New simple, cheap and efficient error estimator for adaptive fracture and damage analysis (in 2D)

Tymofiy Gerasimov

New simple, cheap and efficient error estimator for adaptive fracture and damage analysis (in 2D)

- Background: what is error estimator (EE)?
- Example of EE, how it works
- Motivation/Main result
- Applications: fracture & damage analysis
Problem strong formulation:

\[
\begin{align*}
-\text{div } \sigma(u) &= f \quad \text{in} \quad \Omega \\
\sigma &= C : \varepsilon(u) \quad \text{in} \quad \Omega \\
\varepsilon &= \nabla^{\text{sym}} u \quad \text{in} \quad \Omega \\
\hline
u &= 0 \quad \text{on} \quad \Gamma_D \\
\sigma(u) \cdot n &= 0 \quad \text{on} \quad \Gamma_{N,0} \\
\sigma(u) \cdot n &= \bar{t} \quad \text{on} \quad \Gamma_{N,1} \\
\sigma(u) \cdot n^\pm &= 0 \quad \text{on} \quad \Gamma_c^\pm
\end{align*}
\]
Background
What is error estimator?

\[u - u_h = e \]

discr. error

exact solution (unknown)

FE solution (available)

Problem strong formulation:

\[
\begin{aligned}
- \text{div} \, \sigma(u) &= f \quad \text{in} \quad \Omega \\
\sigma &= C : \varepsilon(u) \quad \text{in} \quad \Omega \\
\varepsilon &= \nabla^{\text{sym}} u \quad \text{in} \quad \Omega \\
\end{aligned}
\]

\[
\begin{aligned}
u &= 0 \quad \text{on} \quad \Gamma_D \\
\sigma(u) \cdot n &= 0 \quad \text{on} \quad \Gamma_{N,0} \\
\sigma(u) \cdot n &= \bar{t} \quad \text{on} \quad \Gamma_{N,1} \\
\sigma(u) \cdot n^\pm &= 0 \quad \text{on} \quad \Gamma_c^\pm \\
\end{aligned}
\]
Background

What is error estimator?

\[\| \mathbf{u} - \mathbf{u}_h \|_\Omega = \| \mathbf{e} \|_\Omega \]

discr. error

exact solution (unknown)

FE solution (available)

Problem strong formulation:

\[
\begin{align*}
- \text{div } \sigma(u) &= f & \text{in } & \Omega \\
\sigma &= \mathcal{C} : \varepsilon(u) & \text{in } & \Omega \\
\varepsilon &= \nabla^{\text{sym}} u & \text{in } & \Omega \\
\mathbf{u} &= 0 & \text{on } & \Gamma_D \\
\sigma(u) \cdot \mathbf{n} &= 0 & \text{on } & \Gamma_{N,0} \\
\sigma(u) \cdot \mathbf{n} &= \mathbf{t} & \text{on } & \Gamma_{N,1} \\
\sigma(u) \cdot \mathbf{n}^\pm &= 0 & \text{on } & \Gamma_c^\pm
\end{align*}
\]
Background
What is error estimator?

I. To assess the **accuracy** of your FE solution by computing the UB

\[\|u - u_h\|_\Omega = \|e\|_\Omega \leq UB \]

Problem strong formulation:
\[
\begin{aligned}
\text{div } \sigma(u) &= f \quad \text{in } \Omega \\
\sigma &= C : \varepsilon(u) \quad \text{in } \Omega \\
\varepsilon &= \nabla^{\text{sym}} u \quad \text{in } \Omega \\
\end{aligned}
\]
\[
\begin{aligned}
u &= 0 \quad \text{on } \Gamma_D \\
\sigma(u) \cdot n &= 0 \quad \text{on } \Gamma_{N,0} \\
\sigma(u) \cdot n &= \bar{t} \quad \text{on } \Gamma_{N,1} \\
\sigma(u) \cdot n^\pm &= 0 \quad \text{on } \Gamma_c \end{aligned}
\]
Background
What is error estimator?

discr. error

$$\|u - u_h\|_\Omega = \|e\|_\Omega \leq UB$$

I. To assess the **accuracy** of your FE solution by computing the **UB**

II. To trigger a refinement strategy (e.g. **mesh refinements**) => better **accuracy**

Problem strong formulation:

$$\begin{aligned}
-\text{div} \sigma(u) &= f & \text{in} & \Omega \\
\sigma &= C : \varepsilon(u) & \text{in} & \Omega \\
\varepsilon &= \nabla^{\text{sym}} u & \text{in} & \Omega \\
\Gamma_D & : u = 0 & \text{on} & \Gamma_D \\
\Gamma_{N,0} & : \sigma(u) \cdot n = 0 & \text{on} & \Gamma_{N,0} \\
\Gamma_{N,1} & : \sigma(u) \cdot n = \bar{t} & \text{on} & \Gamma_{N,1} \\
\Gamma_{c} & : \sigma(u) \cdot n^\pm = 0 & \text{on} & \Gamma_{c}
\end{aligned}$$
Problem strong formulation:

\[
\begin{align*}
\text{div } \sigma(u) &= f \quad \text{in } \Omega \\
\sigma &= \mathcal{C} : \varepsilon(u) \quad \text{in } \Omega \\
\varepsilon &= \nabla^{\text{sym}} u \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \Gamma_D \\
\sigma(u) \cdot n &= 0 \quad \text{on } \Gamma_{N,0} \\
\sigma(u) \cdot n &= \bar{t} \quad \text{on } \Gamma_{N,1} \\
\sigma(u) \cdot n^\pm &= 0 \quad \text{on } \Gamma_{c}^\pm
\end{align*}
\]

I. To assess the **accuracy** of your FE solution by computing the UB

II. To trigger a refinement strategy (e.g. **mesh refinements**) => better accuracy
Background

What is error estimator?

\[
\|e\|_\Omega \leq UB = \left(\sum_T \eta_T^2\right)^{1/2}
\]

Computable Upper Bound

Local error indicators

Problem strong formulation:

\[
\begin{align*}
-\text{div} \, \sigma(u) &= f \quad \text{in} \quad \Omega \\
\sigma &= \mathcal{C} : \varepsilon(u) \quad \text{in} \quad \Omega \\
\varepsilon &= \nabla^{\text{sym}} u \quad \text{in} \quad \Omega \\
\end{align*}
\]

\[
\begin{align*}
u &= 0 \quad \text{on} \quad \Gamma_D \\
\sigma(u) \cdot n &= 0 \quad \text{on} \quad \Gamma_{N,0} \\
\sigma(u) \cdot n = \bar{t} \quad \text{on} \quad \Gamma_{N,1} \\
\sigma(u) \cdot n^\pm &= 0 \quad \text{on} \quad \Gamma_{\pm}
\end{align*}
\]
Example

Available classical Babuška-Miller estimator:

$$\|e\|_\Omega \leq \frac{C}{\sqrt{2} \mu} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}}$$

$$\eta_{T,\text{Class}} := h_T \| f + \text{div} \sigma(u^h) \|_{L^2(\Omega)} + h_T^{1/2} \sum_{\ell=1}^3 \| \langle \sigma(u^h) \cdot n \rangle_{E_\ell} \|_{L^2(E_\ell)}$$

Problem strong formulation:

$$\begin{cases}
- \text{div} \sigma(u) = f & \text{in} \quad \Omega \\
\sigma = C : \varepsilon(u) & \text{in} \quad \Omega \\
\varepsilon = \nabla^{\text{sym}} u & \text{in} \quad \Omega \\
 u = 0 & \text{on} \quad \Gamma_D \\
\sigma(u) \cdot n = 0 & \text{on} \quad \Gamma_{N,0} \\
\sigma(u) \cdot n = \bar{t} & \text{on} \quad \Gamma_{N,1} \\
\sigma(u) \cdot n^\pm = 0 & \text{on} \quad \Gamma_{c}^\pm
\end{cases}$$
Example

Available classical Babuška-Miller estimator:

\[\|e\|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: U_{B_{\text{Class}}} \]

\[\eta_{T,\text{Class}} := h_T \|f + \text{div}\sigma(u^h)\|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^{3} \left\| \langle \sigma(u^h) \cdot n \rangle_{E_\ell} \right\|_{L^2(E_\ell)} \]

Derived straightforwardly by using the theory [1], [2], [3]

Example

Available classical Babuška-Miller estimator:

$$\|e\|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} = UB_{\text{Class}}$$

$$\eta_{T,\text{Class}} := h_T \left\| f + \text{div}\sigma(u^h) \right\|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \left\| \sigma(u^h) \cdot n \right\|_{L^2(E_\ell)}$$

- **diam(T)**: strong form of the interior element residual
- **tractions jumps at the element boundaries**
Available classical Babuška-Miller estimator:

$$\|e\|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}}$$

$$\eta_{T,\text{Class}} := h_T \left\| \begin{array}{c} f + \text{div } \sigma(u^h) \\ \text{div } \sigma(u^h) \end{array} \right\|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \left\| \begin{array}{c} \sigma(u^h) \cdot n \\ \sigma(u^h) \cdot n \end{array} \right\|_{L^2(E_\ell)}$$

- **Example**

 a) **Explicit** (all data involved is explicitly available) \(\Rightarrow\) **simple** and **cheap**
Available classical Babuška-Miller estimator:

\[\| e \| _{\Omega} \leq \frac{C}{\sqrt{2\mu}} \left(\sum_{T} \eta_{T,\text{Class}}^{2} \right)^{1/2} =: UB_{\text{Class}} \]

\[\eta_{T,\text{Class}} := h_T \| f + \text{div}\sigma(u^h) \|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^{3} \left\| \left(\sigma(u^h) \cdot n \right) \right\|_{E_\ell} \]

Example

a) **Explicit** (all data involved is explicitly available) => **simple** and **cheap**

b) Basis for **adaptive** mesh refinements => you refine, where it is **appropriate**
Example

Plane strain

\[E = 77.1 \text{ GPa} \]
\[\nu = 0.33 \]
(aluminum 7075-T6)

Displacement controlled loading with
\[u_0 = (0.156 \cdot 10^{-5}) \text{ mm} \]

P1-triangular FEM
Example

- Loading
- Crack
- Initial coarse mesh (2854 DOF)
- Deformed mesh (magn. $1.5 \cdot 10^5$)
Example

\[\eta_{T,\text{Class}} := h_T \| f + \text{div} \sigma(u^h) \|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \| \langle \sigma(u^h) \cdot n \rangle_{E_\ell} \|_{L^2(E_\ell)} \]

Initial coarse mesh (2854 DOF)

Distribution of local errors,

\[\log_{10}(\eta_{T,\text{Class}}) \]
Example

Initial coarse mesh (2854 DOF) Adaptive step 1 (5078 DOF)
Example

\[\log_{10}(\eta_{T,\text{Class}}) \]
Different types of (strong/weak) singularities:

- Crack tip (limiting case of a re-entrant corner)
- The points, where the BC change
- Concave parts of the boundary

are naturally captured by mesh adaptivity
Example

Adaptive step 1
(5078 DOF)

Adaptive step 2
(9682 DOF)

e tc.
Example

Adaptive step 1
(5078 DOF)

Adaptive step 2
(9682 DOF)

etc.

(until when is to refine ?)
Example

Available classical Babuška-Miller estimator:

\[
\|e\|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} = UB_{\text{Class}}
\]

\[
\eta_{T,\text{Class}} := h_T \| f + \text{div} \sigma(u^h) \|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \left\| \left(\sigma(u^h) \cdot n \right)_{E_\ell} \right\|_{L^2(E_\ell)}
\]

Pros:

a) Explicit, simple and cheap
b) Basis for adaptive mesh refinements
Available **classical Babuška-Miller** estimator:

\[
\| e \|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}}
\]

\[
\eta_{T,\text{Class}} := h_T \| f + \text{div}\sigma(u^h) \|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \| \langle \sigma(u^h) \cdot n \rangle_{E_\ell} \|_{L^2(E_\ell)}
\]

Pros:

a) **Explicit, simple** and **cheap**

b) Basis for **adaptive** mesh refinements

Cons:

Multiplicative constant **C** is **not known**
Available classical Babuška-Miller estimator:

\[
\| e \|_\Omega \leq \frac{C}{\sqrt{2 \mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}}
\]

\[
\eta_{T,\text{Class}} := h_T \| f + \text{div} \sigma(u^h) \|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \left\| \sigma(u^h) \cdot n \right\|_{E_\ell} \|_{L^2(E_\ell)}
\]

Pros:

a) Explicit, simple and cheap
b) Basis for adaptive mesh refinements

Cons:

Multiplicative constant C is not known => * UB is not available (how accurate are you?)
Example

Available classical Babuška-Miller estimator:

\[\| e \|_\Omega \leq \frac{C}{\sqrt{2 \mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}} \]

\[\eta_{T,\text{Class}} := h_T \| f + \text{div} \sigma(u^h) \|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \left\| \left(\sigma(u^h) \cdot n \right)_{E_\ell} \right\|_{L^2(E_\ell)} \]

Pros:

a) **Explicit, simple and cheap**
b) Basis for **adaptive** mesh refinements

Cons:

Multiplicative constant \(C \) is **not known** =>

* \(UB \) is not available (how accurate are you?)
* no stopping criterion for adaptivity
Example

Available classical Babuška-Miller estimator:

\[\| e \|_{\Omega} \leq \frac{C}{\sqrt{2\mu}} \left(\sum_{T} \eta_{T,Class}^{2} \right)^{1/2} =: UB_{\text{Class}} \]

\[\eta_{T,Class} := h_{T} \| f + \text{div}\sigma(u^{h}) \|_{L^{2}(T)} + h_{T}^{1/2} \sum_{\ell=1}^{3} \left\| \langle \sigma(u^{h}) \cdot n \rangle_{E_{\ell}} \right\|_{L^{2}(E_{\ell})} \]

Pros:

a) Explicit, simple and cheap
b) Basis for adaptive mesh refinements

Cons:

Multiplicative constant \(C \) is not known \(\Rightarrow \) * UB is not available (how accurate are you?)
* no stopping criterion for adaptivity

By no means \(C \) can be found through the actual derivation procedure
Example

What if to set \(C=1 \)?

\[
\| e \|_\Omega \leq \frac{C}{\sqrt{2 \mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}}
\]
Example

What if to set $C = 1$?

\[\|e\|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_{T} \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}} \]
Example

What if to set $C=1$?

$$
\|e\|_{\Omega} \leq \frac{C}{\sqrt{2\mu}} \left(\sum_{T} \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}}
$$

NB: reference ("exact") error $\|e\|_{\Omega}$ obtained through computing an overkill solution.
Example

What if to set $C=1$?

$$\| e \|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_T^{2,\text{Class}} \right)^{1/2} =: UB_{\text{Class}}$$

Example

What if to set $C=1$?

$$\| e \|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_T^{2,\text{Class}} \right)^{1/2} =: UB_{\text{Class}}$$

$C \equiv 1$
Example

What if to set $C=1$?

\[\|e\|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}} \]

Is not allowed; if done – practically useless estimator
Motivation / Main result

Available classical Babuška-Miller estimator:

\[\|\mathbf{e}\|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}} \]

\[\eta_{T,\text{Class}} := h_T \left\| f + \text{div}\sigma(u^h) \right\|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \left\| \langle \sigma(u^h) \cdot \mathbf{n} \rangle_{E_{\ell}} \right\|_{L^2(E_{\ell})} \]

Pros:

a) Explicit, simple and cheap
b) Basis for adaptive mesh refinements

Cons:

Multiplicative constant \(C \) is not known
Motivation / Main result

Available classical Babuška-Miller estimator:

\[
\|e\|_{\Omega} \leq \frac{C}{\sqrt{2\mu}} \left(\sum_{T} \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}}
\]

\[
\eta_{T,\text{Class}} := h_T \|f + \text{div}\sigma(u^h)\|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^{3} \|\langle \sigma(u^h) \cdot n \rangle_{E_{\ell}}\|_{L^2(E_{\ell})}
\]

Pros:

a) Explicit, simple and cheap
b) Basis for adaptive mesh refinements

Cons:

Multiplicative constant \(C\) is not known

My motivation: Pros ! Cons
Motivation / Main result

Available classical Babuška-Miller estimator:

\[\| \mathbf{e} \|_{\Omega} \leq \frac{C}{\sqrt{2 \mu}} \left(\sum_{T} \eta_{T,Class}^{2} \right)^{1/2} =: UB_{Class} \]

\[\eta_{T,Class} := h_{T} \left\| \mathbf{f} + \text{div}\sigma(\mathbf{u}^{h}) \right\|_{L^{2}(T)} + h_{T}^{1/2} \sum_{\ell=1}^{3} \left\| \left\langle \sigma(\mathbf{u}^{h}) \cdot \mathbf{n} \right\rangle_{E_{\ell}} \right\|_{L^{2}(E_{\ell})} \]
Motivation / Main result

Available classical Babuška-Miller estimator:

\[
\|e\|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}}
\]

\[
\eta_{T,\text{Class}} := h_T \| f + \text{div} \sigma (u^h) \|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \| \langle \sigma (u^h) \cdot n \rangle_{E_\ell} \|_{L^2(E_\ell)}
\]

We propose the constant-free estimator:

\[
\|e\|_\Omega \leq \frac{\widetilde{c}_p \widetilde{c}_K}{\sqrt{2\mu + \widetilde{c}_{SE} \lambda}} \left(\sum_T \eta_{T,\text{New}}^2 \right)^{1/2} =: UB_{\text{New}}
\]
Motivation / Main result

Available classical Babuška-Miller estimator:

\[
\|e\|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}}
\]

\[
\eta_{T,\text{Class}} := h_T \|f + \text{div}\sigma(u^h)\|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \|\langle \sigma(u^h) \cdot n \rangle_{E_\ell}\|_{L^2(E_\ell)}
\]

We propose the constant-free estimator:

\[
\|e\|_\Omega \leq \frac{\tilde{c}_p \tilde{c}_K}{\sqrt{2\mu + \tilde{c}_{SE} \lambda}} \left(\sum_T \eta_{T,\text{New}}^2 \right)^{1/2} =: UB_{\text{New}}
\]

\[
\tilde{c}_p = \frac{4(\sqrt{17} - 1)^{1/2}}{(7 + \sqrt{17})(3 + \sqrt{17})^{1/2}} \quad \tilde{c}_K = 2 \left(\frac{\pi}{3\pi + 2} \right)^{1/2} \quad \tilde{c}_{SE} = \frac{2\pi + 4}{3\pi + 2}
\]
Motivation / Main result

Available classical Babuška-Miller estimator:

\[
\|\mathbf{e}\|_{\Omega} \leq \frac{C}{\sqrt{2 \mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} := UB_{\text{Class}}
\]

\[
\eta_{T,\text{Class}} := h_T \| \mathbf{f} + \text{div} \sigma (\mathbf{u}^h) \|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \left\| \langle \sigma (\mathbf{u}^h) \cdot \mathbf{n} \rangle_{E_\ell} \right\|_{L^2(E_\ell)}
\]

We propose the constant-free estimator:

\[
\|\mathbf{e}\|_{\Omega} \leq \frac{\tilde{c}_p \tilde{c}_K}{\sqrt{2 \mu + \tilde{c}_SE \lambda}} \left(\sum_T \eta_{T,\text{New}}^2 \right)^{1/2} := UB_{\text{New}}
\]

\[
\eta_{T,\text{New}} := h_T \| \mathbf{f} + \text{div} \sigma (\mathbf{u}^h) \|_{L^2(T)} + \frac{h_T}{|T|^{1/2}} \sum_{\ell=1}^3 \left\| E_\ell^{1/2} \right\|_{L^2(E_\ell)} \left\| \langle \sigma (\mathbf{u}^h) \cdot \mathbf{n} \rangle_{E_\ell} \right\|_{L^2(E_\ell)}
\]

\[
\tilde{c}_p = \frac{4(\sqrt{17} - 1)^{1/2}}{(7 + \sqrt{17})(3 + \sqrt{17})^{1/2}} \quad \tilde{c}_K = 2 \left(\frac{\pi}{3\pi + 2} \right)^{1/2} \quad \tilde{c}_SE = \frac{2\pi + 4}{3\pi + 2}
\]
Motivation / Main result

Available classical Babuška-Miller estimator:

\[
\|e\|_{\Omega} \leq \left(\frac{C}{\sqrt{2\mu}} \right) \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}}
\]

\[
\eta_{T,\text{Class}} := h_T \left\| f + \text{div} \sigma(u^h) \right\|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \left\| \langle \sigma(u^h) \cdot n \rangle_{E_{\ell}} \right\|_{L^2(E_{\ell})}
\]

We propose the constant-free estimator:

\[
\|e\|_{\Omega} \leq \left(\frac{\tilde{c}_p \tilde{c}_K}{\sqrt{2\mu + \tilde{c}_{SE} \lambda}} \right) \left(\sum_T \eta_{T,\text{New}}^2 \right)^{1/2} =: UB_{\text{New}}
\]

\[
\eta_{T,\text{New}} := h_T \left\| f + \text{div} \sigma(u^h) \right\|_{L^2(T)} + h_T^{1/2} \sum_{\ell=1}^3 \left(\frac{T}{E_{\ell}} \right)^{1/2} \left\| \langle \sigma(u^h) \cdot n \rangle_{E_{\ell}} \right\|_{L^2(E_{\ell})}
\]

\[
\tilde{c}_p = \frac{4(\sqrt{17} - 1)^{1/2}}{(7 + \sqrt{17})(3 + \sqrt{17})^{1/2}} \quad \tilde{c}_K = 2 \left(\frac{\pi}{3\pi + 2} \right)^{1/2} \quad \tilde{c}_{SE} = \frac{2\pi + 4}{3\pi + 2}
\]
Motivation / Main result

\[
\| e \|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}} \right)^{1/2} =: UB_{\text{Class}}
\]
Motivation / Main result

\[\| \mathbf{e} \|_{\Omega} \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta^2_{T,\text{Class}} \right)^{1/2} =: UB_{\text{Class}} \]

\[\| \mathbf{e} \|_{\Omega} \leq \frac{\tilde{c}_p \tilde{c}_K}{\sqrt{2\mu + \tilde{c}_{SE}\lambda}} \left(\sum_T \eta^2_{T,\text{New}} \right)^{1/2} =: UB_{\text{New}} \]

\[\text{Error} \]

\[\text{number DOF} \]

\[UB_{\text{Class}}, \quad C \equiv 1 \]

\[UB_{\text{New}} \]
Motivation / Main result

\[\| e \|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}} \]

\[\| e \|_\Omega \leq \frac{\tilde{c}_p \tilde{c}_K}{\sqrt{2\mu + \tilde{c}_{SE}\lambda}} \left(\sum_T \eta_{T,\text{New}}^2 \right)^{1/2} =: UB_{\text{New}} \]

New Upper Bound is guaranteed and accurate
Motivation / Main result

\[
\| e \|_{\Omega} \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}}
\]

\[
\| e \|_{\Omega} \leq \frac{c_p c_K}{\sqrt{2\mu + \tilde{c}_{SE} \lambda}} \left(\sum_T \eta_{T,\text{New}}^2 \right)^{1/2} =: UB_{\text{New}}
\]

Corresponding effectivity index is close to 1!
Motivation / Main result

The above geometries were used for the primal testing of

\[\| e \|_\Omega \leq \frac{\tilde{c}_p \tilde{c}_K}{\sqrt{2\mu + \tilde{c}_{SE} \lambda}} \left(\sum_T \eta_{T,\text{New}}^2 \right)^{1/2} =: UB_{\text{New}} \]

plane stress
\[E = 65000 \]
\[\nu = 0.29 \]

P1-triangular FEM
1. In all examples considered \(\theta_{\text{New}} := \frac{UB_{\text{New}}}{\|e\|_{\Omega}} < 2 \) (namely, 1.3-1.6) both for the \textit{uniform} and \textit{adaptive} mesh refinement strategies.

\[E = 65000 \]
\[\nu = 0.29 \]
1. In all examples considered, \(\theta_{\text{New}} := \frac{UB_{\text{New}}}{\| e \|_\Omega} < 2 \) (namely, 1.3-1.6) both for the uniform and adaptive mesh refinement strategies.

2. In the letter case, for \(p=1 \) the optimal convergence rate (1 and 0.5 in terms of \(h \) and \(N \), respectively) is restored (smt. doubled).

\[
\| e \|_\Omega \leq C h^{\min(p, \lambda)} \quad \| e \|_\Omega \leq \tilde{C} N^{\frac{1}{\min(p, \lambda)}}
\]
Motivation / Main result

Stopping criterion for mesh refinements (adaptive/uniform) is now “well-defined”:

\[
\frac{\|e\|^2_\Omega}{a(u,u)} \leq \text{TOL}
\]
Motivation / Main result

Stopping criterion for mesh refinements (adaptive/uniform) is now “well-defined”:

\[
\frac{\|e\|_\Omega^2}{a(u,u)} \leq \text{TOL}
\]

Along with

\[
\|e\|_\Omega \leq UB_{\text{New}}
\]

\[
a(u,u) = \|e\|_\Omega^2 + a(u^h, u^h)
\]
Motivation / Main result

Stopping criterion for mesh refinements (adaptive/uniform) is now “well-defined”:

\[
\frac{\|e\|^2_\Omega}{a(u,u)} \leq \text{TOL}
\]

Along with

\[
a(u,u) = \|e\|^2_\Omega + a(u^h,u^h) \leq UB_{New}
\]

\[
\frac{\|e\|^2_\Omega}{a(u,u)} \leq \frac{1}{1 + \frac{a(u^h,u^h)}{UB_{New}^2}}
\]
Motivation / Main result

Stopping criterion for mesh refinements (adaptive/uniform) is now “well-defined”:

$$\frac{\|e\|^2_\Omega}{a(u,u)} \leq \text{TOL}$$

Along with

$$\|e\|^2_\Omega \leq UB_{New}$$

$$a(u,u) = \|e\|^2_\Omega + a(u^h,u^h)$$

$$\frac{\|e\|^2_\Omega}{a(u,u)} \leq \frac{1}{1 + \frac{a(u^h,u^h)}{UB_{New}^2}} \leq \text{TOL}$$
Application I:
Error-controlled crack propagation (in 2D)

Experimental setup [1]:

\[E = 77.1 \text{ GPa} \]
\[v = 0.33 \]
(aluminum 7075-T6)

Application I: Error-controlled crack propagation (in 2D)

Experimental setup [1]:

\[E = 77.1 \text{ GPa} \]
\[\nu = 0.33 \]
(aluminum 7075-T6)

Application I: Error-controlled crack propagation (in 2D)

Experimental setup [1]:

Our setting:

\[E = 77.1 \text{ GPa} \]
\[\nu = 0.33 \]
(aluminum 7075-T6)

Application I: Error-controlled crack propagation (in 2D)

Experimental setup [1]:

Our setting:

13 propagation steps, each with
- displ. $u_0 = (0, 1.56 \cdot 10^{-5}) \text{ mm}$
- crack increment $\Delta a = 2.5 \text{ mm}$

$E = 77.1 \text{ GPa}$
$\nu = 0.33$
(aluminum 7075-T6)

Application I:
Error-controlled crack propagation (in 2D)

Experimental setup [1]:

Our setting:

- the domain expression for the J-integral:

$$J(u; \theta) = - \int_{\Omega J} \nabla (q\bar{n}) : (W_s(u) I - \nabla^T u \cdot \sigma(u)) \, dx \, dy,$$

13 propagation steps, each with
- displ. $u_0 = (0, 1.56 \cdot 10^{-5}) \, mm$
- crack increment $\Delta a = 2.5 \, mm$

$E = 77.1 \, GPa$
$\nu = 0.33$
(aluminum 7075-T6)

plane-strain

Experimental setup [1]:

Our setting:

Our result [2]:

Application I:
Error-controlled crack propagation (in 2D)

$E = 77.1 \text{ GPa}$

$\nu = 0.33$

(aluminum 7075-T6)

Application I: Error-controlled crack propagation (in 2D)

Prop. Step 0 (pre-existing crack)

Initial mesh
(2854 DOF)

Adapt. Step 3
(20390 DOF)

TOL = 4%

Propagation angle
$\theta_{\text{prop}} = 1.525^\circ$
for the next prop. step

Propagating crack opening
Application I: Error-controlled crack propagation (in 2D)

Initial mesh
(2854 DOF)

Adapt. Step 3
(20714 DOF)

TOL = 4%

Propagation angle
θ_{prop} = 0.875°
for the next prop. step

Propagating crack opening
Application I: Error-controlled crack propagation (in 2D)

Prop. Step 2

TOL = 4%

Initial mesh (2850 DOF)

Adapt. Step 3 (21294 DOF)

Propagation angle

$\theta_{\text{Prop}} = -0.05^\circ$

for the next prop. step

Propagating crack opening
Application I: Error-controlled crack propagation (in 2D)

Prop. Step 3

Initial mesh (2830 DOF)

Adapt. Step 3 (20736 DOF)

TOL = 4%

Propagation angle

\[\theta_{\text{prop}} = -1.4^\circ \]

for the next prop. step

Propagating crack opening
Application I:
Error-controlled crack propagation (in 2D)

Initial mesh
(2862 DOF)

Adapt. Step 3
(20858 DOF)

TOL = 4%

Propagation angle
$\theta_{\text{prop}} = -3.05^\circ$
for the next prop. step

Propagating crack opening
Application I:
Error-controlled crack propagation (in 2D)

Prop. Step 5

Initial mesh
(2834 DOF)

Adapt. Step 3
(21216 DOF)

TOL = 4%

Propagation angle
\(\theta_{\text{prop}} = -5.34^\circ \)
for the next prop. step

Propagating crack opening
Application I:
Error-controlled crack propagation (in 2D)

Prop. Step 6

TOL = 4%

Initial mesh
(2844 DOF)

Adapt. Step 3
(20732 DOF)

Propagation angle
\[\theta_{\text{Prop}} = -8.175^\circ \]
for the next prop. step

Propagating crack opening
Application I: Error-controlled crack propagation (in 2D)

Prop. Step 7

Initial mesh (2846 DOF) Adapt. Step 3 (21900 DOF)

TOL = 4%

Propagation angle $\theta_{\text{Prop}} = -11.81^\circ$

for the next prop. step

Propagating crack opening
Application I:
Error-controlled crack propagation (in 2D)

Prop. Step 8

- **Initial mesh** (2856 DOF)
- **Adapt. Step 3** (21196 DOF)

TOL $= 4\%$

Propagation angle $\theta_{\text{Prop}} = -16.425^\circ$

for the next prop. step

Propagating crack opening
Application I:
Error-controlled crack propagation (in 2D)

Prop. Step 9

- **Initial mesh** (2846 DOF)
- **Adapt. Step 3** (21928 DOF)

Propagation angle
\[\theta_{\text{Prop}} = -22.46^\circ \]
for the next prop. step

TOL = 4%
Application I:
Error-controlled crack propagation (in 2D)

Prop. Step 10

Initial mesh (2842 DOF)

Adapt. Step 3 (21648 DOF)

Propagation angle
\[\theta_{\text{Prop}} = -30.675^\circ \]
for the next prop. step

TOL = 4%

Propagating crack opening
Application I:
Error-controlled crack propagation (in 2D)

Prop. Step 11

Initial mesh
(2870 DOF)

Adapt. Step 3
(21868 DOF)

TOL = 4%

Propagation angle
\[\theta_{\text{Prop}} = -41.85^\circ \]

for the next prop. step

Propagating crack opening
Application I: Error-controlled crack propagation (in 2D)

Prop. Step 12

Initial mesh (2858 DOF)

Adapt. Step 3 (21922 DOF)

TOL = 4%

Propagation angle

$\theta_{\text{Prop}} = -54.82^\circ$

for the next prop. step

Propagating crack opening
Application I:
Error-controlled crack propagation (in 2D)

Initial mesh
(2868 DOF)

Adapt. Step 3
(24908 DOF)

TOL = 4%

Final failure

Prop. Step 13
(we stop here)
Application I:
Error-controlled crack propagation (in 2D)

was modeled
Application I: Error-controlled crack propagation (in 2D)

Note,

- **low-order elements** were used (the costs are really affordable)
- a **standard** (not purpose-oriented) **comp. code** [1] was used
- a progressing crack was modeled as a **wedge** (not a slit, as e.g. in XFEM/GFEM)
- **TOL:=4%** for adaptive remeshing, and crack **increment** were relatively **large**.

Yet, the results are accurate enough, what we mainly attribute to mesh adaptivity, driven by the new error estimator proposed.

Application II:
Quasi-error-controlled damage analysis for a failure of SEN concrete beam

Experimental results from [1]:

Imagine a diagram showing a concrete beam with labels indicating distances and forces applied at various points. The beam has labels such as 20 mm, 180 mm, and 40 mm, along with force indications like $\frac{1}{10} P$ and $\frac{1}{11} P$. The beam is supported at the ends and shows failure modes at different sections.

Also in [2] for the “small” specimen.

Application II: Quasi-error-controlled damage analysis for a failure of SEN concrete beam

Experimental results from [1]:

We are interested in accurate modeling of this particular case:

the two non-symmetric cracks nucleate and evolve
(the left one is seemingly “counter intuitive”)
Application II:
Quasi-error-controlled damage analysis for a failure of SEN concrete beam

Experimental results from [1]:

We adopt the comput. model from [2]:

\[
\sigma = (1 - D(\bar{\varepsilon}_{eq})) \mathbb{C} : \varepsilon \quad \text{in } \Omega \\
\begin{cases}
-c \nabla^2 \bar{\varepsilon}_{eq} + \bar{\varepsilon}_{eq} = \varepsilon_{eq}(\varepsilon) \quad \text{in } \Omega \\
\nabla \bar{\varepsilon}_{eq} \cdot \mathbf{n} = 0 \quad \text{on } \partial \Omega
\end{cases}
\]

- specific definition of equivalent strain

\[\varepsilon_{eq} := f(k, J_1(\varepsilon), J_2(\varepsilon))\]

- calibrated: \(k, c\) and \(\kappa_0, \alpha, \beta\) in \(D\)

We first adapt mesh on the pre-damaged stage...

Application II: Quasi-error-controlled damage analysis for a failure of SEN concrete beam
Application II:
Quasi-error-controlled damage analysis for a failure of SEN concrete beam

We first adapt mesh on the pre-damaged stage...

\[
\sigma = (1 - D(\bar{\varepsilon}_{eq})) \mathbf{C} : \varepsilon \quad \text{in} \quad \Omega
\]

\[
\begin{align*}
-\varepsilon \nabla^2 \bar{\varepsilon}_{eq} + \bar{\varepsilon}_{eq} & = \varepsilon_{eq}(\varepsilon) \quad \text{in} \quad \Omega \\
\nabla \bar{\varepsilon}_{eq} \cdot \mathbf{n} & = 0 \quad \text{on} \quad \partial \Omega
\end{align*}
\]

...when the above system is naturally decoupled.
Application II: Quasi-error-controlled damage analysis for a failure of SEN concrete beam

We first adapt mesh on the pre-damaged stage...

\[\sigma = (1 - D(\bar{\epsilon}_{eq})) C : \epsilon \quad \text{in} \quad \Omega \]
\[-c \nabla^2 \bar{\epsilon}_{eq} + \bar{\epsilon}_{eq} = \bar{\epsilon}_{eq}(\epsilon) \quad \text{in} \quad \Omega \]
\[\nabla \bar{\epsilon}_{eq} \cdot n = 0 \quad \text{on} \quad \partial \Omega \]

...when the above system is naturally decoupled.

Hence, we can use our error estimator

\[\| e \|_\Omega \leq \frac{\tilde{C}_p \tilde{C}_K}{\sqrt{2\mu + \tilde{C}_SE\tilde{\lambda}}} \left(\sum_T \eta_{T,New}^2 \right)^{1/2} =: UB_{New} \quad \text{TOL} = 1 \% \]
Application II:
Quasi-error-controlled damage analysis for a failure of SEN concrete beam

We first adapt mesh on the pre-damaged stage...

... and then compute the damage D evolution

<table>
<thead>
<tr>
<th>DOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4026</td>
</tr>
<tr>
<td>6714</td>
</tr>
<tr>
<td>12712</td>
</tr>
<tr>
<td>26986</td>
</tr>
</tbody>
</table>
Application II:
Quasi-error-controlled damage analysis for a failure of SEN concrete beam

Experimental results from [1]:

Damage state at a certain loading [2]:

Application II:
Quasi-error-controlled damage analysis for a failure of SEN concrete beam

Adapted mesh for damage evolution computations

26986 DOF

Uniform mesh

20684 DOF

Damage state for the same loading
Application II:
Quasi-error-controlled damage analysis for a failure of SEN concrete beam

Adapted mesh
for damage evolution computations

Uniform mesh
26986 DOF

20684 DOF

Damage state for the same loading

Transformation of a damage zone into an equivalent crack, [1]

Application II:
Quasi-error-controlled damage analysis for a failure of SEN concrete beam

Adapted mesh
for damage evolution computations

Uniform mesh

Damage state for the same loading

Transformation of a damage zone into an equivalent crack, [1]

Application III:
Micro-crack initiation in a ceramic specimen

Magnesium-stabilized Zirconia dioxide (Mg-ZrO$_2$) ceramic beam specimen of size 25x2x2 (dim. in mm) with a micro-notch of length \sim330 μm under 3-point bending test

Micro-crack, stemming from the notch tip, shortly before rapture
Application III:
Micro-crack initiation in a ceramic specimen (first attempt)

Initiation and development of a micro-crack
Application III:
Micro-crack initiation in a ceramic specimen (first attempt)

Micro-crack nucleates inside of the specimen, namely, on the grain boundary and develops along it.
Application III:
Micro-crack initiation in a ceramic specimen (first attempt)

Micro-crack nucleates inside of the specimen, namely, on the grain boundary and develops along it.

We will model this phenomena by using the damage model.
Application III: Micro-crack initiation in a ceramic specimen (first attempt)

Our setup:

\[u = 0 \quad \text{width} = 1.96 \text{ mm} \]

\[u_y = 0, \ t_x = 0 \]

25 mm

1.57 mm
Application III: Micro-crack initiation in a ceramic specimen (first attempt)

Our setup:

\[u = 0 \]
\[u_y = 0, t_x = 0 \]

width = 1.96 mm
25 mm
1.57 mm

Let’s consider only one grain (an inclusion in blue), perfectly bonded with the outer material (in red) and such that \(E_1 \neq E_2 \)

\[E_1 = 200 \text{ GPa} \]
\[\nu_1 = 0.3 \]

\[E_2 = 250 \text{ GPa} \]
\[\nu_2 = 0.3 \]

diam = 40 \mu m
Application III:
Micro-crack initiation in a ceramic specimen (first attempt)

Our setup:

\[u = 0 \quad u_y = 0, \quad t_x = 0 \]

width = 1.96 mm

width = 1.57 mm

\[E_1 = 200 \text{ GPa} \]
\[\nu_1 = 0.3 \]

\[E_2 = 250 \text{ GPa} \]
\[\nu_2 = 0.3 \]

diam = 40 \mu m

Micro-crack nucleates \textit{inside} of the specimen, namely, on the \textbf{grain boundary} and develops along it.
Application III: Micro-crack initiation in a ceramic specimen (first attempt)

Our setup:

\[u = 0 \quad u_y = 0, \; t_x = 0 \]

width = 1.96 mm

Initial coarse mesh

Adapted mesh (before initiation of damage)
Application III:
Micro-crack initiation in a ceramic specimen (first attempt)

Evolution of damage D (before the peak load)
Application III:
Micro-crack initiation in a ceramic specimen (first attempt)

Evolution of damage D (before the peak load)

1

2

3

4

5

6

$E_1 = 200$ GPa
$\nu_1 = 0.3$

$E_2 = 250$ GPa
$\nu_2 = 0.3$

diam $= 40$ μm

330 μm

100 μm

100 μm
Application III: Micro-crack initiation in a ceramic specimen (first attempt)

Evolution of damage D (before the peak load)

D_{max} is attained on the grain boundary

$E_1 = 200 \text{ GPa}$
$\nu_1 = 0.3$

$E_2 = 250 \text{ GPa}$
$\nu_2 = 0.3$

Diam = 40 μm

330 μm

100 μm

100 μm
Application III: Micro-crack initiation in a ceramic specimen (first attempt)

Evolution of damage D (before the peak load)

D_{max} is attained on the grain boundary

Micro-crack nucleates inside of the specimen, namely, on the grain boundary
New Error Estimator: conclusions

\[\|e\|_\Omega \leq \frac{\hat{C}_p \hat{C}_K}{\sqrt{2\mu + \hat{C}_{SE} \lambda}} \left(\sum_T \eta_{T,\text{New}}^2 \right)^{1/2} =: UB_{\text{New}} \]

\[\eta_{T,\text{New}} := h_T \|f + \text{div}\sigma(u^h)\|_{L^2(T)} + \frac{h_T}{T^{1/2}} \sum_{\ell=1}^3 \|E_{\ell}^{1/2}\|_{E_{\ell}} \|\sigma(u^h) \cdot n\|_{L^2(E_{\ell})} \]

- **Explicit** error estimator for 2D (linear) problems
- **Simple** and **cheap**
 - *UB* is **guaranteed** (no overestimation)
 - *UB* is **accurate** (eff.ind. < 2 => practically acceptable)

- Extension to 3D (linear) problems is seemingly straightforward

New Error Estimator: ongoing research

\[
\|e\|_\Omega \leq \frac{\bar{c}_p \bar{c}_K}{\sqrt{2\mu + \bar{c}_{SE}^\lambda}} \left(\sum_T \eta_{T,\text{New}}^2 \right)^{1/2} =: UB_{\text{New}}
\]

\[\eta_{T,\text{New}} := h_T \| f + \text{div}\sigma(u^h) \|_{L^2(T)} + \frac{h_T}{|T|^{1/2}} \sum_{\ell=1}^3 \| E_\ell \|_{1/2}^{1/2} \| \sigma(u^h) \cdot n \|_{E_\ell} \|_{L^2(E_\ell)} \]

- Extension to \(P2, \ldots \) and \(Q1, Q2, \ldots \) based FEMs in 2D
- Extension to 3D
- Goal-oriented EE analysis, \(|Q(u) - Q(u^h)| \leq \| e \|_\Omega \| e^* \|_\Omega \)
- Extension to e.g. XFEM – done in [1], but constant-free (???)

Applications: conclusions

I. II. III.

A simple (lower-order) FE technique, equipped with an adequate a posteriori error estimator (to provide efficient, simple and cheap adaptivity), may be rather competitive to the advanced, yet more cumbersome and not-so-easy-to-implement FE techniques like e.g. XFEM/GFEM
Appendices

(planed for the next seminar)

• How does C appears?

$$\|e\|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}}$$
Appendices
(planed for the next seminar)

• How does C appears?

\[\|e\|_\Omega \leq \frac{C}{\sqrt{2\mu}} \left(\sum_T \eta_{T,\text{Class}}^2 \right)^{1/2} =: UB_{\text{Class}} \]

• Derivation of

\[\|e\|_\Omega \leq \frac{\tilde{c}_p \tilde{c}_K}{\sqrt{2\mu + \tilde{c}_SE \lambda}} \left(\sum_T \eta_{T,\text{New}}^2 \right)^{1/2} =: UB_{\text{New}} \]

\[\eta_{T,\text{New}} := h_T \|f + \text{div}\sigma(u^h)\|_{L^2(T)} + \frac{h_T}{T^{1/2}} \sum_{\ell=1}^3 \|s\|_{E_\ell} \|f^h \cdot n\|_{E_\ell} \]

\[
\tilde{c}_p = \frac{4(\sqrt{17} - 1)^{1/2}}{(7 + \sqrt{17})(3 + \sqrt{17})^{1/2}} \\
\tilde{c}_K = 2\left(\frac{\pi}{3\pi + 2} \right)^{1/2} \\
\tilde{c}_{SE} = \frac{2\pi + 4}{3\pi + 2}
\]