has been found more than 500
different species of bacteria in human oral cavity, the one which mainly contributes to the
dental biofilm (plaque), is a bacterium called ”Streptococcus mutans”, see KOLENBRANDER

(2000). There is a straight forward framework for multispecies modeling in the literature, see
WANNER & GUJER (1986), PICIOREANU ET AL. (2004a), XAVIER ET AL. (2005). Never-
theless, due to the fact that the primary aim of this work is developing a computational tool
from scratch based on SPH, a single species modeling is adopted to avoid such unnecessary
complexities.
2- Depending to which category bacteria belong, even if we have a single species, they need
several nutritional substrates. For the sake of simplicity it is assumed that the growth pro-
cess is limited and affected by the concentration of just one type of nutrient and the other
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Figure 2.3. Characteristic time scales of processes occurring in the biofilm devel-
opment, reprinted from PICIOREANU ET AL. (2000)

components are unlimitedly supplied. It implies that there is only one diffusion-advection-
reaction equation in the computational method corresponding to this substrate, see PICIORE-
ANU ET AL. (2000), XU ET AL. (2011).
3- Except the nutrient concentration, All other environmental conditions such as PH and
temperature are excluded from the modeling and assumed to be constant. In our experiment,
the temperature and PH of the bulk fluid are kept constant. Nevertheless, it has been found
that the chemical reaction taking place in the biofilm, changes the PH inside it. This will
affect the diffusion process consequently, see FLORA ET AL. (1993). Moreover, temperature
has a great impact on the biofilm production, see HOŠTACKÁ ET AL. (2010).
4- The biofilm is considered to behave like a homogenous and isotropic elastic material
under the mechanical loads. The fluid is taken to be an incompressible Newtonian fluid. The
material properties such as elastic modulus, Poisson ratio, etc have been extracted from the
literature.
5- Cell-to-cell biological-chemical communication (quorum sensing) is not incorporated in
the model, because it make the problem much more complex and introduce several unknown
parameters into the modeling. There are some mathematical descriptions for quorum sensing
in the literature. For example the reader is referred to CHOPP ET AL. (2002).

2.3 Theory of the volumetric growth for biological tissues

Unlike the structural material, biological tissues are able to change their geometry and inter-
nal structure even when they are not subjected to mechanical loads. Such a process is referred
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as ”growth” and ”remodeling”. Healing in a cracked bone and development of tumors are
examples of biological tissue remodeling and growth, respectively. Soft tissues like tumors,
biofilms and arteries experience growth, while hard tissues such as bone and teeth undergo
remodeling. Roughly saying, in the growth process the mass generation leads to an increase
in the volume, whereas in remodeling the volume remains almost constant and solely the
micro structure of the tissue changes, instead. This change in the micro-structure manifests
itself in a change in the density and consequently weighting the free energy. In other words,
the growth process is a volumetric mass generation but remodeling is in fact a growth occur-
ring at surfaces and interfaces. For remodeling case, the material behavior is characterized
by constitutive approach, but in case of growth a kinematic approach in conjunction with
a constitutive model is utilized, see HIMPEL ET AL. (2005). Biological tissues undergoing
growth and remodeling involve the strong coupling of the physical phenomena. Several dis-
tinct types of physics such as mass transport, chemical reactions, mechanics, charge transport
and heat transport are governed by the associated equations in a coupled fashion. Here the
focus is on the volumetric growth using a combined constitutive-kinematic approach in soft
tissues and the objective is to present a mathematical continuum frame work for that.

2.3.1 Kinematics of growth

The key idea for mechanics of volumetric growth has been borrowed from the central idea
of finite strain plasticity by decomposing the deformation gradient into an inelastic growth
tensor and an elastic tensor. In an analogy with elasto-plastic deformation, a strain energy
function is defined based on the elastic part and the growth part is governed by an evolution-
ary equation translating the mass resorption at a material point. As mentioned in chapter (1),
The local nature of the growth-elastic decomposition inherently leads to residual stresses in
order to accommodate to the probably incompatible growth-related deformation. This is ac-
tually the cost for maintaining the continuity of the solid, see TABER (1998). In the presence
of dissipative processes such as viscous effects in large time scales and crack propagation,
such residual stresses may be released. That is why a logged tree cracks due to the release
of growth stresses.
To start with the mathematical frame work, we consider the well known potato in continuum
mechanics as a body, see figure (2.4). Let B0 be the initial configuration of the body. F is
the local deformation gradient that relates an infinitesimal material line element from B0 to
its map in the deformed configuration Bt at time t. In this formulation, the deformation from
B0 to Bt is imaginarily decomposed into two steps. First the material points are mapped into
a new, grown, stress-free state. It means that an intermediate auxiliary configuration Bg is
introduced. The collection of these grown states is denoted Bg and is not necessarily com-
patible i.e., parts of the body may intersect. The second step applies an elastic deformation
to the incompatible state Bg, obtaining the state Bt which may now contain residual stresses
in order to accommodate the incompatibility of the former state and maintain the continuity
of the solid body. In the language of continuum mechanics, the gradient deformation tensor
is multiplicatively split as follows

F = F eF g. (2.1)
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Figure 2.4. Multiplicative decomposition of the gradient deformation in finite
growth

This decomposition is formally analogous to the well-known decomposition of elasto-plastic
deformation gradient into its elastic and plastic parts and was first introduced in biomechan-
ics by RODRIGUEZ ET AL. (1994). The deformation gradients F e and F g are not unique
because arbitrary local material rotations can be superposed to the unstressed intermediate
configuration Bg preserving it unstressed. Hence, one can write

F = F eF g = F ′eF
′
g, (2.2)

where
F ′e = F eQ

T , F ′g = QF g, (2.3)

in whichQ denotes any rotation tensor. There are undoubtedly fundamental assumptions be-
hind this multiplicative decomposition of deformation. First, the tissue undergoing growth
must behave elastically on the timescale of growth or at least relaxation of the stresses must
be negligible. Most tissues in practice experience a certain amount of relaxation correspond-
ing to the viscous effect. Second, the elastic timescale associated with elastic wave propa-
gation should be much shorter than the timescale associated with growth. This means that
the elastic deformation F e occurs instantaneously in response to the growth, F g. Finally,
the growth process being modeled needs to be expressible in terms of deformation gradient.
This is not always possible. For instance, growth due to the mass generation on a surface is
not a bulk process, see JONES & CHAPMAN (2012).
In general, the growth tensor F g can be defined as a function of stress, position, density,
nutrient concentration, or any number of other field variables that may have an effect on the
growth rate of the tissue.
While the mass generation is assumed to take place only between the states B0 and Bg, the
elastic response occurs only between Bg and Bt. In fact the state Bg is assumed to be stress
free. Thus, the elastic strain energy per unit grown unstressed volume W is only a function
of the elastic part of F . Then, the second PiolaKirchhoff stress tensor S referred to the state
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Bg is given by

S =
∂W

∂Ee

, (2.4)

in which Ee represents the Green Lagrange strain tensor as follows

Ee =
1

2
(F T

e F e − I), (2.5)

where the subscript ”e” refers to the fact that the quantity is formed using the elastic defor-
mation gradient F e rather than F . If the right polar decomposition for F g is used, one can
write

F g = RgU g, (2.6)

where Rg and U g are rotation and stretch part of the growth tensor. Without the loss of
generality Rg can always be taken to be equal to the identity tensor. This makes the formu-
lation of growth much more simple. In fact one can assume that the rotation part of the total
deformation F is captured by F e. From the mathematical point of view, it can be said that
Rg is absorbed into F e, see RODRIGUEZ ET AL. (1994) .
Now, one needs to construct the F g. It is common to consider two different cases for growth.
First, growth in constant density and the second growth in constant volume. In the former,
the volume changes to accommodate the newly generated mass and in the latter the density
variation reflects the change in mass, see HIMPEL ET AL. (2005). In this work, the first
approach is utilized. With the assumption of density preservation, volume change during
growth can be specified by

Jg = det(F g) =
V

V0

, (2.7)

with V and V0 being the local tissue volumes before and after the growth increment, respec-
tively. It is common to assume that the new tissue constituents are deposited in all directions
equally (isotropic growth ) and hence F g has the form

F g = J
1
3
g I = (

V

V0

)
1
3I, (2.8)

in which I is the identity tensor. This idea of constructing growth tensor can be easily
extended to non-isotropic growth. For example, if there is a preferred direction m along
which the growth occurs only in longitudinal mode (transversely isotropic growth), one can
build the growth tensor as follows

F g = J
1
3
g I + (Jm − J

1
3
g )m⊗m, (2.9)

where Jm is the growth factor in direction m. It is obvious that F g has been constructed in
such a way that F gm = Jmm. From the mathematical point of view it means that m and Jm
correspond to eigenvector and eigenvalue of F g, respectively.
Now we should relate the stimuli of the growth to growth tensor by means of a phenomeno-
logical description. As it was mentioned before, several variables can be regarded as the
growth stimulus such as stress, concentration field of an agent and so on. The idea is that
there is a homeostatic state in which now growth occurs. A supra-homeostatic load will lead
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to a net increase of volume (growth), whereas a sub-homeostatic load will lead to a decrease
of volume (resorption).

V̇ = βV0(s− shom), (2.10)

where β is the rate constant and s and shom are scalars denoting the stimuli and the home-
ostatic value of that. Linearization with respect to volume V0 at the start of the growth
increment yields

V

V0

= βV0(s− shom)∆t+ 1. (2.11)

Finally, plugging equation (2.11) into equation (2.8), the growth deformation tensor reads

F g = [βV0(s− shom)∆t+ 1]
1
3I. (2.12)

The above formulation can be implemented in the context of any numerical method such as
FEM or SPH. If the numerical solver is implicit, a tangent modulus needs to be derived for
the Newton-Raphson iteration. We obtain the incremental elastic-growth tangent stiffness
tensor C in the intermediate configuration similar to the procedure in elasto-plastic finite
deformation. It means that the variables such as Second-Piola stresses should be transformed
from the reference configuration B0 to intermediate configuration Bg by appropriate push
forward operators. As a convention, the variables in Bg have a hat. For example Ŝ is the
stress tensor in the intermediate configuration obtained by applying a push forward operator
on the second Piola-Kirchhoff stress tensor as follows

Ŝ = F gSF
T
g . (2.13)

Using the chain rule for computing the total elasto-growth tangent stiffness tensor Ĉegn+1

gives

Ĉegn+1 = 2
dŜn+1

dĈn+1

= 2
∂Ŝn+1

∂Ĉn+1

+ 2
∂Ŝn+1

∂ϑn+1

⊗ ∂ϑn+1

∂Ĉn+1

, (2.14)

in which ϑ = J
1
3
g . It implies that F g = ϑI .

The first term in the right hand side of equation (2.14) is nothing else than the standard elastic
tangent, namely Ĉe = 2 ∂Ŝ

∂Ĉ
. In order to determine the second term, we apply again the chain

rule

2
∂Ŝn+1

∂ϑn+1

= 2
∂Ŝn+1

∂Ĉn+1

:
∂Ĉn+1

∂ϑn+1

= −2

ϑ
Ĉe : Ĉ, (2.15)

in which Ĉ can be calculated by applying an appropriate push forward operator on the right
Cauchy-Green tensor C (C = F TF ) using Ĉ = F−Tg CF−1

g . Besides, the term ∂Ĉn+1

∂ϑn+1
is

computed as follows

∂Ĉn+1

∂ϑn+1

=
∂(F−Tg Cn+1F

−1
g )

∂ϑn+1

= −2ϑ−3Cn+1 = −2ϑ−1Ĉn+1. (2.16)

It should be noted that one can easily obtain the inverse of F g = ϑI as follows

F−1
g =

1

ϑ
I. (2.17)
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Figure 2.5. Fixed and updated reference configuration for the incremental growth

The computation of the third part of equation (2.14) is not straightforward, since solely the
evolution of the ϑ is known, not itself (similar to the plasticity in which the evolutionary
equation for the plastic strain gives in fact the incremental value of that not itself). Therefore
we apply an implicit Euler backward scheme to obtain the stretch ratio at the spatial time
step

ϑn+1 = ϑn + ϑ̇n+1∆t. (2.18)

Applying the differentiation gives

∂ϑn+1

∂Ĉn+1

= (
∂ϑ̇n+1

∂Ĉn+1

+
∂ϑ̇n+1

∂ϑn+1

∂ϑn+1

∂Ĉn+1

)∆t. (2.19)

Solving equation (2.19) for ∂ϑn+1

∂Ĉn+1
, one can obtain

∂ϑn+1

∂Ĉn+1

=
1

K

∂ϑ̇n+1

∂Ĉn+1

∆t, (2.20)

in which K = 1 − ∂ϑ̇n+1

∂ϑn+1
∆t. It should be stressed that the term ∂ϑ̇n+1

∂Ĉn+1
is computed using

the constitutive equation relating the growth to deformation. In this work, this term is zero
because the evolutionary equation for the ϑ is solely a function of concentration field. It
means that the growth stimulus is solely the concentration field, see equation (2.11).
Finally it is worthwhile to know that the incremental growth can be handled using either a
fixed reference configuration or an updated one. The former is usually referred to as ”total
Lagrangian formulation” and the latter is called ”updated Lagrangian formulation”. Fig-
ure (2.5) illustrates these two possible reference configurations for the incremental growth
kinematics. The readers seeking more details can refer to KROON ET AL. (2008).
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2.4 On the hypo-elastic approach in solid mechanics

2.4.1 Historical background

Hypo-elasticity was proposed firstly by TRUESDELL (1955) in 1955. Since then, there had
been some misunderstanding and misconception among some researchers about it. All the
discussions were about the bridges between hypo-elasticity and hyper-elasticity. In the fol-
lowing years, Bernstein in communication with Truesdell addressed this question if any
hypo-elastic material is elastic or not, see BERNSTEIN (1960). Then, Truesdell himself shed
light on some gray aspects of hypo-elasticity in 1963, see TRUESDELL (1963). He clearly
criticized some researchers, saying: ”When I proposed the theory of hypo-elasticity, I sought
a new concept of elastic behavior, mutually exclusive with the theory of finite elastic strain
except in the linearized case, and I was surprised, although indeed groundlessly, when Noll,
see NOLL (1955), proved that every isotropic elastic material with invertible stress-strain
relation is hypo-elastic. Misled, apparently, by Noll’s theorem, Hill and Prager HILL (1959)
have asserted that every elastic material is hypo-elastic, making hypo-elasticity appear to
be a generalization of the classical theory of finite elastic strain. This, certainly, it is not”.
Anyway, hypo-elastic approach was utilized as a constitutive model in the computational
mechanics. There was still the question of whether such constitutive models are equivalent
to hyper-elastic based ones or not? For example in a simple case, does the constant tensor
which relates the stress to strain in small deformation theory (Hook’s law) can be employed
if one uses a proper objective stress rate and strain rate? The final word was delivered by
Simo in 1984, see SIMO & PISTER (1984). It is worth requoting some sentences from his
paper. He says: ”The purpose of this paper is to show that rate constitutive models of this
type widely employed in computational mechanics are in fact, not only incompatible with
the notion of hyper-elasticity, in the sense that a stored energy function does not exist, but
even fail to define an elastic material in nonlinear range.” He mathematically proved that
the rate based relations are integrable to construct a strain energy under certain condition.
It means that, If the hypo-elastic constitutive equation meet some requirements, then it is
equivalent to hyper-elasticity.

2.4.2 Mathematical framework of hypo-elasticity

Using the incremental formulation for solving large deformation problem necessitates the
developing of incremental constitutive equation which relates the stress increment (rate) to
strain increment (rate). Such constitutive equations are finally translated into so-called ”ma-
terial stiffness tangent”. In hyper-elastic approach the existence of a free energy is postulated
and then the stress and stress increment is mathematically derived from that. For more de-
tails on different free energy form and the associated constitutive equations the interested
readers are referred to HOLZAPFEL (2000). In hypo-elasticity unlike hyper-elastic approach,
the constitutive equation connecting the increments of stress and strain is not derived from
a free energy function. Rather, the start point is an explicit spatial relation between an ob-
jective stress rate and strain. Of objective stress rates, one can mention the Jaumann rate,
GreenNaghdi rate, Oldroyd rate and Truesdell rate. So the general form of a hypo-elastic
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constitutive equation is as follow
4
τ = c : d, (2.21)

in which
4
τ is an objective rate of Kirchhoff (or Cauchy) stress tensor and d is the rate of

deformation tensor. Lack of experimental evidence to construct a variable function for c
often leads to the assumption of a constant isotropic elasticity tensor of the linear theory.
In practice, It means that the constant elasticity tensor relating the stress and strain in small
deformation theory is used as c that relates the stress rate to strain rate, as well. But the
fact is that different objective stress rates may result in different elastic deformations, unless
elastic moduli c are properly defined. As mentioned in the previous section, it was mathe-
matically proved by SIMO & PISTER (1984) that a nonlinear elastic material can not have
a spatial, constant and isotropic tensor. This finding actually ruins the applicability of hypo
elastic approach for large deformation problem. In fact if a large deformation problem for an
elastic solid is solved using a constant modulus and hypo-elastic approach, the results are not
accurate and actually the simulated response is not elastic. Simply speaking, the net work
produced in a closed cycle is not zero, see SIMO & PISTER (1984).
To summarize this introduction with a key message and go to the mathematical framework,
it can be said that the constitutive equations based on the hypo-elasticity are equivalent to
those based on hyper-elasticity with the assumption of small deformation. It does not matter
if large displacement or rotation takes place. Especially in the cases in which severe volume
change occurs (determinant of deformation gradient deviates significantly from unity), the
results of the hyper elastic approach differ from hypo-elastic one drastically, see SIMO &
PISTER (1984).
It can be said that all objective rates are a particular case of the Lie derivative. To calculate
the Lie derivative, a quantity is transformed to the reference configuration using a pull back
operator and the derivation is taken there. Then, the derivation is transformed back to the
spatial current configuration using a push forward operator. In the below subsections, this
concept is clarified more. For more detail see WRIGGERS (2008). The reason why objective
rates are needed for constitutive equations is that such rates are frame invariant and the rigid
body motion has been considered in their formulation. In other words, if a stressed body
undergoes a rigid body motion one expects that no further stress is induced in it. Objective
rates meet this requirement while the normal stress rate does not. In this section, the appli-
cation of different objective rates is briefly discussed. Finally the adopted one for this work
is introduced.

Oldroyd rate

If one wishes to take the Lie derivative of Kirchhoff stress Lτ , first it is transformed to
the reference configuration using an appropriate operator for contravariant tensors (F−1 and
F−T are pre and post multiplied by the tensor). Once the derivation is done, it is transformed
again to the current configuration (F and F T are pre and post multiplied by the tensor).

Lτ = F
∂

∂t
[F−1τF−T ]F T , (2.22)
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with Ḟ
−1

= F−1FF−1 and Ḟ = lF and some algebraic manipulation one can find that

Lτ = τ̇ − lτ − τ l =
4
τ , (2.23)

in which l is the spatial velocity gradient(l = ∂v
∂x

). One can see that the Oldroyd rate is in
fact the Lie derivative of the Kirchhoff stress.

Green Naghdi rate

In equation (2.23), if l is replaced by Ω = ṘRT the Green-Naghdi
4G
τ rate is obtained. R

is the rotation part of the gradient deformation (F = RU ). Actually the Green-Naghdi rate
is the Lie derivative of Kirchhoff stress transformed byR instead of F . This transformation
has been shown using the notation LRτ as follows

LRτ = τ̇ −Ωτ + τΩ =
4G
τ . (2.24)

Jaumann rate

If one uses the antisymmetric part of the velocity gradientW = 1
2
[l− lT ] as the transforma-

tion operator in Lie derivative (LWτ ), the Jaumann rate of Kirchhoff stress
4J
τ is obtained as

follows

LWτ = τ̇ −Wτ + τW =
4J
τ . (2.25)

It is worth noting that the Jaumann rate is a special case of Green-Naghdi rate if W = Ω.
This happens if the symmetric part of the velocity gradient is zero (d = 1

2
[l + lT ] = 0).

Due to the simplicity in the implementation and lower computational cost (one does not need
to perform a polar decomposition of gradient deformation F ), the Jaumann rate is adopted
in this work.
Remark: the aforementioned objective rates give the identical results if a pre-stresses ma-
terial point is solely subjected to rigid body motion. However, it has been shown that they
result in different outcomes if the same material modulus is used for general cases. Espe-
cially in a simple shear problem, the results vary dramatically in large time periods. For
more detail, the interested readers may refer to BELYTSCHKO ET AL. (2002). Besides, a
comparative study of hypo-elastic and hyper-elastic material models for large deformation
has been presented in KIM (2016).

2.5 Governing equations

In this section, the governing equations of a biofilm system are presented in a continuum-
based framework.
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2.5.1 Mass balance (continuity)
Recalling from the continuum mechanics, the local form of the mass balance equation of a
regular body not undergoing growth is

∂ρ

∂t
+∇ · (ρv) = 0, (2.26)

where ρ and v are the density and the velocity field, respectively. This equation is applicable
for the fluid compartment (Ωf ). But when it comes to a biological body which may experi-
ence growth, the mass balance equation needs to be modified and indeed the right hand side
of equation (2.26) is replaced by a source term γ accounting for the mass generation due to
the growth JONES & CHAPMAN (2012) as follows

∂ρ

∂t
+∇ · (ρv) = γ. (2.27)

γ can be in general a function of other field variables. For example the reciprocal connection
between growth and stress is interesting. It is obvious that from one hand tissues undergoing
non-uniform growth will experience residual stresses, see CHEN & HOGER (2000), and on
the other hand, the stresses will affect further growth, see JONES & CHAPMAN (2012),
RODRIGUEZ ET AL. (1994). Here it is assumed that the growth function γ is only a function
of the nutrient concentration according to the Monod kinematic RITTMANN & MCCARTY

(1982). The Monod law is

γ = Y
K1C

K2 + C
, (2.28)

where Y is the true yield of bacterial mass per unit mass of the nutrient consumption, K1 and
K2 are biological constants related to the type of bacteria species and C is the concentration
of nutrient.
It is noteworthy to mention that the right-hand side of equation (2.27) is like a chain which
couples diffusion-reaction equation for nutrient concentration in the biofilm and its mechan-
ical response.
In general adding a scalar source term into the continuity equation is not sufficient to cap-
ture the inhomogeneous growth which generally results in residual stresses. Rather, it is
required to start from a multiplicative decomposition of the deformation in a tensorial sense
as discussed in section (2.3.1). But here, due to the fact, that the focus is on the time periods
whose order of magnitude is larger than the biological growth time scale, the biofilm behaves
like a homogeneous viscous fluid and all internal stresses are released JONES & CHAPMAN

(2012)-KROON ET AL. (2008) and hence the scalar source term in the continuity equation is
sufficient (homogeneous growth).

2.5.2 Diffusion-advection-reaction
In the biofilm domain (Ωb) the nutrient concentration C is an unknown field variable and is
computed using the diffusion-advection-reaction equation, as follows

∂C

∂t
+∇C · v = D∇2C − γ

Y
, (2.29)
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where D is the diffusivity coefficient and γ
Y

is the consumption term expressed in equation
(2.27). It should be stressed that v is the advective velocity of the biofilm as the result of
the growth process. Recalling the discussion in section (2.2), the advection term for the
nutrient concentration in the biofilm is neglected because the order of the growth velocity is
10−5mm/s. It means that the dominant transport mechanism in the biofilm is diffusion, see
DUDDU ET AL. (2009). Hence the final nutrient concentration equation which is going to be
solved is

∂C

∂t
= D∇2C − γ

Y
. (2.30)

It is a common assumption that the fluid compartment (Ωf ) is well mixed due to the domi-
nancy of advection transport mechanism and the nutrient concentration is a prescribed vari-
able in the bulk fluid, but it is computed in the biofilm using the diffusion-consumption
equation. In our experiment, the bulk fluid is continuously pumped into the system (see fig-
ure (2.2)) and in fact the fluid phase is continuously enriched with the fresh nutrient so that
the concentration of the nutrient in the bulk fluid remains constant.

Boundary conditions
The boundary conditions for equation (2.30) are as follows

C = Cbulk on Γfb, (2.31a)

∂C

∂n
= 0 on impermeable substratum. (2.31b)

Equation (2.31a) insures the continuity of the concentration field at the biofilm-fluid inter-
face. Cbulk is the externally prescribed concentration in the bulk fluid phase and n denotes
the unit normal vector to Γfb. Equation (2.31b) says that the substratum plate is impermeable
and in fact no flux of concentration is transported from there.

2.5.3 Momentum balance

In general, every mass source due to the growth phenomena is an inherent momentum source
as well. This makes both the linear and angular momentum equations complicated. In such
a case, the Cauchy stress tensor is not symmetric anymore owing to a source term in the
angular momentum equation, see EPSTEIN & MAUGIN (2000). However, under certain
assumptions these effects could be neglected and introducing the growth effect in the con-
tinuity equation suffices. The fundamental assumption is that the velocity, specific energy
and specific entropy of the newly deposited material is ”miraculously” equal to those of the
existing material and this is the case for biological slow growth VOLOKH (2006) and hence
the linear momentum equation has the regular and well-known structure.

ρv̇ = ∇ · σ + ρb, (2.32)

in which σ and b are the Cauchy stress and body force, respectively. The angular momentum
leads to the symmetricity of the Cauchy stress.
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Boundary conditions
The biofilm is subjected to mechanical loads due to its interaction with the surrounding fluid.
In other words, the traction is transmitted from the fluid to the biofilm through the interface
Γfb (see Figure (2.2)). It is as a result of the kinematic and dynamic compatibility conditions
which need to be enforced at the interface as follows

vf = vb on Γfb, (2.33a)

σf · n = σb · n on Γfb, (2.33b)

vb = 0 on impermable substratum, (2.33c)

where σf and σb denote the stress in the fluid and biofilm, respectively. Furthermore vf is
the fluid velocity and vb stands for the biofilm velocity. n is the normal vector to the Γfb.
Equation (2.33a) ensures the equality of the velocities and equation (2.33b) accounts for
the continuity of the traction at the interface. The numerical treatment and implementation
strategies will be discussed in chapter (3). Equation (2.33c) is a Dirichlet’s boundary condi-
tion for the biofilm compartment. It reflects the the status of the biofilm at its base where it
is attached to a rigid and impermeable substratum.

2.5.4 Constitutive equations

In this section the material behavior of the system, including the biofilm and surrounding
fluid, is presented.

Fluid compartment

It is common that the stress tensor can be decomposed into isotropic (pressure) p and devia-
toric s parts according to the following equation

σij = −pδij + sij, (2.34)

where δij is the Kronecker tensor. Assuming a Newtonian fluid, the deviatoric stress is
proportional to the deviatoric strain rate (ε̇ij).

sij = 2µf ε̇ij, (2.35)

where µf is the fluid dynamic viscosity and εij is computed using

ε̇ij =
1

2
(
∂vi
∂xj

+
∂vj
∂xi

)− 1

3

∂vk
∂xk

δij, (2.36)

in which the Einstein’s summation rule has been applied for the index k. v is the velocity
field.
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Biofilm compartment (elastic solid)

As mentioned before, biofilm behaves like a fluid in the growth process, but in short time
scales it acts like a solid ALPKVIST & KLAPPER (2007). In other words, it is necessary to
model the biofilm as a deformable solid, if its interaction with the surrounding fluid is the
objective.
Due to the nature of SPH, it is more convenient to use a hypo-elastic approach instead of
a hyper-elastic one for deformable solid. As discussed in section (2.4), rate constitutive
equations are used to reflect the material behavior. Such constitutive laws are similar to
equations (2.34)-(2.36) with the modification that the stress rate is proportional to the strain
rate and µf is replaced by µs representing the shear modulus of the solid. The Jaumann rate
is the most widely adopted in SPH, see LIBERSKY ET AL. (1993), GRAY (2001)

ṡij − sikωjk − ωikskj = 2µsε̇ij. (2.37)

Recalling Einstein’s summation notation and material time derivative (̇), the whole left hand
side of equation (2.37) is indeed the Jaumann stress rate and the tensor ωij is called the ”spin
tensor” and it is calculated using

ωij =
1

2
(
∂vi
∂xj
− ∂vj
∂xi

). (2.38)

As discussed in the section 2.4.1 the application of such rate constitutive equations while
assuming spatially constant coefficient, is quite questionable and in fact incompatible with
elasticity when large deformation and especially severe volume change takes place. Nev-
ertheless, in this work with the assumption of moderate deformations, this effect has been
neglected.

2.5.5 Erosion (detachment)
The detachment process in the biofilm formation has different mechanisms such as erosion,
sloughing, abrasion, predator grazing and human intervention, see BRYERS (1988). The
ones which have a hydrodynamical root are erosion and sloughing. In this work, the focus is
on the interface erosion in which the bacteria (particles) are gradually washed away because
of the shear forces of the flow. To avoid any ambiguity, some important aspects of biofilm
detachment need to be clarified here.
First, the process is local and takes place at the micro-scale and hence it is almost impossible
to have a real-time experimental measurement from which a macroscopic balance of mass
could be deduced, see DUDDU ET AL. (2009). In practice, most experiments on biofilm are
solely measurement of the average height in some points of interests during large time scales
of order hours and days. In such a large time scales, the outcome is indeed the resultant of all
processes contributing to the biofilm formation (growth, erosion, sloughing etc.) and decom-
posing the real portion of impact for each of these processes is not possible. In other words,
the numerical erosion model of the biofilm could not be quantitatively verified through ex-
periments that have been conducted in this research. Nevertheless, it is still a powerful tool
to understand qualitatively the physics behind the erosion process in biofilms.
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Second, it has been assumed that the erosion occurs at the fluid-biofilm interface in the form
of a single particle removal when the shear stress induced by the fluid exceeds the biofilm
strength, as follows

τ interface > τ y. (2.39)

Here τ interface represents the shear stress induced by the fluid flow and τ y is the shear yield
stress in biofilm. τ y is a material parameter that reflects the strength of the biofilm prior
to detachment. Similar to the Young modulus, no unique value has been reported in the
literature for the strength of biofilms and it lies in a range from a few tenth of 1 Pa to tens of
Pascals, see BÖL ET AL. (2009).
Third, It is well known that the biofilm is a heterogeneous material and its cohesion strength
varies from the order of 10 Pa in the base where it is attached to the substratum to the
order of 0.1 Pa near the interface, see DUDDU ET AL. (2009). Unfortunately, measuring the
mechanical properties of a biofilm which govern its response is a very challenging issue and
there is no unique reference value for the mechanical properties in the literature. Thus a wide
range of values has been reported. On the other hand, it is obvious that the mechanical stress
in the biofilm must be higher at the substratum where it is cantilevered, see BÖL ET AL.
(2009). It means it is likely that sloughing, as another failure mode in which a bunch of
bacteria as a whole are detached, occurs in addition to the surface erosion. This may happen
especially in high Reynolds flow. However, in this study the flow conditions are such that
the dominant detachment process is surface erosion and the stresses near the substratum are
less than the biofilm strength there. Definitely, a continuum damage or an explicit crack
propagation model is required to be incorporated for capturing bulky failure modes within
the biofilm and it could be the matter of further future research.
Fourth, capturing the dynamically changing interface accurately is of great importance be-
cause this is the region where the biofilm-fluid coupling is taking place. If the interface is
not recognized properly several artifacts might appear and finally lead to the crash of the
numerical method. Penetration of the fluid into the biofilm, local non-physical tearing of the
biofilm due to an abrupt change in the interface geometry and forces, are two common issues
in the case that the interface geometry is naively tackled. In this work an algorithm so-called
”Alpha shape” has been employed. This has proved to be a robust method especially in case
of a general irregular set of particles. This algorithm is based on the Delaunay triangulation
of a point cloud and circumscribed rolling circles. It is available in MATLAB software. The
input is an arbitrary point cloud and a value corresponding to a rolling circle on the bound-
ary points. The out put is the set of the boundary particles. Figure (2.6) illustrates how the
algorithm works.
Finally, the fact that the minimum size of detached material at the interface is equal to the
size of the particle might be physically arguable. This is the case not only in mesh-less
methods but also in element based methods when the damage and failure phenomena are
modeled using ”death” of elements. In a general term, it can be said that capturing the
strain softening using classical local damage theory suffers from mesh dependence, see BE-
LYTSCHKO ET AL. (1986). In other words, the size of the micro-structure plays an important
role in the size of damaged (detached) zone. Generally such mesh dependency of material
response, which is undesirable, is a matter of discussion when the equations are transformed
from continuum to discretization level. Nonetheless, here it can be argued that the biofilm
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Figure 2.6. Recognizing boundary particles using alpha shape algorithm

micro structure in reality is a composite made of the bacteria as the inclusions being glued
together with EPS as a matrix. The damage always happens in the weaker compartment of
this composite which is the matrix. It is implied that a single bacteria is not torn apart, but it
is detached as a whole. Consequently the minimum size of material removal is confined to
the size of a single bacteria. Since here the size of the mesh (particles) is the same as a single
bacteria, this modeling of material erosion is justifiable.



Chapter 3

Discretization and implementation

In this chapter, first a brief introductory discussion is presented regarding the different ap-
proaches and methods in numerical continuum mechanics in order to know where SPH falls
in terms of numerical methods classification. Afterward, the mathematical description of
the SPH method is provided. Then some important points regarding the mesh generation is
discussed and the governing equations derived in chapter (2) are discretized based on SPH.
Furthermore solution procedure, numerical challenges and remedies are discussed in detail.

3.1 Numerical method

3.1.1 Eulerian and Lagrangian perspective

When a physical problem is translated into a mathematical model, it is a common way to
distinguish between Lagrangian and Eulerian description of it. In the Lagrangian approach
the mesh or grid is attached to the material and moves with it, but in the Eulerian one the
mesh or grid is fixed in the space. Of course either of the approaches has its own advan-
tages and drawbacks. While handling the moving or geometrically complex boundaries is
a serious challenge in the Eulerian framework, they are easily treated using the Lagrangian
description. However, very large deformation in Lagrangian approach entails mesh distor-
tion and needs for the re-meshing procedures which are costly. on the contrary, Eulerian
description does not suffer from mesh distortion. Tracking the time history of a variable
associated to a material point is quite straight forward in Lagrangian perspective due to the
fact that the the material points themselves carry the field variables, whereas in the Eulerian
perspective, the variables are associated to a point in spatial domain not a material point.
For more comparison and understanding of these two approaches, the readers are referred to
LIU & LIU (2003). Considering the characteristics of the two approaches, one can realize
why Lagrangian methods such as finite element methods (FEM) are favored in modeling
solids, while Eulerian methods such as finite volume methods (FVM) are preferred for com-
putational fluid dynamics (CFD). In the problems in which both fluid and solid are present,
For example fluid-solid interactions (FSI), the merits of both description are combined in
the context of a method called arbitrary Lagrangian Eulerian (ALE) method, see HUGHES

ET AL. (1981). Figure (3.1) illustrates the two different view points for modeling a fluid.

27
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v(x)

(a) Lagrangian Viewpoint

v(x)

(b) Eulerian Viewpoint

Figure 3.1. Lagrangian vs. Eulerian description

3.1.2 Mesh-less and mesh based methods
While Eulerian perspective is implemented using the mesh based methods, the implemen-
tation of the Lagrangian approach may be either mesh based or mesh-less. Although mesh
based method have dominated the computational world so far, a great deal of attention has
been drawn to mesh-less methods in recent decades. More information about the history and
different mesh-less methods can be found in LIU & LIU (2003). Mesh-less methods are less
expensive in terms of mesh generation costs. Meshing a complex geometry using specific
elements with certain characteristics is not always straight forward. Contrarily, in mesh-less
methods the body is represented by a set of arbitrarily distributed points (nodes). Further-
more, mesh-less methods facilitate the treatment of very large deformation which results in
so called ”mesh distortion” in grid based methods. The readers are referred to LIU (2003)
for a comprehensive discussion about mesh-less methods in comparison to finite element.

3.1.3 SPH method
As a fully Lagrangian mesh-less method, Smoothed Particle Hydrodynamics (SPH) has been
successfully applied to various physical problems. Reminding the explanations in sections
(3.1.1) and (3.1.2), it enjoys both appealing features of being Lagrangian and mesh-less. Its
first appearance as a computational method, goes back to 1977 where it was used for compu-
tational research in astrophysics, see GINGOLD & MONAGHAN (1977) and LUCY (1977).
Since then, it has been proved to be robust and applicable to a variety of fields mentioned in
chapter (1). Unlike what is misleadingly inferred from its name, SPH is not a particle-based
method such as DEM (Discrete Element Method), rather it is a continuum-based one. How-
ever, the dicretized governing equations at the mathematical point (nodes) can be interpreted
as interactions between them which resembles the particle methods. In other words, due to
the Lagrangian nature, the mathematical nodes at which the field variables are to be com-
puted, move with material points and hence it is like that the material points carrying field
variables with themselves.

Mathematical framework of SPH

SPH starts with an integral interpolation of a function f using the Delta Dirac function δ(r−
r′), as follows
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Figure 3.2. Kernel function and the compact support

f(r) =

∫
f(r′)δ(r′ − r)dr′, (3.1)

where Ω is the domain corresponding to the continuous medium. It should be stressed that
equation (3.1) is exact from the mathematical point of view. Nevertheless, the nature of
the Delta function renders equation (3.1) unsuitable for numerical implementation. Hence,
the Delta function is approximated by a ”kernel function”, W , whose support is compact.
It means that W has a bounded maximum at r = r′ and gradually goes to zero within a
”compact support”. By the compact support it is meant that W is equal to zero outside a
finite and closed region which is called the domain of influence, see figure (3.2).
Replacing the Delta function by the kernel function, one can write

f(r) ≈
∫

Ω

f(r′)W (r′ − r)dr′. (3.2)

The discrete notation of the above integral leads to the following expression

f(ra) =
∑
b

mb

ρb
f(rb)W (rb − ra, h), (3.3)

in which mb and ρb represent the mass and density at point b, respectively. h is the kernel
support length which determines the maximum neighborhood radius. Consequently, it de-
scribes if two particles interact with each other or not. In general h must be slightly larger
but in the order of the particles average distance for convergence purposes, see MONAGHAN

(2005). In this work it is taken to be 1.5 times the average particles distance (h = 1.5∆). It
must be noted that in equation (3.3) the mb

ρb
has replaced dr′ in the integral (equation (3.2))

which is nothing else than the volume element. In fact the value of f at point a is estimated
using the values of its neighborhood. To find a similarity with FEM, one can imagine that
the expression mb

ρb
W (rb − ra, h) is like a ”shape function” which is multiplied by the nodal
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value f(rb) and the summation is over all the nodes within the kernel support which looks
like the element. Just like shape function, the kernel function has special properties in order
to be able to reproduce the function f , properly. To know them let’s start with the Taylor
series of the function f around the point r = r′

f(r) = f(r′) + (r − r′)df

dr
|r=r′ +O(|r − r′|2). (3.4)

Multiplying the both sides of equation (3.4) by the kernel function W and integrating over
Ω, it is easily deduced that the below condition must hold to have a first order accurate
approximation of f ∫

Ω

W (r − r′)dr = 1, (3.5a)∫
Ω

(r − r′)W (r − r′)dr = 0. (3.5b)

Equation (3.5a) is in fact the ”partition of unity” condition. In this case W is said to be
”normalized”. It can be shown that if the kernel function is ”symetric”, ie W (r − r′) =
W (r′ − r), then equation (3.5b) holds true. Additionally, since the W is to mimic the Delta
function, it must be positive and approaches to Delta function in the limit as follows

W (r − r′) ≥ 0, (3.6a)

lim
h→0

W (r − r′, h) = δ(r − r′). (3.6b)

Now, similar steps need to be taken to make an approximation for the derivatives of the
function f . Similar to equation (3.2) an approximation for the first derivative of f is

∇f(r) ≈
∫

Ω

∇f(r′)W (r′ − r)dr′. (3.7)

Applying the integration-by-part rule and also the divergence theorem to convert the volume
integral into a surface one, it is obtained∫

Ω

∇f(r′)W (r′ − r)dr′ =

∫
∂Ω

f(r′)W (r′ − r)ndΓ−
∫

Ω

f(r′)∇W (r′ − r)dr′. (3.8)

The first term in the right hand side vanishes, because W has a compact support and in
fact it is equal to zero on ∂Ω. Recalling the symetricity of W which results in the identity
∇W (r − r′) = −∇W (r′ − r), the final expression for the gradient approximation is as
follows

∇f(r) ≈
∫

Ω

f(r′)∇W (r − r′)dr′. (3.9)

Comparing equations (3.8) and (3.9), an important result needs to be stressed out that the
key assumption for dropping the surface integral is either f or W must be zero on ∂Ω. For
example, if the continuum body (ΩB) is finite (ΩB and the ∂Ω is truncated by the body
boundaries (Ω ∩ ∂ΩB 6= φ), the surface integral must be taken into account. Figure (3.3)
depicts such a situation.
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Figure 3.3. Kernel support Ω truncated by the body boundaries ∂ΩB

.

The discretized form of equation (3.9) is

∇f(ra) =
∑
b

mb

ρb
f(rb)∇W (ra − rb, h). (3.10)

Loosely speaking, one can say that equation (3.10) can be achieved from equation (3.3) by
applying the gradient operator on the kernel function. Following the similar mathematical
manipulation performed in equations (3.4)-(3.5a) and (3.5b) one can find that below condi-
tions must hold true in order that the gradient of a function be approximated properly by the
kernel gradient ∫

Ω

∇W (r − r′)dr = 0, (3.11a)∫
Ω

(r − r′)⊗∇W (r − r′)dr = I, (3.11b)

where I denotes the identity tensor. It should be noted that equations (3.11a) and (3.11b)
do not impose extra new conditions on W . As long as equations (3.5a) and (3.5b) hold true,
it can be shown that equations (3.11a) and (3.11b) are inherently satisfied. To give more
tangible interpretation, one can say that equations (3.11a) and (3.11b) account for having a
consistency of the order C0 and C1, respectively. It means that the gradient of a constant or
linear function is interpolated properly. (The gradient of a constant function must be zero
and that of a linear one is constant). For more discussion, the interested readers can refer to
LIU (2003).
For the second derivative of f , instead of twice differentiating the integral interpolant, a
much better approach was proposed by CLEARY & MONAGHAN (1999). The idea behind it
is that an approximation for the second derivative is built similar to finite difference scheme,
as follows

∇2f(ra) =∑
b

2
mb

ρb
(f(rb)− f(ra))

(rb − ra).∇W (ra − rb, h)

|rb − ra|2 + ε
,

(3.12)
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in which ε is a small parameter to avoid singularity.
Considering that the maximum order of the derivative in most governing equations of phys-
ical phenomena is two, higher order derivatives are not required in practice.

Symmetrization of the discretized mathematical operators in SPH

The SPH expression for the first derivative of a function is first order accurate in its con-
tinuum form, see equation (3.9). Nevertheless in its discretized form, (equation (3.10)) it
looses even the zero order consistency near the boundaries and also if the distribution of the
particle is irregular, see VIGNJEVIC & CAMPBELL (2009). It means that equation (3.10) can
not reproduce the derivative of a constant field, which must be equal to zero, exactly. Fur-
thermore, the equation is not symmetric. This point is important from the physical point of
view. The SPH discretized equations are translated finally into the inter-particle interactions.
If it is intended to model a system of particles, any interaction between two particles must
not violate the third law of Newton. Otherwise, the total angular or linear momentum is not
conserved, see MONAGHAN (2005). In order to make the derivative operator symmetrized
and exactly zero order consistent, one can use a differentiable test function φ in constructing
the first derivative of the function f . Starting with the identity

∇f =
1

φ
(∇(φf)− f∇φ). (3.13)

If now equation (3.10) is applied to the both terms of the right hand side of equation (3.13),
one can obtain

∇f(ra) =
1

φa

∑
b

mb

ρb
φb(f(rb)− f(ra))∇aW (ra − rb, h). (3.14)

Equation (3.14) vanishes if f is a constant function. Choosing φ = 1 gives

∇f(ra) =
∑
b

mb

ρb
(f(rb)− f(ra))∇aW (ra − rb, h). (3.15)

Equation (3.15) is the practical and final version of the first derivative which is symmetric
and exactly zero order consistent. It is obvious that in this equation, the effect of particle
a on b is the same as that of b on a, but in the opposite direction. In the section (3.2) this
equation is applied to discretize the continuity equation. In this case f := v.
Assuming φ = 1

ρ
, one can write

∇f(ra)

ρa
=

∑
b

mb(
f(rb)

ρ2
b

+
f(ra)

ρ2
a

)∇aW (ra − rb, h). (3.16)

This equation is utilized in section (3.2) for discretization of momentum equation in which
the aim is to discretize the expression ∇·σ

ρ
.
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Kernel and kernel gradient renormalization

Recalling equations (3.5a) and (3.11.b), they hold true if and only if the support of the kernel
function is complete. Near the boundaries of a finite body the condition of compact support
fails. Hence the value achieved from the SPH interpolation is inaccurate. In such a condition,
the kernel function and also its derivatives need to be re-normalized, see BONET (1999). In
this work, for the reason which will be explained later in section 3.3.1, the corrective formula
are not implemented in the code in simulating the solid and fluid phase. However, they are
utilized just at the interface of the fluid and solid in order to calculate the coupling traction
between the solid and fluid more precisely. It is worthwhile to know that such a corrective
formula recovers the consistency of SPH up to first order. The corrected kernel W̃ can be
computed as follows

W̃ (ra − rb, h) =
W (ra − rb, h)∑
b
mb
ρb
W (ra − rb, h)

. (3.17)

In equation (3.17) the denominator is equal to unity if the support is complete. The corrected
kernel gradient can be derived in such a way that equation (3.11.b) is enforced as follows

∇̃W (ra− rb, h) = M−1∇W (ra− rb, h), M =
∑
b

mb

ρb
∇W (ra− rb, h)⊗ (ra− rb).

(3.18)
The dimension of the matrixM is 2 and 3 in 2D and 3D, respectively. A corrective formula
has been proposed by FATEHI & MANZARI (2011) for the second derivative of kernel which
is not applicable in this work.

Kernel function

A great amount of the literature has been dedicated to different types of kernels and their
effect on the stability and accuracy of the solution. In MONAGHAN (2005) it has been dis-
cussed that how the error in the approximation depends on the Fourier transformation of the
kernel. SWEGLE ET AL. (1995) related the tensile instability to a combination of the sign
of the pressure and second derivative of the kernel. This instability will be discussed later
in section (3.3.2). Numerous possibilities for kernel function exist in the literature ranging
from polynomial to Gaussian. In spite of different mathematical description, they are all bell-
shaped and meet the required condition discussed in section (3.2). In LIU & LIU (2010) a
review about different kernels has been presented. According to MORRIS (1996) the general
formula for the kernel function is

W (ra − rb, h) =
1

hn
f(
|ra − rb|

h
), (3.19)

where n is the dimension of the problem and h is smoothing length which is proportional
to the particles average distance. In this thesis, the cubic spline proposed by MONAGHAN

& LATTANZIO (1985) has been adopted, because it closely resembles the Gaussian kernel
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Figure 3.4. Cubic spline kernel and its first derivative divided by the factor α

while having a narrow support. The equation of the cubic spline is as follows

W (q, h) = α×


1− 3

2
q2 + 3

4
q3 0 ≤ q < 1

1
4
(2− q)3 1 ≤ q < 2,

0 q ≥ 2

(3.20)

where q = |ra−rb|
h

and α is equal to 10
7πh2 and 1

πh3 in 2D and 3D, respectively. Figure (3.4)
demonstrates the plots of spline kernel and its first derivative.

Error estimation in SPH

It is not that straightforward to do an error estimation for the SPH method similar to that
performed for grid-based method such as FEM. The reason is that the particles are always
being disordered. However, it is important to know that the particles are not disordered
randomly. In fact they get disordered based on the dynamics of the problem. This is a positive
feature of SPH which ensures that the error is much more smaller than that is expected from
probabilistic analysis such as Mont Carlo estimate. The reason is that in Mont-Carlo estimate
the fluctuations are allowed to be completely random (even inconsistent with dynamics),
while in SPH the particles movement is governed by dynamics, see MONAGHAN (2005).
Nevertheless, assuming a regular distribution of the particles, one can make an acceptable
error estimation.
There are several sources of error in SPH. Here we confine our attention to two significant
roots of error, namely the ones arisen due to the integral interpolation and also those induced
because of the discretization of integral in the form of a summation. The interested readers
can refer to MONAGHAN (2005), FATEHI & MANZARI (2011) and VAUGHAN ET AL. (2008)
for more details.

Error in the integral interpolant
For the sake of simplicity and without loosing the generality, we focus on a 1D case. Starting
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from the integral interpolation of a quantity AI and using a kernel function W one can write

AI(x) =

∫
A(x́)W (x− x́, h)dx́ = A(x) +

∫
(A(x)− A(x́))W (x− x́, h)dx́. (3.21)

Now, the error can be estimated by a Taylor series expansion of A(x́) around x as follows

A(x́) = A(x) + (x− x́)
dA(x́)

dx́
+

1

2
(x− x́)2 d2A(x́)

dx́2
+ .... (3.22)

Since the kernel function W (q, h) is an even function of q, by substituting equation (3.22) in
(3.21) one can obtain

AI(x) = A(x) +
σh2

2

d2A(x́)

dx́2
+ ..., (3.23)

where σ is a constant depending on the kernel. It should be noted that the the integral term
containing the first derivative ofA vanishes, because the expression (x− x́)W (x− x́, h) is an
odd function under the integral. The interpolation gets better if σ is zero and in such a case,
a higher order term in the Taylor series appears. It is interesting that due to the symmetry
of the kernel function (because, W is an even function of q), all the terms having odd order
vanish. It means that if one uses a kernel as a result of which σ = 0 then the interpolation
is accurate up to forth order. However, one needs to keep in mind that the error is larger
near the boundaries, because the support of the kernel is not fully contained and the Taylor
expansion is not valid anymore. To conclude, one can say that the SPH interpolation is at
least second order accurate far from the boundaries.

Error in the summation interpolant
To evaluate mathematically the discretization error, the kernel function is assumed to be of
the 1D Gaussian type with an infinite support, as follows

W (x, h) =
1

h
√
π

(
3

2
− x2

h2
)e
−x2

h2 . (3.24)

All other types of kernels are similar to this, but they have a compact (finite) support. It
means that for the Gaussian kernel the summation of SPH discretization are extended to
infinity. A discretized summation can be converted into an integral form using the Poisson
formula

∞∑
j=−∞

f(j) =

∫ ∞
−∞

f(j)dj + 2
∞∑
r=1

cos(2πrj)f(j)dj, (3.25)

where i is treated as a continuous quantity on the right hand side. To do an error estimation
analysis of 1D SPH discretization, a linear function g(x) = α+βx is considered. The domain
has been represented with a regular quasi-spaced array of particles with spacing parameter ∆
along an infinite line. If the density is taken ρ = 1 the mass of each particle will be m = ∆.
Now the value of the function g(x) at the sampling points xa = a/∆ is computed using the
SPH summation. One can write the following expression

∆
∞∑

j=−∞

(α + βj∆)W (a∆− j∆). (3.26)
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If a change of variable is applied by shifting the origin to the point x = a/∆ and then the
Poisson formulation is utilized, equation (3.26) reads

(α + β∆)(

∫ ∞
−∞

W (q, h)dq + 2

∫ ∞
−∞

cos(
2πq

∆
)W (q, h)dq + ...). (3.27)

An interesting point can be inferred from equation (3.27). The error depends of the ” Fourier
transform ” of the kernel. If the Gaussian kernel (see equation (3.24)) is used, equation (3.27)
reads

(α + β∆)(1− 2e
−π2h2

∆2 + ...). (3.28)

Equation (3.28) shows that, the SPH summation is not able to reproduce even a constant
function (β = 0), exactly. However the error is exponentially small and is negligible if h >
∆. If a cubic spline kernel is used instead of the Gaussian one, the discretized interpolated
value of g is

(α + β∆)(1 + 2(
sinπh/∆

πh/∆
)4 + ...). (3.29)

Equation (3.29) reveals that in case of cubic spline, the dominant error term vanishes exactly
if h = ∆ and small if h > ∆.
Of the greater interest is the error in the derivative. It is obvious that dg

dx
= β. If the SPH

approximation of the derivative of g(x) is calculated using equation (3.15) and then the vari-
able shifting and Poisson formula are applied similar to the procedure which was followed
in equation (3.27), one can obtain

dg

dx
= β(1−

∫ ∞
−∞

q
∂W

∂q
cos

2πq

∆
dq + ...). (3.30)

It can be realized from equation (3.30) that the error in the derivative evaluation depends
on the Fourier transformation of the kernel gradient. In case of Gaussian kernel the error is
again exponentially small for h < ∆.
To sum up this section, it is concluded that the error estimation of SPH approximation can be
done provided that the particles are regularly positioned in an infinite space. The extension of
this analysis to two and three dimensions is quite straightforward. However, a general error
estimation in case of disordered particles is still missing in the literature and needs more
investigation. The reason is that the disorder depends on the dynamics in SPH and hence the
traditional probabilistic error estimation procedures can not be applied to that. In practice,
the accuracy of SPH is validated against benchmark known solutions or experiments.

3.2 Discretization

3.2.1 Initial particles distribution (meshing)
Unlike the gird-based methods such as FEM for which robust mesh generator tools has been
developed, such tools are missing in SPH. Although a simple geometry can be represented
easily using particles (point clouds), it is not the case for complex geometries. In other
words, creating the initial particles distribution is generally a challenge in SPH. One may
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think about employing mesh generator tools in order to create initial points. For example,
the generated nodes by an FEM mesh generator can be regarded as the initial points for SPH.
Another choice can be the centroid of the generated elements, see for example GANZENM-
LLER (2015). Such methods result in an irregular point distribution in general and this can
be problematic in SPH. The fact is that an irregularly distributed point may be used, but with
extreme carefulness. The reason is that in SPH, a volume and finally a mass is assigned
to each particle. The volume occupied by each particle is indeed a function of the average
particles distance at the point of interest. If the volume of the particles are not accurate the
normality condition is not fulfilled properly, see equation (3.3). This deteriorates the SPH
results. That is why most SPH codes uses a regularly placed particles as the initial particle
condition. In such a lattice the initial volume for all the particles is the same and a function
of the lattice cell length.
An important point that needs to be clarified is that, even an initially regular particle dis-
tribution becomes irregular as the SPH solver proceeds. The question is that what is the
difference between such irregularity and the initial irregular particle distribution. Maybe the
most beautiful answer to this question is a quote from MONAGHAN (2005) saying ”in SPH
particles are disordered but orderly!”. The reason is that the density and consequently the
volume of the SPH particles change through time in such a way that they are in compatibil-
ity with the particles distribution. Because, the particles position is updated by the velocity
which is governed by the mass and momentum balance.
Now the question is that among several possible regular lattice, which ones are optimal. Here
it is not intended to go through this subject in detail and a concise discussion is provided to
give an insight to it. The readers seeking more details may refer to DIEHL ET AL. (2008).
The simplest and most favored method for initial particle generation is the so-called simple
cubic lattice. In this method the particles are placed in a rectangular arrangement in each
direction. This lattice has proven to be ”unstable” if a perturbation is applied to the equilib-
rium state. Furthermore it has strong ”preferred directions”, see LOMBARDI ET AL. (1999).
Other lattice types such as hexagonal closed pack are stable in the presence of a perturbation.
However, the neighbors number for each particle is relatively larger in these lattices and this
leads to more computational effort. In DIEHL ET AL. (2008) a comparative study on dif-
ferent lattices has been done. Figure (3.5) illustrates the simple cubic lattice and hexagonal
closed pack arrangement.
In this work, the hexagonal closed packing lattice has been adopted due to its satisfactory
properties. It is geometrically more homogenous (no preferred direction) and also uniform
enough to reduce the noise level while possessing acceptable accuracy in the interpolation.
Furthermore, implementing the associated algorithm is straight forward even it needs more
effort in comparison to simple cubic lattice. In this work the pre-processor unit which creates
the initial point cloud has been implemented in MATLAB.
Assuming that the problem geometry has been represented using an appropriate lattice, we
can proceed with discretizing the governing equations derived in chapter (2).
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Figure 3.5. simple cubic vs. hexagonal closed pack lattice, from DIEHL ET AL.
(2008)

3.2.2 Discretization of the mass balance (continuity) equation
Taking the source term into account and recalling equation (3.15), SPH discretization of
mass balance equation follows

∂ρa
∂t

=
∑
b

mb(va − vb) · ∇aW (ra − rb, h) + γa, (3.31)

where ∇a is an abbreviation for ∂
∂ra

. Equation (3.31) has been implemented for the fluid
flow. Nevertheless, another version of the continuity equation which is equivalent to equation
(3.31) has been employed for the biofilm compartment in which the growth process occurs,
see LIBERSKY ET AL. (1993). This version of the mass balance equation is as follows

ρa =
∑
b

mbW (ra − rb, h). (3.32)

The reason behind this adoption is that the growth process is driven in fact by the internal
local density accumulation rather than external forces. Both equations, (3.31) and (3.32),
theoretically must give identical results except at boundaries, see LIBERSKY ET AL. (1993).
It was found by the authors that equation (3.32) is much more suitable for the numerical
scheme utilized here to handle the growth process. In this thesis the growth process is in
fact a density relaxation taking place once the new mass is generated due to the reaction
term leading to a local density accumulation. As a result, the biofilm expands and this
expansion in particles distribution is reflected in more relative distances between the particles
and that is exactly the spirit of equation (3.32) which is explicitly a function of particle
distribution rather than particles velocity. It should be highlighted that this approach was
inspired by a seemingly irrelevant work to this research, see BOFFIN & ANZER (1994), in
which astrophysical gravitational wind accretion has been simulated using the SPH method
with particles whose masses are varying.
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3.2.3 Discretization of the momentum balance equation

The SPH approximation of equation (2.32) is obtained using equation (3.16) as follows

Dva
Dt

=
∑
b

mb(
σa
ρa2

+
σb
ρb2
− ΠabI +Rab)∇aW (ra − rb, h) + fa, (3.33)

where ΠabI (with I being the identity tensor) and Rab are tensors corresponding to the
artificial viscosity and artificial stress terms, respectively. They are intentionally introduced
to the momentum equation for stability reasons. They will be discussed in section (3.3)
in detail. fa denotes the external force (body or surface) applied to the particle ”a”. The
computation of fa will be discussed in section (3.3).

3.2.4 Discretization of the diffusion-advection-reaction equation

The discretized form of equation (2.29) is represented as follows using equation (3.12).

DCa
Dt

=
∑
b

2D
mb

ρb
(Cb − Ca)

(rb − ra).∇W (ra − rb, h)

|rb − ra|2 + ε
+
γa
Y
. (3.34)

3.2.5 Discretization of the constitutive equations

Referring to equations (2.9)-(2.13), in order to calculate the stress (for fluid) or stress rate
(for the solid) tensor, one needs to compute two values. First, the strain rate tensor (equation
(2.37)) and spin tensor (equation (2.38)). Second, the pressure. The formers are functions of
velocity gradients which can be evaluated as follows

(
∂vi
∂xj

)a =
∑
b

mb

ρb
((vi)b − (vi)a).

∂W (ra − rb, h)

∂xj
. (3.35)

In the standard SPH which is also called weakly compressible SPH (WCSPH), the pressure is
computed from the density using a thermodynamically consistent equation of state. Such an
approach enjoys the benefit of decoupled pressure and velocity field, but suffers from a small
time step that is conversely propositional to the sound velocity in the material due to the CFL
(Courant, Friedrichs and Levy 1928) stability condition. Here the following equation for the
pressure is used

pa =
c2

0ρ0

γ
((
ρa
ρ0

)γ − 1), (3.36)

where cs and ρ0 are sound velocity and rest density of the bulk material. The parameter γ is
set to be ”7” for the fluid and and ”1” for the solid. It should be emphasized that the value
of c0 for the fluid is in fact a penalty parameter rather than a true physical sound speed and
hence it can be selected in a way that is large enough to insure density fluctuation less than
0.01 and keep the Mach number less than 0.1, and small enough to avoid unnecessary small
time steps, see MONAGHAN (2005). In practice, if c0 is taken at least 10 times the maximum
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Figure 3.6. Particle refinement (spiting) and coalescence (merging) pattern

velocity, it is sufficient, see ADAMI ET AL. (2012). Nevertheless, for the solid it is a real
material constant related to the bulk modulus(K) and density(ρ) according to

c0 =

√
K

ρ
. (3.37)

3.2.6 Particles coalescence and splitting (re-meshing)
The concept of variable resolution in mesh based methods, especially the Eulerian ones,
has been developed successfully. It is known as the non-uniform meshing and re-meshing
techniques. Different resolution in the domain of interest is significantly advantageous. One
can increase the accuracy wherever it is really necessary. This is more efficient in terms of
computational cost. Nevertheless, extending this concept to Lagrangian mesh-less methods
such as SPH is in the early stages of development. One important reason which hinders
its progress is that any intervention in the particle arrangement influences the governing
equations strongly. Because, the particles themselves are carrying important quantities like
mass, momentum and energy. It means that any change in the particle pattern must be in
such a way that insure the ’minimum possible change’ in important physical quantities. Of
course, this issue exists in the Eulerian methods as well, when one projects the quantities
from one mesh to the new one. So, the objective is to find systematic algorithms by which
one can benefit from variable resolution while conserving the fundamental properties of the
system. It means that any ad-hoc procedure like new particle insertion, particle removal,
particle coalescence and splitting, needs to be carefully pondered and it has something more
than solely ”particles manipulation”.
The motivation for employing such adaptive re-meshing techniques is to reduce the compu-
tational cost by using a rough mesh in the regions where the gradient of the quantities are
relatively small. Such regions are normally of less interests. To make it more clear, two
examples are provided. First in a fluid solid interaction problem, the fields variables such as
pressure and velocities must be accurate enough at the interface through which the solid and
fluid interact. But in the regions far away from the interface where the fluid flow has a simple
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stream pattern, a rough mesh (more distance between the particles) is sufficient. Another ex-
ample, is relevant to the growth process. As the biofilm grows, the material expands and it is
reflected in more distance between the particles. In this case, the more the growth proceeds,
the more rough the mesh becomes and the less accurate the results are. In other words, one
needs to increase the number of particles in order to keep the accuracy of the method.
To the best of the author’s knowledge, the algorithm introduced in VACONDIO ET AL. (2013)
is the most matured and robust. The basic idea is that a dynamic refinement is realized by re-
placing a ”mother particle” with several ”daughter particles” in the regions where one wants
to refine the mesh. This can be regarded as a ”particle splitting”. Conversely, several parti-
cles are substituted with a single particle in order to obtain a region with a more rough mesh.
This process is also referred as ”particle coalescence (merging)” in the literature. Figure
(3.6) shows schematically the refinement pattern in 2D. It is important to know that daughter
particles have the same velocity as their mother particle. The mass of the mother particle is
divided equally among the daughters. Additionally the arrangement of the daughter parti-
cles are symmetric with respect to the original position of their mother. These assumptions,
ensure the conservation of mass and both linear and angular momentum, see VACONDIO

ET AL. (2013). One can intuitively understand that. Nevertheless, an error occurs in local
density evaluation due to the introduced perturbation in the particle configuration, see equa-
tion (3.3). The main idea is to find the two parameters α and ε in such a way that the error
in density estimation is minimized. α and ε correspond to the scaling parameters for the new
smoothing length and particles separation, see figure (3.7).
It should be noted that there are several possibilities for particles arrangement while main-
taining the symmetry. For example in 2D, a mother particle can be replaced by 4 particles in
a rectangular arrangement or 7 in a hexagonal lattice, see figure (3.7).

Figure 3.7. Two different daughter particles patterns in 2D, right: triangle pattern,
left: hexagonal pattern

In FELDMAN (2006) a comprehensive comparative study has been performed for finding
the optimum parameters α and ε in 2D and 3D cases using different possible particles ar-
rangement. It was reported that α = ε = 0.6 with hexagonal lattice arrangement (7 and 13
daughter particles in 2D and 3D, respectively) results in a minimum error less than 5 percent.



42 CHAPTER 3. DISCRETIZATION AND IMPLEMENTATION

3.3 Implementation
In this section, some practical discussions for handling the coupling between the fluid and
biofilm, interface treating and numerical stabilization are provided. Furthermore, the numer-
ical time integration method is introduced.

3.3.1 Boundary conditions and fluid-solid interaction implementation

Fluid phase

The treatment of the boundary conditions in SPH is still a controversial issue and not fully
solved. It is still defined as one of the four grand challenges of the SPHERIC (SPH Eu-
ropean Research Interest Community). The reason stems from the nature of SPH as a col-
locational method based on the strong form of the governing equations, see LIU (2003), LI

& LIU (2002). The completeness condition which means consistency of the method fails
at boundaries where the kernel of smoothing function is truncated, see LIU & LIU (2003).
The objective of any treatment is to provide an accurate boundary interaction between the
fluid and solid to avoid non-physical penetration. Several techniques have been proposed
which are based on one of three basic concepts. First, to use some imaginary particles at the
boundaries. This method is called ”dynamic boundary condition” or ”Dalrymple boundary
condition”, see DALRYMPLE & KNIO. These particles are forced to satisfy all equations as
fluid particles but their movement is externally prescribed. Another version of such ”auxil-
liary particles” is called image particles. This approach has more geometrical complexity in
terms of that the generation of these particles is performed dynamically by mirroring the fluid
particles with respect to the wall boundary, see MORRIS ET AL. (1997). Second, introduc-
ing predefined repulsive forces, see MONAGHAN & KAJTAR (2009), into the fluid particles
near the boundaries in order to prevent them from penetrating into the solid wall. The third
method is to derive corrective formula for the kernel and kernel gradient at free boundaries
where the kernel support does not have sufficient neighbors, see BONET (1999). It should
be stressed that in this thesis the corrective formula for kernel gradient near free boundaries
are not implemented because such a formula fail to meet the requirements accounting for
conservation of the linear and angular momentum even they provide more accurate results in
short terms, see VAUGHAN ET AL. (2008).
It should be expressed that the method presented in ADAMI ET AL. (2012) has been em-
ployed in this work . This method has been appreciated as a plausible, accurate and stable
method by Monaghan, one of the first developers and pioneers of SPH, see VALIZADEH &
MONAGHAN (2015). The main essence of this approach is to consider three layers of solid
particle to be dummy (wall) particles through which the pressure and velocity fields of the
fluid are extrapolated. Presence of such dummy particles not only removes the issue of trun-
cated kernel support but also provides consistent repulsive force avoiding unphysical pene-
tration. Figure (3.8) depicts the arrangement of dummy wall particles at the boundary of the
fluid. At first glance, the method introduced in ADAMI ET AL. (2012) is apparently similar
to Dalrymple method in that they both use dummy particles replacing the solid boundaries.
However, it has been found that the Dalrymple boundary condition results in oscillatory pres-
sure field near the boundaries, although it can address the penetration issue well. In the new
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Fluid particle Dummy particle Wall particle

Figure 3.8. Dummy particles for boundary treatment

method, the way that the field variables for the dummy particles are calculated is based on a
local force balance near the boundary. Hence, the field variables at the boundary particles are
consistent with those of internal fluid particles and the solution is stable without unphysical
oscillations. To introduce the method, we start with the Navier Stockes equation for the fluid
close to the solid boundaries (dummy particles), neglecting the viscous term

af =
dvf
dt

= −∇p
ρ

+ g, (3.38)

in which the index ”f” refers to the fluid phase and af is the acceleration of fluid particles
near the wall. The key assumption is that we have a no-slip boundary condition and it entails
the continuity of the acceleration at the boundary (af = aw). Rearranging equation (3.38)
and integrating along a line connecting the fluid particle to a wall particle, yields∫

∇p · dl = ρf

∫
(g − aw) · dl. (3.39)

The novelty of this method is the incorporation of the wall acceleration into the pressure
calculation of the dummy particles. The point is that It is not an ad-hoc formula, but rather it
comes from the momentum balance at the boundaries. Expressing equation (3.38) using SPH
discretization, one can find the final formula for computing the pressure in dummy particles

pw =

∑
b
mb
ρfb
pfbWab + (g − aw).

∑
b
mb
ρfb
ρfbrabWab∑

b
mb
ρfb
Wab

. (3.40)

Here pw and pfb are wall (dummy) and fluid pressure, respectively. Besides, Wab and rab
are short notations for W (ra − rb, h) and ra − rb, respectively. Pondering on equation
(3.40), one can say that the body force and solid wall acceleration play important roles in the
pressure value of the dummy particles. The effect of these two is added to the value which
is calculated using a simple extrapolation of pressure field.
The density of the dummy particles are computed using the inverse of equation of the state
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(equation (3.36)) as follows

ρw = (
pw
ρ0c2

0

+ 1)
1
γ . (3.41)

In addition to the pressure, the velocity of the dummy particles are needed to be determined.
Again, with the assumption of no-slip condition, one can write

vw = 2vs −

∑
b
mb
ρfb
vfbWab∑

b
mb
ρfb
Wab

, (3.42)

where vw, vfb and vs are wall (dummy), fluid and solid particle velocities, respectively.
Comparing to the method presented in MORRIS ET AL. (1997), this approximation is less
accurate than that. The advantage is that the geometrical computation of the tangent of
interface profile is not involved in it and hence the implementation, especially for complex
geometry, is straight forward. Equation (3.42) has been defined in such a way that insures the
impermeability of the solid boundary. Indeed, the assigned velocity to the dummy particles
is a mirrored velocity of the fluid around the boundary. To examine the validity of this
equation intuitively, one may consider to special cases. In the case that the solid boundary

is stationary (vs = 0) equation (3.42) is reduced to vw = −
∑
b
mb

ρ
f
b

vfbWab∑
b
mb

ρ
f
b

Wab
which means that

the velocities of dummy particles are equal to those achieved from an extrapolation using
fluid particles, but in an opposite direction (mirror). In the case that both fluid and solid
move with the same velocity (vs = vfb ) equation (3.42) gives the expectable results meaning
vw = vs.

Important remark: Knowing the value of the pressure and velocity of the dummy particles,
they are taken into account in equations (3.31) and (3.33) for fluid phase. But one must
be careful that the dummy particles in reality are 3 layers of solid particles and it means
that they move according to the governing equations of the solid phase . In other words the
summation of SPH in fluid phase is extended to the solid particles which play the role of
dummy particles. Furthermore, one should keep in mind that the solid particles with dummy
identity contribute in equations (3.31) and (3.33) with their ”dummy value” of pressure and
velocity, not their real value which comes from solid phase.

Solid phase

In the previous section, the effect of the solid on the fluid and the way how to numeri-
cally treat it, was discussed. Now we intend to incorporate the effect of the fluid on solid
phase. Recalling equations (2.33b), a solid will experience an effective traction from the
fluid around. Such a traction serves as a Neumann boundary condition for the solid phase.
From equations (2.34)-(2.36) and neglecting the divergence of velocity due to incompress-
ibility, one can obtain an expression for the traction applied to the solid from fluid side, as
follows

ts = σf · n = (−pI +
1

2
µf (∇v +∇Tv)) · n, (3.43)
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in which n is the normal vector to the current configuration of the solid boundary. Here an
amazing superiority of SPH shows up. Due to its updated and Lagrangian features no map-
ping of equation (3.43) is needed. If an ALE approach were employed, a mapping between
Eulerian description of the right hand side (fluid phase) and Lagrangian description of left
hand side (solid phase) would be required, see HUGHES ET AL. (1981). Furthermore, due to
the explicit nature of SPH, no linearization of interface relations is involved. The interface
force due to the pressure is always normal to deformed surface of biofilm (it is so-called
follower load). Such a deformation dependent traction at the boundaries, in methods like
FEM poses numerical challenges and makes the stiffness matrix non-symmetric WRIGGERS

(2008).
The discretized form of each part of equation (3.43) is

psa =
∑
b∈Ωf

mf
b

ρfb
pfb W̃ab ≈ 2

∑
b∈Ωf

mf
b

ρfb
pfbWab, (3.44a)

µf (∇v +∇Tv)|for a =
∑
b∈Ωf

µf
mf
b

ρfb
(vfb − v

s
a)∇̃aWab, (3.44b)

n =
N

‖N‖
, N =

∑
b∈Ωs

mf
b

ρfb
∇aWab. (3.44c)

In equations (3.44a)-(3.44c) the index ”f” and ”s” refer to the fluid and solid phase, respec-
tively. It should be notified that the SPH summation is applied to the fluid particle at the
interface. This is the reason why the computation is performed using the corrected kernel
(W̃ ) and corrected kernel gradient (∇̃W ). It has been found that equation (3.44a) works
better if the denominator of equation (3.17) is replaced by 0.5 for all configuration of trun-
cated kernel, see ANTOCI ET AL. (2007). The reason is that this approximation introduces
a smoothed transient region from maximum value to zero at the interface. In other words,
dummy particles which are positioned in three layer, are subjected to the traction, smoothly.
The outermost layer experience the maximum value and the traction on the innermost one
tends to zero. The vector n is calculated using the updated (current) configuration of the solid
particles. Equation (3.44c) is in fact a fantastic property of the kernel gradient in computing
the normal direction of the surface constructed by an assembly of the nodes . To examine
This property more deeply, see figure (3.9). As discussed in section (3.2), if the support of

a particle is fully contained by solid neighbors, the expression
∑

b∈Ωs

mfb
ρfb
∇Wab is equal to

zero. But in the case that the Ω is truncated by the boundary, using the divergence theorem
one can write ∫

Ω∩Ωs

∇Wdv =

∫
∂Ω∩Ωs

Wnds+

∫
∂Ωs∩Ω

Wnds. (3.45)

The first term in the right hand side of equation (3.45) is zero, because W = 0 on ∂Ω.
The second term of the right hand side is nothing else than an average of normals of solid
boundary particles around the point of interest which lie within the support.
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Figure 3.9. Boundary condition for the solid phase

Now, the total forces per unit mass exerted on a solid particle from the fluid side, F f→s can
be computed

F f→s =
tsa(

msa
ρsa

)β

ma
s

, (3.46)

where the (m
s
a

ρsa
)β is in fact the area associated to a particle. β is taken 1

2
and 2

3
for 2D and

3D, respectively to give an estimation of the area of each particle. Note that in the solid
phase, the force calculated using equation (3.46) is added explicitly to the right hand side of
momentum equation (equation (3.33)), and the SPH summation is extended only to the solid
particles, whereas in the fluid phase the SPH summation includes dummy wall particles and
no such explicit term is added to the momentum equation. In fact, the velocity and pressure
of dummy particles, which in reality belong to the solid phase, contribute to the reaction
force applied to the fluid from the solid.

Fluid-solid coupling procedure

It is true to say that interface modeling plays a crucial role in an FSI problem (fluid-solid
interaction). It can affect the output significantly. The more accurate the interface quanti-
ties are computed, the more correct the fluid-solid coupling is modeled and consequently
more realistic and physically sound results are achieved. In this work, it is not intended to
go through all different methods and approaches proposed to tackle the FSI problems. The
interested readers may refer to the literature. But some basic concepts need to be known to
understand the procedure which has been implemented in this work. Generally speaking,
there are two categories for the methods applied to FSI. First, monolithic approach in which
the fluid and solid are advanced simultaneously in a fully coupled fashion. The interfacial
conditions are treated implicitly in the solution procedure. Second, partitioned (staggered)
method in which the fluid and solids are stepped separately and successively. In this case
coupling is realized through ”data communication” in the context of prediction, substitution
and synchronization techniques. It should be noted that depending on whether the solver
of the fluid or solid is explicit or implicit, there are different combinations each of which
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Figure 3.10. Interface modification due to erosion, left) before erosion, right) after
erosion

has its own merits, see BELYTSCHKO (1977). The staggered method has the advantage of
using existing robust solver for fluids as well as solids. Making the whole system partitioned
adds a flavor of explicity into the system although each of the fluid or solid is handled im-
plicitly. That is why such methods, especially when there is no enough sub-iteration, have
stability issues. For example it has been found that the simulation of very ”light” structure
surrounded by ”heavy” fluids are problematic, see BAZILEVS ET AL. (2008). As another
example, the problems in which the ”added mass effect” is significant due to the incom-
pressibility of the fluid, are more likely prone to instabilities, see CAUSIN ET AL. (2005).
The interested readers are referred to FELIPPA ET AL. (2001) for a comprehensive overview
about the advantages and drawbacks of partitioned method. The most important point in the
interface of the fluid and solid, aside from the method chosen, is that the interface modeling
must be ”energy conservative”. It means that neither artificial energy should be injected into
the system nor unphysical damping should dissipates the energy, see PIPERNO & FARHAT

(2001), PIPERNO ET AL. (1995). It has been found that partitioned methods are inherently
non-conservative, see VAN BRUMMELEN ET AL. (2003).
It should be reminded that SPH is naturally an explicit method for both fluids and solids.
As an explicit method, the time step is governed by Courant condition. In this work, the
coupling of the fluid and solid has been implemented in a monolithic way in order to have
a strong two way coupling. In terms of computational cost, using a monolithic SPH based
(explicit) method for FSI problems is justified, if the elastic modulus of the solid is in the
order of the fluid bulk modulus (It is assumed that they have similar densities). It means that
applying SPH to FSI problems is computationally efficient, if the characterized time scale of
fluid and solid are of the same order, otherwise use of SPH is not recommended because a
much smaller time step is associated with the stiff solid and hence it rules the whole process.
In this Thesis, fortunately the biofilm is a soft material with elastic modulus in the order of
several Pa and Poisson ratio not close to 0.5 BÖL ET AL. (2009). In case of a fully incom-
pressible solid (for example rubber like materials) whose Poisson ratio approaches the limit
0.5, the bulk modulus tends to infinity and using this approach is unjustifiable. Some authors
have shown that an artificial decrease in the bulk modulus (or Poisson ratio) can be a remedy
for this issue, while not affecting the results that much. In this case, the material is allowed
to behave nearly incompressible, see ANTOCI ET AL. (2007).
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Erosion and interface up-dating

In section (2.3.5), the mathematical modeling and fundamental assumptions of the erosion
process were discussed. To implement the erosion process, first we need to calculate the
shear stress applied by the fluid to the solid particles at the interface, as follows

τ interface =
∑
b∈Ωf

µf
mf
b

ρfb
(vfb − v

s
a)∇aWab. (3.47)

The particle is detached if the shear stress exceeds the strength of the material according
to equation (2.39). Once the particle is removed from the solid phase, it is converted to a
free (planktonic) one floating in the fluid and moves with the fluid. In planktonic state, the
particle is subjected to its own weight and drag forces applied from the fluid. It should be
noted that the movement of a planktonic particle is governed by the rigid body equations of
motion for a mass point. In other words, the deformation of a single particle (mass point) is
irrelevant and meaningless in planktonic state. If one wishes to capture the deformation of a
single particle, it entails resolving the fluid solid interaction in a smaller length scale. As a
Lagrangian method, SPH can handle the interface of a solid automatically and no interface
tracer method, for example level set method, is needed to be employed. However, when
the material removal occurs and consequently some parts of the material belonging to the
interface are excluded, one should modify the interface. It should be reminded that the
interface is in fact up to 3 layers of boundary solid particles which play the role of dummy
particles for the fluid. If the detached particle from the interface is not replaced properly
by the inner particles, the kernel support of the fluid particles near the boundary will be
incomplete. This results in poor estimation of the interfacial forces, unphysical penetration
and finally crash of the numerical scheme. An effective algorithm has been embedded in the
code whose task is to modify the interface layers, once the erosion takes place. Figure (3.10)
illustrates the concept behind that.

Periodic boundary condition

In this work, it is assumed that the boundary condition is periodic on the lateral sides of
the RVE (see figure (2.1)). This means that the RVE repeats itself infinite number of times
and the geometrical and physical condition of the opposite lateral sides are the same. The
assumption of periodicity has the advantage of being computationally efficient. Because as
soon as a particle leaves the RVE from one side, it enters the opposite side and there is no
need for having a pool of particles to feed continuously the inlet of the RVE. Furthermore,
the implementation of periodic boundary condition in SPH is much more straight forward
than inlet/outlet boundary condition, see ARISTODEMO ET AL. (2015). Figure (3.11) reveals
the simple idea behind the periodic boundary condition concept in SPH. In fact the particles
near the lateral side interact with the complementary particles near the opposite side. In other
words, in a periodic boundary a truncated kernel support is completed using the particles of
the opposite side. This makes both inlet and outlet have the same physical condition such as
velocity, stress and pressure.
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Figure 3.11. Periodic boundary condition

3.3.2 Numerical challenges and remedies

In spite of its robustness and simple appearance, SPH like any other computational method
has some shortcomings. A great deal of literature has been dedicated to identify and remedy
such issues. Some problems like ”zero energy modes” are common in all numerical methods.
For example in FEM this issue manifests itself in ”hour-glassing”. Such numerical patholo-
gies originate from the ”rank deficiency” in the linear algebraic equations corresponding to
the discretized system and results in the non-uniqueness of the solution from the mathemat-
ical point of view, see GANZENMLLER (2015). Another weakness from which SPH suffers
is the ”tensile instability”, see SWEGLE ET AL. (1995). It is unique to co-locational mesh-
less methods such as SPH. Furthermore, some issues like ”completeness” influence strongly
the convergence. Completeness in SPH is equivalent to ”consistency” in finite difference
approximation, see BELYTSCHKO ET AL. (1998). Another important numerical point is
introducing ”artificial viscosity” into SPH in order to stabilize the solution. Furthermore,
”penetration” in Lagrangian particle based methods is inevitable even in low Mach numbers.
In this section, the items which were mentioned here are discussed in more detail.

Artificial viscosity

in SPH an artificial viscosity term must be added to the momentum equation in order to
suppress unphysical oscillations and stabilize the numerical scheme. In MONAGHAN &
GINGOLD (1983) it was motivated in an effort to find a better alternative for the artificial
bulk and Von Neumann Richtmyer viscosity in the shock tube problem, because they did not
give satisfactory results in SPH. Although they were suitable for finite difference methods,
they fail to capture the post shock front accurately in the SPH framework. The shock front
was either excessively oscillatory or excessively smeared. The presented artificial viscosity
in MONAGHAN & GINGOLD (1983), MONAGHAN & PONGRACIC (1985) is equivalent to
bulk viscosity in 1D. However, it has been found that it is much more effective in suppressing
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the unwanted oscillations in smaller length scales than the smoothing length, h, see BENZ

(1990). Aside from the shock related phenomena, in the fluid phase the intrinsic real viscos-
ity of the fluid is enough to stabilize the solution. In solid phase an artificial viscosity has to
be be introduced.
Artificial viscosity can be evaluated, see MONAGHAN (2005), by

Πab =

{
−αcabµab

ρab
vab · rab ≤ 0

0 vab · rab > 0
,

µab =
hvab · rab

|rab|2 + 0.01h2
,

(3.48)

where rab = ra−rb, vab = va−vb, cab = 1
2
(ca+ cb), ρab = 1

2
(ρa+ρb) and α is a parameter

in the order of unity. Having a closer look at the expression for the artificial viscosity, one
can notice that it is symmetric with respect to a pair of particles ”a” and ”b”. Hence the
angular and linear momentum remain conserved. It should be noted that it is turned on for
approaching particles while it is turned off for receding ones. This ensures that the modeled
dissipation is positive and increase the entropy of the system, see BENZ (1990).
It is noteworthy to add two complementary points about the artificial viscosity. First, in
case of high Mach number an extra quadratic term in the artificial viscosity is required to
effectively control the penetration of the particles. This term is analogous to Von Neumann
Richtmyer viscosity applied in finite difference scheme that produces a pressure force pro-
portional to |∇ · v|2, see LATTANZIO ET AL. (1986). In this work, such a quadratic term
in the artificial viscosity is not needed to be introduced due to the slow motion of the fluid.
Second, although the artificial viscosity works well for capturing the discontinuity in a field
variable, it may produce excessive dissipation in pure shear regimes. BALSARA (1995)
proposed a factor fab that should be multiplied by the Πab to reduce the effect of artificial
viscosity in the regions where the curl of velocity is considerable (shear flow). This factor
can be calculated using

fab =
fa + fb

2
fζ =

|∇ · v|
|∇ · v|+ |∇ × v|+ 0.0001 c

h

|for ζ ζ := a or b, (3.49)

in which c is the sound velocity and ∇ · v and ∇ × v represent the divergence and curl of
the velocity field, respectively. They are finally translated into the components of velocity
gradient. Hence one can use equation (3.35) to compute the numerical value of them using
SPH. This factor has been constructed in such a way that leads to correct limit value. It
means that for purely compressional flows (|∇ · v| >> |∇ × v|), it is identical to one and it
goes to zero for purely shear flow(|∇ · v| << |∇ × v|), see BENZ (1990).

Tensile instability

One of the most cumbersome instabilities in SPH is called ”tensile instability”. It manifests
itself in particle clumping and void generation in the domain, when a body is in tension state
of stress. A Von Neumann stability analysis was firstly done by SWEGLE ET AL. (1995) to
study tensile instability. Referring to figure (3.12), a rectangular configuration of stationary
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Figure 3.12. Tensile instability, from SWEGLE ET AL. (1995) left) under compres-
sion right) under tension

particles were examined in two cases. In the first case, the whole domain was subjected to
a hydrostatic positive pressure and in the second one the hydrostatic pressure was negative.
In the first case if a very small perturbation is applied to the velocity of a single particle
positioned at the center, the disturbance will travel in the whole domain for a long time
as expected. In other words, all particles have small oscillatory movement around their
equilibrium state. But in the second case, the instability starts to growing and finally leads
to a catastrophic change in the particles configuration. Some particles fall onto each other
and consequently several voids form. All these phenomena are not physical, but rather they
are artifacts. An stability criterion was found assuming a 1D problem in terms of the stress
and second derivative of the kernel. It was discovered that the solution is stable if σW ′′ > 0,
see SWEGLE ET AL. (1995). σ and W ′′ denote the stress and the second derivative of the
kernel function, respectively. Figure (3.13) shows the stable region of a cubic spline kernel.
Assuming h is approximately equal to the average particles distance, the method is unstable
in tension. Because, the nearest neighbor of a particle locates in the region where the second
derivative is positive.

Several techniques have been proposed to circumvent this instability. Due to the fact that
this instability has a root in the kernel function, some researchers followed the idea of using
special kernel functions. This remedy is not successful in all cases, see MORRIS (1996). In
WEN ET AL. (1994) it was found that although the artificial viscosity is a dissipative term in
SPH, it can not remove the tensile instability. Hence, another dissipative term in the context
of conservative smoothing was introduced to suppress this instability for 1D. Later on, This
idea was extended to higher order dimensions, see RANDLES & LIBERSKY (1996). Another
approach was to utilize the non-collocated spatial discretization of the stress and velocity, see
DYKA & INGEL (1995). The main essence of the idea was to compute the constitutive laws
at the points other than those in which the kinematic variables such as velocity and displace-
ments are calculated. Such a points called ”stress points” play the role of Gauss points in
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FEM and the regular SPH points correspond to the nodes of an FE model. This idea proved
to be promising and was developed further by other researchers, see RANDLES & LIBERSKY

(2000) and VIGNJEVIC ET AL. (2000). Nevertheless, generating and dealing with a new set
of points detracts from the attractiveness of this method. In CHEN ET AL. (1999) a new ap-
proach based on corrective formula for the kernel and kernel gradient has been presented and
the results are encouraging for 1D and 2D cases. Belytschko BELYTSCHKO ET AL. (2000)
was the first who diagnosed this problem in a general framework and found the root and cure
of this disorder, although it had been already identified by the earlier researchers. It was
discovered that the Eulerian nature of the SPH kernel (in current configuration) is the main
cause of this instability. So, if one uses a Lagrangian kernel (in reference configuration),
this instability is significantly cured. If the stress points are utilized in conjunction with La-
grangian kernel, the instability is completely eliminated.
In this work, the method of using ”artificial stress” developed by Monaghan MONAGHAN

(2000) has been employed to address the tensile instability. The main idea is to introduce a
certain amount of artificial stress into the momentum equation in the direction of principal
stress whose amount is positive. This kind of stress perturbation removes or at lease allevi-
ates this instability, while not changing the physical behavior too much. In this method, the
mechanism by which the instability is treated is indeed a strong short range repulsive force
that prevent the particles from clustering. Before we proceed with the description of this
method, it should be notified that any method which is based on introducing new terms in
the governing equations must be applied with cautious, because they affect the strength of
material (material behavior). It means that one should be sure that their effect is negligible
in reality. This is the case for the methods based on artificial repulsive force or dissipation.
Recalling equation (3.33) the artificial stress term can be calculated as follows

Rαβ
ab = Rαβ

a +Rαβ
b ,

Rαβ
ξ =

 −eσ
αβ
ξ

ρ2
ξ

σαβξ > 0

0 σαβξ < 0
, ξ := a or b.

(3.50)

Unlike in equation (3.33), the superscripts i, j, α, β have been used in this equation for the
components of the artificial stress tensor. The reason is that the artificial stress tensor is
computed using the value of the principal stresses and the associated basis (α, β). After-
wards, it is returned to the regular basis (i, j) by a transformation tensorQ. It is obvious that
the columns of tensor Q are the eigen vectors of the stress tensor which corresponds to the
principal directions.

Rij
ab = (Qiα

abR
αβ
ab Q

jβ
ab )(

W (|rb − ra|, h)

W (∆)
)n. (3.51)

The parameter e = 0.3 and n = 4 were taken. ∆ denotes the average particles spacing in
the neighborhood of particle a. These parameters have been found in an optimized way. The
repulsive force arising from the artificial stress term increases rapidly, by factor 23, when
the distance between the two particles approaches zero. On the other hand if the particles
distance is normal, the influence of this term is less than 0.5%. The reason is that the tensile
instability is in fact a short wave length instability and the artificial stress term targets the
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Figure 3.13. Stability regime for cubic spline

dispersion relation for short wave length perturbations while having a negligible effect on
the long wavelength ones, see MONAGHAN (2000).

Zero energy mode

Zero energy modes are special modes of deformation which does not produce strain energy.
It means that even though there are displacement (velocity) on the nodes, the evaluation of
the gradient of displacement (velocity) gives zero and consequently no strain and stress is
generated. one should distinguish between rigid body modes and zero energy modes. The
former does not induce any stress (strain energy) in the body at continuum level, whereas
the latter does. The fact is that the stress (strain energy) is not captured at discretization
level for zero energy modes. From the mathematical point of view, zero energy modes ap-
pear due to the rank deficiency of the stiffness matrix. In FEM such spurious modes emerge
as ”hour-glassing” of elements in case of reduced integration, see WRIGGERS (2008). This
also happens in Element Free Gelerkian Method (EFGM) if the integration over an element is
done using the nodal values, see BEISSEL & BELYTSCHKO (1996). The zero energy modes
can freely grow due to numerical inevitable errors and finally dominate the solution and lead
to the crash of the computational method. In SPH, the root of this rank deficiency lies in
the colocational computation of kinematic variables and their gradient, see VIGNJEVIC &
CAMPBELL (2009). It means that the idea of stress point, which was already explained as a
treatment for tensile instability, can be utilized to eliminate such spurious modes, see VIGN-
JEVIC ET AL. (2000). Another idea is introducing a stabilizer term based on the penalization
of the spurious modes, see GANZENMLLER (2015). This method has been inspired by the
method of hour-glassing control in under integrated element in FEM.
In this work, it was tried to avoid abrupt loading which triggers the high frequency spu-
rious modes. Furthermore, the boundary condition were well established. Hopefully, any
symptom of zero energy modes was not observed.
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Treating penetration using the XSPH variant

As discussed before, artificial viscosity mitigates the particles penetration to an acceptable
degree, since it is activated for approaching particles and produces a repulsive force. How-
ever, penetration occurs even in low Mach numbers. The reason is that in SPH there is not
a strong barrier preventing two particles from occupying the same position. The fact is that
the kernel gradient is zero at the center of kernel support where the particle of interest lies
(see figure (3.4)). So if another particle coincides with this one, it does not contribute to the
gradient computation (see equation (3.10)). The idea to remedy this difficulty is to move the
particles with a velocity other than that obtained from the momentum equation. This idea is
the basis of so called XSPH variant developed by MONAGHAN (1989). In this modification,
the position of a particle is updated using the modified velocity v̄ as follows

dra
dt

= v̄a = va + ε
∑
b

mb

ρab
(vb − va)W (|ra − rb|, h), (3.52)

where ρab = (ρa + ρb)/2 and ε is a parameter between zero and one. Using equation (3.52)
for the movement of a particle ensures that the particle moves with the velocity which is
close to the average velocity in its neighborhood. Surprisingly, it has been mathematically
proved that this averaging procedure neither affects the momentum conservation, nor gener-
ates extra ”dissipation”. In dead, this procedure leads to extra ”dispersion”, see MONAGHAN

(1989). In this work ε is taken to be 0.5. This technique is like a spatial filtering which pre-
vents completely any type of penetration. Of course, this modification incurs computational
overload because a smoothing procedure needs to be done once the velocities are computed
from the momentum equation and prior to updating the positions.

3.3.3 Integration method

By applying the spatial discretization based on the SPH method to the continuum partial
differential equation, one ends up with a set of ordinary differential equations in time. Any
stable time integrator can be utilized to advance the particles in time. In SPH, explicit time-
stepping methods are preferred over the implicit ones in terms of computational costs. It is
well known that the explicit integrators are susceptible to the instabilities and consequently
the maximum allowable time step is determined by the CFL condition. It is noticeable to
stress that the symplecticness and reversibility of the integration method is as important as
(or maybe more important than) its accuracy, see MONAGHAN (2005). In fact the long
term behavior (after thousands of time steps) of a time integrator, depends on whether the
important quantities such as energy and momentum are conserved or not. The SPH approach
in simulating Lagrangian material points looks like molecular dynamics (MD) in which the
trajectory of an ensemble of the molecules are modeled. The interested readers can see
LEIMKUHLER ET AL. (1996) for more discussion about the importance of symplectic time
integrators. For SPH, several time integration methods have been proposed such as leap frog,
velocity Verlet and predictor-corrector, see GESTEIRA ET AL. (2010). In this work, a velocity
verlet proposed by ADAMI ET AL. (2012) was selected and implemented. This integrator
is explicit, second order accurate (hence consistent with the SPH nature), symplectic and
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efficient due to just one time force calculation per time step.
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As mentioned earlier, to guarantee the stability of the computational method, the time step
is governed by the CFL stability condition in conjunction with extra viscous and force con-
ditions, see ADAMI ET AL. (2012).

∆t = min{0.25
h

cmax + |v|max
, 0.125

h2

ν
, 0.25(

h

|DvDt |max
)

1
2 }. (3.54)

Here, ν is the kinematic viscosity of the fluid. It should be noted that in case of the diffusion
equation, the time step is similar to the viscous term above and is evaluated as follows

∆t = 0.125
h2

D
, (3.55)

in which D is diffusivity coefficient.

3.4 Solution procedure (pseudo-code)

To provide the readers with a clear insight to the implemented numerical code, all of the al-
gorithm steps have been described in two distinct pseudo-codes corresponding to the growth
and biofilm-fluid interaction. In the growth process, the diffusion-reaction equation is solved
along with advective movement of the biofilm due to the growth process. This process takes
place in large time scales of the order hours. In fluid-solid interaction, two phenomena are
modeled: the deformation of the biofilm in the presence of fluid flow and also the biofilm
erosion. Such processes have relatively small time scales in the order of a fraction of sec-
onds. Table (3.1) shows the implemented solution algorithm for the growth process and table
(3.2) presents the steps employed in handling the biofilm-fluid interaction.
Remark: In all pseudo-codes, ”TOL” is a user defined value (tolerance) for convergence.
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Table 3.1. Pseudo-code for the growth process

DO for all time increments
DO WHILE the diffusion-reaction equation reaches its steady state value (|dC

dt
| < TOL)

Solve the diffution-reaction equation (equation (3.34))
END DO
DO WHILE the total biofilm relaxation condition is reached (|dv

dt
| < TOL)

Solve biofilm advection equations (equations (3.33), (3.32))
END DO

END DO

Table 3.2. Pseudo-code of biofilm-fluid interaction (deformation and erosion)

DO for all time steps
DO in predictor/corrector sub-steps

Solve the fluid equations (equations (3.33), (3.31) for fluid)
Compute the forces at the fluid-solid interface particles (equation (3.46))
Solve the solid equations (equations (3.33), (3.31) for solid)
Update the position of all particles simultaneously (equation (3.53))

END DO
DO WHILE no erosion occurs (equation (3.47))

Apply erosion process if it occurs
Update the list of eroded planktonic particles
Update the interface geometry after the erosion process (refer to figure (3.10))

END DO
END DO

Finally, the pseudo SPH based code for solving the governing equations (biofilm
growth/deformation, fluid flow and diffusion-reaction) are provided. It should be noted that
such pseudo-codes mimic the subroutines which are invoked within the main pseudo-code
described in tables (3.1) and (3.2). To avoid redundancy, the pseudo code of the solid defor-
mation is solely provided without a separate pseudo-code for the fluid flow. This is due to
the fact that the rate-based hypo-elastic approach adopted for the solid deformation, is really
similar to the common constitutive equations for the fluid flow. Tables (3.4) and (3.3) depict
the implemented algorithms for the solid deformation and diffusion-reaction, respectively.

Table 3.3. Pseudo SPH code of diffusion-reaction
DO for all solid particles

Apply the boundary condition on the interface particles
Find neighbor particles using linked-list (refer to figure (3.14))
Solve the diffusion equation (equation (3.34))

END DO
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Table 3.4. Pseudo SPH code of solid deformation
DO for all solid particles

Update the pressure field using the equation of state (equation (3.36))
Compute the external forces on interface particles (equation (3.46))

(Remark: in case of fluid, apply the ghost value for the velocity
and pressure of interface particle (equations (3.40), (3.42))

Find neighbor particles using linked-list (refer to figure (3.14))
Solve continuity and momentum equations (calculate the density change and acceleration

using the neighbor particles (equations (3.31), (3.33))
END DO

3.5 Code optimization and parallelization

3.5.1 Neighbor search algorithm
In mesh-less methods, one needs to recognize the neighbors of a particle in order to be able
to calculate the inter-particle interactions. Neighbors of a particle are defined as those lie in
the compact support with radius 2h. This information about a particle neighbors is more or
less similar to the concept of ”connectivity” in FEM. To find a particle neighbors, one need
to use a search algorithm. In fluid simulation or solids undergoing large deformations, the
neighbors of a particle may change in time and it means that the search algorithm must be
efficient so that one can dynamically update the list of neighbors while solving the equations
without too much computational costs. If a crude search algorithm is applied the number of
operations for finding the neighbors of all particles is proportional to N2 in which N is the
total number of particles. In this work, a linked list based algorithm has been implemented
which reduces the order of search operations to NLogN , see GESTEIRA ET AL. (2010). The
difference is really considerable in terms of computational cost, when the number of particles
is large.

Figure 3.14. Linked list for search algorithm
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Figure 3.15. Illustration of a fork-join model for OpenMP

The main idea of the linked list is to map the particles on a grid. It means that there is a virtual
grid in the background in which the particles are positioned. All particles have a unique tag
and there is a data structure which stores the information of all grids. This information is
nothing else than the tags of all particles which are within a certain grid. Now, one can take
the advantage of this data structure. If the neighbors of a particle is needed, first one should
know to which cell this particle belongs (Cella) and then one can search just the particles
being in the cells attached to Cella. In other words, the search is confined to a small region
of the domain instead of the entire domain. Figure (3.14) illustrates this algorithm. The size
of the grid cell is equal to the radius of the kernel support which here is 2h.

3.5.2 OpenMP implementation

In this work, the order of particles number in 2D is 10,000 and in 3D it reaches 500,000. Due
to the explicit and co-locational features of SPH, parallel implementation is motivated. It can
accelerate the computation significantly. In this work, the paralellization has been performed
using OpenMP ”directives” within the code. The interested readers can find more informa-
tion about the parallelization using OpenMP in HERMANNS (2002). OpenMP is based on
”shared memory architecture”. It means that the the parallel region of the code is distributed
among several threads. The data communication between these threads is not explicitly con-
trolled by the programmer, but rather it is accomplished implicitly by the compiler. That
is the reason why OpenMP based programming is less complicated in comparison to the
palatalization concepts that are based on ”distributed-memory architecture” such as MPI.
OpenMP uses a ”fork-join” model of parallel execution, see figure (3.15). Initially, the ap-
plication starts with a single thread (the ”master thread” shown as a solid blue line). When
the application hits a parallel region in the code, the master thread creates a team of parallel
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threads. This is the ”fork” phase. The portion of the code which lies in the parallel region, is
then executed in parallel. In figure (3.15), the threads other than the master thread have been
shown in dark blue. When the threads in the parallel region finish their task, they synchro-
nize, terminate and go back to a single thread (the master thread). This is the ”join” phase.
Execution of the application then proceeds, possibly going through several parallelization
stages.
There is a misconception about palatalization, especially by the ones who are not familiar
with palatalization, that there might be a magic compiler option which automatically converts
a serial code to a parallel one. The fact is that a code should be designed in a parallel style
by the programmer. The compiler task is just to executes the designed program. It means
that the logic behind the parallelization is created by the programmer. One should carefully
think which parts of the code are so called ”concurrent” or parallelizable. For example, some
loops can be broken into several sub loops each of which is handled by a thread. In this work
the main loop over particle is parallelized, see equations (3.31)-(3.34). For instance, if the
number of particles is 10000 and the number of threads is 4, each thread computes the field
variables for 2500 particles. In addition to ” PARALLEL DO LOOP”, some parts of the code
have been parallelized using ”WORK-SHARE” construct. For example, equations (3.53c)
and (3.53.d) are independent. It means that two threads can work on them simultaneously.
This is not the case for equations (3.53a) and (3.53b) because one can not start the compu-
tation on (3.53b) unless the (3.53a) is already solved. It means that if there is an inevitable
hierarchy in the code, one should think about the ”synchronization” as well. Furthermore,
since the FSI modeling is fully explicit and monolithic, one can handle the fluid and solid
phases at the same time using different threads. In this work the parellelized code was run on
a node with 32 threads in HRZ cluster (Hybridrechenzentrum) at the Leibniz university of
Hanover and the simulation was found to be almost 15 time faster than the serial version. It
is obvious that all parts of the code is not parallelizable. Moreover, parallelization has some
overload due to synchronization and data communication. Hence exploiting 32 nodes does
not necessarily mean a speed-up by factor 32.
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Chapter 4

Numerical examples and results

In this chapter, some numerical examples are provided. In order to validate the developed
code, first two available test cases in the literature are simulated to make sure about the
correctness and accuracy of the developed numerical scheme. Then the numerical tool is
applied to model the growth, deformation and erosion of biofilms. The computational results
for the growth process are compared with those gathered in the experiments conducted by
our colleagues in the medical school of Hannover.

4.1 Validation of the code

4.1.1 Test case 1: Elastic gate of a water tank
This example was firstly introduced in ANTOCI ET AL. (2007). In this work the interaction of
an elastic gate with the fluid flow is simulated using a unified SPH-based numerical scheme
in the context of a fluid-solid interaction (FSI) problem. Moreover, the results have been
verified by the laboratory experiments. So, this is a pretty good and reliable example which
one can consider as a benchmark. Figure (4.1) represents the initial configuration of the
problem. The geometrical dimension of the system and also the material properties of the
elastic gate is reported in Table (4.1).

Table 4.1. Geometrical dimensions and the material properties, see ANTOCI
ET AL. (2007)

Parameter Symbol Value unit

Dimensions
Water level H 140.0 mm
Tank width W 100.0 mm
Elastic gate length L 79 mm
Elastic gate thickness S 5 mm
Elastic gate material properties
Poisson ratio ν 0.4 -
Young modulus E 10 MPa

61
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Figure 4.1. Initial configuration of the water tank and the elastic gate

The elastic gate is assumed to be clamped at one end and free at the other one. At the
beginning, the free end is prevented from moving so that a hydrostatic equilibrium is reached.
Then it is released and the water starts to flow under the gravity. The exerted force on the
elastic gate from the fluid, make it to deform. Consequently, the gate opens and the water exit
the tank bottom. The more the water accelerates, the more the gate deflects until a maximum
deformation is reached. It is obvious that the decrease in the water level results in smaller
interface forces which drives the gate. That is why the elastic gate returns back gradually. If
The tank water were fed continuously with water in order to keep the water height constant, a
steady state configuration for the elastic gate could be reached. In such a situation, the elastic
gate would have a final deformation in which the elastic internal forces are in equilibrium
with the external forces applied from the fluid side.
In figure (4.2) the deformed shape of the elastic gate has been plotted at t = 0.20s . The
contours show the velocity field in the fluid and deformation of the elastic gate.

Figure 4.2. Fluid velocity and gate deformation

Figure (4.3) depicts the pressure in the fluid and the magnitude of the co-rotated Cauchy
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stress in the elastic gate. The deformation with large displacement and large rotation in the
elastic gate have been captured correctly. Furthermore, the vertical and horizontal displace-
ment of a point at elastic gate tip has been plotted through time in figure (4.4). The results
comply with the experimental and numerical data reported in ANTOCI ET AL. (2007).

Figure 4.3. Fluid pressure and stress in elastic gate
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Figure 4.4. Horizontal and vertical displacement of the free end of elastic gate
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Finally the time history of the water level in the tank has been plotted in figure (4.5). The
results are in good agreement with the experimental data. As it is expected intuitively, the
outlet flow rate is larger at the beginning because of the larger gate opening. The elastic gate
returns back gradually once it reaches its maximum deformation. This is translated into a
narrower slot at the tank bottom and lesser flow rate. Furthermore, the decrease in the water
level results in a decrease in the pressure at the bottom of the tank. Consequently, the outlet
velocity decreases. Theoretically, If the tank is drained completely the elastic gate should
get back to its initial vertical position.
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Figure 4.5. Water level in the tank at the center line

4.1.2 Test case 2: Rectangular biofilm deformation in fluid flow
This example has been taken from ALPKVIST & KLAPPER (2007) in which an artificially
shaped 2D biofilm in the form of a rectangular block is deformed as a result of its interaction
with the surrounding fluid. The fluid condition, material constants and geometric dimensions
can be found in table (4.2). The upper plate velocity was set to V and its motion moves the
bulk fluid around the biofilm. It exerts forces on the biofilm structure and finally causes it to
deform until a final steady state is reached. Figure (4.6) depicts the normalized hydrostatic
pressure profile prior to applying the horizontal velocity. The reference pressure for normal-
ization is the one computed analytically at the bottom of the domain assuming a hydrostatic
condition, namely Pref = ρfgH .
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Figure 4.6. The initial configuration of a rectangular biofilm in fluid flow under the
hydrostatic condition

Table 4.2. Model parameters and constants ALPKVIST & KLAPPER (2007)

Parameter Symbol Value unit

Biofilm height H 150 mm
Biofilm width W 50 mm
Biofilm Poisson ratio E 0.5 -
Biofilm shear modulus µ 1 Pa
Fluid density ρ 1000 kg/m3

Fluid viscosity µ 1.002E-3 Pa.s
Top plate velocity V 1.00 mm/s
Particle size ∆ 3.0 mm

The results which are based on a fully continuum approach show good agreement with those
achieved in ALPKVIST & KLAPPER (2007) in which discrete mass-spring elements have
been used to model the biofilm deformation. Figure (4.7) illustrates the final (steady state)
configuration of the deformable biofilm in the fluid flow as well as the flow streamlines. It
should be noted that the real time having been simulated is much less than the characteristic
growth time of the biofilm and that is why no growth occurs in this test case.
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Figure 4.7. The steady state configuration of a rectangular biofilm in fluid flow

4.2 Biofilm deformation and erosion

Two and three dimensional simulations have been performed in this section to model the
biofilm erosion due to the induced shear forces at the biofilm surface. Table (4.3) contains
material properties, constants and parameters required for this case. For the sake of simplic-
ity in visualization, the 2D results (plane stress assumption) are first presented and 3D results
are provided afterwords.

4.2.1 Deformation and erosion 2D

In this exemplary case, an initial single biofilm hump is considered. It is located at the center
of the flow chamber. It is exposed to the fluid flow which is driven by a top plate having the
velocity V . The value to which the velocity of the top plate is prescribed, can be estimated
using the flow rate in the experiments. This point needs to be explained further. In our
experiment, the flow rate is controlled by a peristaltic pump. Knowing the flow rate (Q)
and the cross-section of the flow chamber A, one can find an average velocity in the flow
chamber (Q = ρAV ). This bulk velocity V is assumed to be equal to the stream velocity
far from the boundary layer within the RVE. It means that the effect of the fluid velocity is
transferred to the RVE by prescribing the velocity of the top plate to V . The reason behind
such a boundary condition is that the size of the RVE is limited to several tens of microns
due to the computational cost, while the real height of the fluid in the flow chamber is about
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500 microns. The RVE has a periodic boundary condition at the lateral sides. The bottom
side is attached to a fixed substratum over which the biofilm forms. The boundary condition
at the top side of the RVE needs to be defined properly. Undoubtedly it can not be regarded
as a periodic one. Free boundary (Neumann boundary condition) is not correct, since in
reality there is a column of water over that. If it is considered to be fixed (zero Dirichlet
boundary condition), it results in non-physical excessive dissipation due to the formation of
a boundary layer near the top fixed boundary. So the best boundary condition for the top
side of the RVE which ensures the most physically correct velocity profile within the RVE,
is prescribing it using the macro scale averaging. Figure (4.8) clarifies this argumentation. It
should be admitted that this idea was taken from the homogenization theory which makes a
bridge between the kinematic quantities at the micro and macro scales. In fact the velocity
applied on the top side of the RVE is similar to prescribing linear displacement to an RVE
in homogenization theory. The prescribed value comes from the upper scale and here it
is equal to the average velocity in the flow chamber. The readers seeking more details on
homogenization theory may refer to ZOHDI & WRIGGERS (2005).

Figure 4.8. Prescribing the velocity of the RVE top side using average bulk velocity
in the flow chamber

In figure (4.9), the biofilm structure has been depicted in two different time steps. It should
be noted that the time has been non-dimensionalized using tref = 100h

C0
. It is observed that

the biofilm colony looses gradually some bacteria at the interface. Actually, the inter-facial
shear stress therein exceeds the biofilm cohesion strength. The detached bacteria are washed
away by the fluid forces and form a filamentous tale-like streamer floating in the fluid flow
downstream. In some cases, especially when the biofilm is too soft, streamers formation may
happen even prior to detachment and in fact the biofilm is highly deformed and elongated.
Such phenomena have been repeatedly reported in the literature, see ALPKVISTA & KLAP-
PER (2007), XAVIER ET AL. (2005), STOODLEY ET AL. (1998) and STEWART (2012). An
animation of this process can be viewed in the supplementary materials of this work.
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a)

b)

Figure 4.9. Biofilm erosion a) initial velocity profile b) velocity profile and eroded
bacteria after τ = 1500

Table 4.3. Model parameters and constants (material property from BÖL ET AL.
(2009))

Parameter Symbol Value unit

Biofilm initial height H 30.0 µm
Biofilm initial
maximum width W 20.0 µm
Biofilm Young modulus E 10 Pa
Biofilm Poisson ratio ν 0.3 -
Biofilm interface strength τy 0.1 Pa
Biofilm density ρb 30.0 kg/m3

Fluid density ρf 1000 kg/m3

Fluid viscosity µ 1.002E-3 Pa.s
Top plate velocity V 1.00 mm/s
Particle (bacteria) size ∆ 1.0 µm

Figure (4.10) shows the stress in the biofilm compartment which has not been eroded, yet.
Two important points can be extracted from this figure. First, before the horizontal fluid
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velocity is applied and consequently the erosion starts (at time τ = t
tref

= 10), the biofilm is
in a tension state of stress. The reason is that in a hydrostatic equilibrium an effective upward
buoyancy force, originating from the density difference between the fluid and biofilm, tends
to lift up the biofilm. Second, once the fluid moves, the effective drag force on the biofilm
bends it and changes the stress state. As expected, the mechanical stress has the maximum
value at the lower part of the biofilm where it is anchored to the substratum. However the
value of the stress is less than the biofilm strength in this region and hence no sloughing
happens.

Figure 4.10. Mechanical stress development in not eroded biofilm during time

In figure (4.11) it can be seen that the biofilm experiences a vibrational micro-motion in
the fluid flow direction. This is due to the continuous erosion which produces sequential
impulses on the biofilm structure and triggers the first vibration mode of that. It means that
the biofilm response to the fluid flow is dynamic during the erosion process. It is expected
that such a movement is gradually suppressed when the erosion process stops due to the
reduction of shear forces once enough material is washed out and the fluid velocity decreases
in the vicinity of the biofilm.
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Figure 4.11. Displacement of the biofilm center in time during the erosion process
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4.2.2 Deformation and erosion 3D
In the 3D case, a cubic region with an elliptically shaped biofilm attached to the center of
the substratum is considered. This is in fact a generalization of the 2D case discussed in the
previous subsection. The initial configuration of the particles is generated based on the Cubic
Close Packing (CCP) lattice structure using the algorithm introduced in the section (3.2.1).
Such a lattice structure is the mostly dense arrangement of particles which is possible in 3D.
This gives the chance to reduce the smoothing length h in order to incur lesser computational
cost. The smoothing length is taken to be h = 1.3∆ instead of h = 1.5∆ which was chosen
for 2D cases. Nevertheless, the number of neighbors are still considerable (about 105 for
a fully contained kernel). Comparing the number of neighbor particles in 3D, even using
a reduced smoothing length, with that in 2D cases (about 37 for a fully contained kernel),
one can easily realize that how enormously the computational cost grows. Furthermore, the
presence of the third dimension increases the number of total particles drastically. That is
why a serious jump in the computational cost is experienced when one goes from a 2D case
to the corresponding 3D one. However, simulating a problem in 3D is inevitable, because
some phenomena are degenerated or at least significantly influenced when one switches from
3D to 2D assumption.
In this section the flow condition is the same as the 2D case. It means that the flow is in the
Y direction and the boundary condition is assumed to be periodic in both X and Y lateral
sides, see figure (4.12).
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Figure 4.12. 3D biofilm in fluid flow
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Figure (4.13) illustrates the stress analysis in the biofilm through time. The results are qual-
itatively similar to those obtained with 2D assumptions. However, the stress values are dif-
ferent. The reason is that in the 2D case, the assumption of plane stress implies that the
geometry of the biofilm is a thin plate which can be generated by extruding the 2D geome-
try in the third dimension. This is totally different from the real 3D geometry in which the
biofilm has an elliptical shape. For visualization purpose, a quarter of the biofilm is cut and
removed, so that one can see the stress state in the bulk of the material.

Figure 4.13. Mechanical stress in not eroded 3D biofilm during time

Figure (4.14) shows the tail formation for the eroded particle behind the biofilm. Similar to
the 2D case, the eroded bacteria (particles) form a streamer in such a way that it conforms to
the streamlines of the fluid flow. Furthermore, due to a very low Reynolds number (around
0.04) the pressure profile in the fluid is close to the hydrostatic pressure distribution and
the flow regime is laminar in principal. Another important point can be realized about the
erosion pattern from this figure. The biofilm is eroded dominantly from the biofilm front
side which the fluid flow hits. The eroded particles are moved by the flow to the back of the
biofilm and accumulate there. This accumulation of eroded particles shields the back side of
the biofilm from being eroded. This leads to a non-symmetric pattern for the erosion. The
last frame (τ = 1500) in figure (4.13) illustrate this fact, clearly.
The movement of the eroded particles which have formed a streamer behind the biofilm can
contribute to more mixing in the boundary layer and enhancing the nutrient up-take rate.
This phenomenon has been studied comprehensively in TAHERZADEH ET AL. (2010). But
in this work the effect of the streamers movement on the nutrient transport mechanisms has
not been taken into account.
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Figure 4.14. Streamer formation behind the 3D biofilm

Similar to the 2D case, the successive removal of particles results in an oscillatory response
of the biofilm which seems to last as long as the erosion takes place. The movement of a
point at the centroid of the biofilm has been plotted versus time in figure (4.15). It seems
that such a micro motion facilitates the detachment process. An intuitive explanation along
with an example can be presented about this effect. Such an effect is instinctively used even
by animals when they want to get rid of the dust or debris which is in their furs. By shaking
their skins or bodies, the dusts are thrown away.
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Figure 4.15. Displacement of the 3D biofilm center in time during erosion process
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4.2.3 The impact of the fluid velocity on the erosion rate
It seems to be undeniable that the more the fluid velocity is, the faster the detachment process
occurs. The reason is that the larger velocity means more induced shear on the biofilm and
consequently a faster rate of material erosion. To investigate the effect of the velocity on the
erosion rate, the erosion process was simulated using two different flow velocities. Looking
at figure (4.16), it can be found that there is a logical relation between the flow velocity and
the erosion rate. It should be stressed that the vertical axis corresponds to the mean value of
the biofilm height h̄ being under erosion. It can be seen that h̄ decreases through time due
to the erosion process. τ in the horizontal axis denotes the dimensionless time as in figure
(4.11).
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Figure 4.16. The effect of different fluid velocity on the erosion rate

Even though the argument made for figure (4.16) may be true, the story of erosion is not
that simple. Comprehensive experiments conducted in HORN ET AL. (2003) revealed that
surprisingly neither the flow velocity nor the shear stress does not correlate well with the
detached biomass in long term, see figure (4.17). In this work an almost linear correlation
was found between the mean value of the biofilm height before detachment and afterwords,
see figure (4.16). This discrepancy can be explained as follows.
In the HORN ET AL. (2003), the experiments are conducted in time scales of order several
days. It means that the growth process plays an important role, in fact an opposite role,
besides the detachment process. Moreover, In the experiments the detachment process is
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not limited to solely surface erosion. It means that other detachment mechanisms such as
sloughing can happen, in reality. Our simulation is in a very short time scale (a fraction of a
second) and hence almost no growth occurs during erosion process. On the other hand, our
detachment mechanism is limited to erosion process which takes place at the interface.
Here, a question may arise. Considering that both erosion and growth have been modeled in
this thesis, why not a combined growth-erosion simulation in long term is performed? The
answer is that theoretically it is possible, because the developed tool in this work is capable
of modeling both of these processes. However, in practice it is impossible. The reason is
that the deformation and erosion process in the context of an FSI (Fluid-Solid Interaction)
problem are computationally very costly, even if one wishes to simulate a couple of seconds
of the physical process. For example it might take several days to simulate a few minutes of a
dynamic FSI problem. One can not even imagine the required run time for simulating a long
FSI problem (for example 1 day) coupled with growth. To circumvent such an issue, one
can make suitable bridge between theses two processes taking place in different time scales.
In other words, in stead of solving these two process concurrently, they can be tackled in
a hierarchical manner. Clearly speaking, one can find an effective rate of detachment from
small time scale analysis and pass it to the analysis in the larger time scale. Developing such
a multi-scale analysis remains as a further future task and here we just wanted to motivate
the readers and ignite the basic idea behind that. The fact is that the results based on a short
time simulation of erosion are practically useless, because there is no experiment having
been conducted in such a short time scale.

RE

Figure 4.17. Dependency of detached biomass ∆LF a) on the flow velocity w b) on
shear stress ratio τdetach/τgrowth c) dependence of the mean biofilm
thickness after detachment LF,detach on the biofilm thickness LF be-
fore detachment. From HORN ET AL. (2003)
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4.3 Biofilm growth

The biological growth process of a 2D and 3D biofilm is simulated in this subsection. It is
assumed that an initial semi elliptical colony of bacteria exists on the surface and it starts to
grow. In other words, the initial condition is assumed to be pre-known. As it was explained in
the first chapter, the initial colonization of a surface is a complex process governed by electro-
chemical phenomena in the molecular length scale. In practice, the initial condition of the
biofilm in a computational model is taken in such a way that conforms to the experimental
observation after a short exposure time such as a few hours. The material properties and
parameters are listed in table (4.4) for this example.

Table 4.4. Model parameters and constants (material property from BÖL ET AL.
(2009))

Parameter Symbol Value unit

Biofilm initial height H 30.0 µm
Biofilm initial
maximum width W 20.0 µm
Biofilm density ρb 30.0 kg/m3

Reaction Constant
in Monod law K1 0.12 1/hour
Reaction Constant
in Monod law K2 4.0E-18 gr/µm3

Nutrient Concentration
in Bulk fluid Cf 3.0E-18 gr/µm3

Yield Constant
in Monod law Y 1.0 gr/gr
Particle (bacteria) size ∆ 1.0 µm

4.3.1 Biofilm growth 2D

Figure (4.18) depicts the spatial evolution of a 2D biofilm as a result of the biological growth
and nutrient consumption in a 24 hours period. It can be seen that how the nutrient distri-
bution changes with the evolution of the biofilm. It should be notified that the concentration
field has been non-dimesionalized using a reference value. The reference value is equal to
that of the nutrient concentration in the bulk fluid (Cf ). It is in fact the maximum available
nutrient concentration in the whole system. It is a common assumption that the fluid is well
mixed due to the dominancy of the convection transport mechanism and the nutrient concen-
tration is a prescribed variable in the bulk fluid. However, it is computed in the biofilm using
the diffusion-consumption equation.
Figure (4.18) reveals that the more the biofilm grows, the less nutrient is available inside.
Of course, there is always a nutrient flux from fluid to the biofilm through the interface
via the diffusion mechanism. Although this makes up for the consumed nutrient by the
bacteria, as the biofilm expands spatially, the overall nutrient amount in the lower region
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of the biofilm decreases. It means that the biofilm has a larger growth rate in the regions
near the interface and a slower rate in the interior regions. In some cases the shortage of
the nutrient in the interior regions may result in death of the bacteria. They form an inactive
region in the biofilm which even shrinks because of the chemical decay (instead of growth).
The presence of the inactive biomass has been reported in the biological observations and
was detected by our experimental colleagues as well. In this research the effect of the inert
biomass shrinkage was neglected, because it was experimentally found that the portion of the
inactive biomass is much less than the total active biomass, especially in small time periods
(for example 1 day). Some researchers who use individual based methods, have introduced
this consolidation effect in their biomass modeling, see LARDON ET AL. (2011). But it is
much more challenging to incorporate this phenomenon in a continuum based framework.
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1. 00
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0.00

Figure 4.18. 2D Biofilm growth and nutrient concentration

Figure (4.19), is exactly similar to figure (4.18) at the time T = 24 hours with the differ-
ence that the refinement technique introduced in section (3.5) has been activated, when the
average particles distance is doubled as the result of the biofilm expansion (growth). This
simulation has been done to understand how the refinement procedure affects the overall
growth phenomenon. As discussed in section (3.5), this re-meshing procedure introduces
some perturbation into the model due to the inevitable error in density estimation. However,
it recovers the accuracy of the interpolation. It means that one should use it, in the cases that
the particles distance increases too much as a result of the growth process.
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Figure 4.19. Particle splitting (mesh refinement)

The average height of the biofilm has been plotted versus time in figure (4.20). The volume
of the generated biomass is a measurable quantity indicating the growth rate. In practice,
the total volume of the biofilm is calculated using laser scanning microscopy. If this value is
divided to the area of interest, it gives the average height of the biofilm. In our experiments,
this value is carefully measured regularly during a period of 1 day. The experimental results
are compared with those obtained from a 3D simulation.
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Figure 4.20. Average height of the 2D biofilm in time
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4.3.2 Biofilm growth 3D
Figure (4.21) illustrates the growth of a 3D biofilm and the normalized (non-
dimensionelized) nutrient concentration during 24 hours. It can be seen that the results are
qualitatively similar to those obtained using 2D assumptions. It should be noted that the 3D
RVE has periodic boundary conditions at all lateral sides and that is why the biofilm can take
the whole space around itself as it grows up.
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Figure 4.21. Biofilm growth and nutrient concentration a) after T=6 hours b) after
T=12 hours c) after T=24 hours

It should be stressed out that the induced fluid velocity from the biofilm growth is so small (of
order one micron per hour, see figure (4.22)) that the fluid flow is not disturbed in practice.
From the computational point of view, it means that it is not required to explicitly resolve
the fluid flow governing equation as a function of the growth. In other words, capturing
the interface is sufficient to update the geometrical domain of the fluid flow. That is why
some researchers who focus just on the biofilm growth, never deal with the Navier-Stokes
equations at all, see LARDON ET AL. (2011), and they assume to have a pre-known boundary
layer as the fluid-biofilm interface whose thickness is constant.
In figure (4.23) the average height of the biofilm has been plotted after 24 hours which re-
flects the biofilm growth. The experiments were repeated 3 times and the data were collected
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Figure 4.22. Streamline of biofilm growth after T=12 hour

from several points of interest. The relatively large standard deviation in the experimental
data implies how non-deterministic the process is. The computational results are satisfactory
in comparison with those measured in experiments. It is obvious that the parameters of the
problem could be calibrated using the experimental results in such a way that the experimen-
tal and numerical results fit better. However it does not necessarily mean that such calibrated
parameters can be applicable to different environmental conditions other than those of this
experiment, because the process has an intrinsic stochasticity. Additionally, the experimental
data show that the portion of the inert (dead) biofilm is so small that it could be neglected
at least in small time period simulations such as 1 day. In this work the inert biofilm was
neglected for the numerical modeling.
Finally it is quite interesting to have a look on an image of a real biofilm under the micro-
scope. Figure (4.24) shows a close-up of a region on the titan plate surface in the flow cham-
ber covered by the biofilm. It is observed that how complex is the morphology and spatial
pattern of the real biofilm under the microscope. One can notice an unbelievable similarity
between this image and that of the earth vegetation taken by a satellite! It is fascinating that
the appearance of the tiny beings world resembles the worlds of large beings, provided that
one looks at the former closely and observes the latter from far away. This image has been
recorded by our partners in the medical school of Hannover who conducted the experimental
part of this work. It should be stressed that the dimension of the region being simulated is
much less than the dimension of this image. In fact, one can take just a few tens of microns
as the RVE with periodic boundary conditions in its lateral side. Such an RVE represents the
real whole domain and all the numerical analyses are confined to that. So, it can be seen that
how limited is our capability in simulating the real world of the tiny beings. This holds true
for the world of large things as well. Developing efficient multi-scale computational meth-
ods can be a solution to analyze a physical phenomenon in different scales and consequently
obtain more realistic results.
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Figure 4.23. Experimental results vs. numerical simulation of the 3D biofilm growth

Figure 4.24. A close-up of a real biofilm in the flow chamber under the microscope
(by Henryke Rath)



Chapter 5

Conclusions

Biofilm formation is a complex process in the sense that several physical phenomena are
involved therein. This makes the problem of the the type so-called ”multi-physics”. Fluid
flow, solid deformation, nutrient transportation, biological growth and erosion are of the most
influential phenomena in the biofilm formation. In addition to the physical complexity, there
is serious geometrical challenges due to the presence of moving and changing boundaries.
In this thesis, a fully continuum based numerical scheme for the biofilm formation was pre-
sented in the SPH framework. The method was motivated by the goal to benefit from the
Lagrangian and mesh-less features of SPH in order to handle several complexities in the
problem due to the geometrical and physical coupling between the biofilm and the surround-
ing fluid. Hopefully one can benefit from separation of the different time scales pertaining
to the different physical processes, in the sense that establishing a staggered and hierarchical
numerical scheme is possible. In other words, all the fast processes are treated within the
slow processes in a nested fashion. The biofilm was modeled in small time scales as a de-
formable solid submerged in the fluid flow. In such a time scale, it experiences mechanical
deformations and surface erosion due to the forces from the fluid side. Furthermore, as-
suming a viscous fluid, biofilm growth was simulated in large time scales while the nutrient
transportation was assumed to reach its steady state in each increment of the growth process.
The results were verified by the available data in the literature and also the experiments
conducted by our partners in the medical school of Hanover. It was found that the hydro-
dynamical conditions of the fluid flow have a significant impact on how biofilm grows and
its geometry changes. Moreover, the numerical simulation of the growth process was in a
good agreement with the experimental observations. The authors believe that the developed
computational tool is novel and robust. The novelity is due to the fact that utilizing the SPH
method is quite new in the field of biofilm modeling to the best of author’s knowledge. Be-
sides, its robustness originates from the fact that it is a continuum based method and hence it
does not suffer from stochasticity inherent to the individual (particle) based methods. Nev-
ertheless, it enjoys the mesh -less and Lagrangian features which are two advantages for the
particle based methods.
In summary, the capabilities of the developed code in this thesis are highlighted as follows:

• 2D and 3D simulation of the biofilm deformation using a hypo-elastic approach in the
presence of the surrounding fluid in the context of fluid-solid interaction.
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• 2D and 3D simulation of the biofilm growth in the frame work of continuum growth
theory and also nutrient transportation.

• 2D and 3D simulation of the surface erosion in the biofilm which accounts for the
material removal from the biofilm at the fluid-biofilm interface.

Biofilm world is still of virgin ones with lots of unanswered questions. One can say that all
the researches in this area are still in their infancy. In the framework of this work, there are
some possible extensions in order to incorporate other aspects and determinant factors of the
biofilm formation. Here some directions for further future researches are suggested by the
authors:

• To consider a multi-species colony of bacteria.

• To incorporate the shrinkage of biofilm due to bacteria decay in the long term. This is
a phenomenon exactly in an opposite direction of the growth process.

• To model other detachment processes such as sloughing by means of either introducing
a new field variable for damage or handling directly the crack propagation.

• To develop a hierarchical multi-scale method for bridging the erosion at a short time
scale and the total detachment rate in long term.

• To introduce different non-linearity in the material behavior so that the constitutive
equations of the biofilm be close to the real material response.

• To analyze the fluid flow assuming a turbulent regime around the biofilm.

• To investigate the effect of fluid induced movement in the biofilm on the nutrient trans-
portation and up-take rate.

• To benefit from the GPU implementation and more efficient parallelization concepts
like MPI instead of existing OpenMP implementation.
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