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Zusammenfassung

Die Erforschung von Gummireibung auf rauen Oberflächen ist für das Verständnis des
Reifen-Fahrbahn-Kontaktes und die Verbesserung der Gripeigenschaften zukünftiger
Reifen von fundamentalem Interesse. Ein Ziel der Arbeit ist es, relevante physikali-
sche Effekte mit einem Finite Elemente Modell abzubilden und somit die Vorhersage
der Reibverhältnisse bestimmter Gummi-Straßenoberflächen-Kombinationen unter ver-
schiedenen globalen Bedingungen zu ermöglichen. Desweiteren soll die numerische
Methode genutzt werden, um durch die Trennung der physikalischen Effekte und durch
die Zugänglichkeit zu nicht messbaren Größen wertvolles Verständnis zu Gummireibung
zu generieren.
Raue Oberflächen erzeugen beim Reibprozess eine zyklische Anregung der viskoelas-
tischen Gummimischungen, die zu Energiedissipation und damit zu einer als Hys-
teresereibung bezeichneten Reibkraft führt. Die Modellierung von Hysteresereibung
wird durch die direkte Verwendung von rauen Oberflächenprofilen in Kombination
mit einem viskoelastischen Materialmodell realisiert und bildet gleichzeitig Verzah-
nungseffekte ab. Um alle relevanten Oberflächenasperitäten abbilden zu können, wird
in dieser Arbeit eine Multiskalenmethode vorgestellt, die auf Kontakt-Homogenisierung
und einer Betrachtung der Oberfläche auf mehreren Längen-Skalen beruht. Der ma-
kroskopische Druck wird über Homogenisierung von mehreren Oberflächenprofilen auf
die unteren Skalen weitergegeben und die resultierende Hysteresereibung in Form von
homogenisierten Reibkoeffizienten zurück gegeben.
Zusätzlich zu Hysterese wird in dieser Arbeit Adhäsion modelliert. Dazu wird die
Kontaktfläche durch die Berücksichtigung aller Längen-Skalen abgeschätzt. Adhäsion
wird als Interaktion von Gummimolekülketten mit Atomen der rauen Oberfläche be-
trachtet. Der Multiskalen-Ansatz wird um ein makrosopisches phänomenologisches
Adhäsionsgesetz erweitert.
Beim Reibprozess mit hohen Geschwindigkeiten erwärmt sich der Gummiblock in der
Kontaktfläche zudem stark, was zu einer Änderung der Reibantwort führt. Deshalb
wird der Multiskalen-Ansatz um Temperatureffekte erweitert. Auf der obersten Skala
wird eine thermo-mechanisch gekoppelte Simulation durchgeführt. Die resultierenden
Temperaturen und die damit geänderten Materialeigenschaften werden auf allen Skalen
berücksichtigt, um den Einfluss der Temperatur auf die Hysteresereibung abzubilden.
Der numerische Multiskalen-Ansatz wird für die einzelnen physikalischen Effekte
zunächst ausführlich erläutert. Anschließend werden einige wichtige methodische
Fragestellungen anhand von numerischen Studien beleuchtet. Im weiteren Verlauf
wird der Ansatz mit experimentellen Ergebnissen validiert und aufgezeigt, welche
ausgewählten physikalischen Effekte und globalen Parameteränderungen sich mit der
vorgestellten Methode abbilden lassen.

Schlagworte: Kontakt Homogenisierung, Multiskalen-Ansatz, Gummireibung, Hyste-
resereibung, Adhäsion, Kontakttemperatur
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Abstract

Studying rubber friction on rough surfaces provides an essential part for understand-
ing the tire-road-interaction and the improvement of grip properties for future tire
development. One goal of this work is to include relevant physical effects in a finite
element model in order to be able to predict friction responses of certain rubber-road
surface-combinations under different global conditions. Furthermore, the numerical
method could be used to generate additional valuable knowledge about rubber friction
since physical effects are divided and access to quantities that are not reachable in
experiments is provided.
Rough surfaces generate a cyclic excitation of sliding viscoelastic rubber materials
leading to energy dissipation and consequently to a frictional force known as hysteretic
friction. Modelling of hysteretic friction is realized directly using rough surface profiles
in combination with a viscoelastic material model. Simultaneously, interlocking effects
are included. In order to consider relevant surface asperities, a multiscale framework is
presented in this work which is based on contact-homogenization and consideration of
the rough surface on several length-scales. The macroscopic pressure is transferred by
homogenization over several rough surface samples and the resulting hysteretic friction
is passed back via a homogenized coefficient of friction.
In addition to hysteresis, adhesion is modelled in this work. For that reason, the
contact area resulting from consideration of all length scales is estimated. Adhesion
is considered as the interaction of rubber molecule chains with atoms of the rough
counter surface. A phenomenological adhesion model is integrated into the multiscale
approach.
Furthermore, during a sliding process with high velocities, a strong heating of the
rubber block at the contact interface is observed providing a change of the frictional
response. Hence, temperature effects are included into the multiscale approach. A
thermomechanically coupled simulation is realized on the largest length scale. Based
on the calculated temperatures the material properties are changed on all lower scales.
Consequently, the influence of thermal effects on hysteretic friction is demonstrated.
The numerical multiscale approach is described for individual physical effects in detail
and some relevant numerical studies with respect to the methodology are performed.
Thereafter, the approach is validated with experimental results and the capability of
the proposed method to predict the influence of different physical effects and global
parameter changes is demonstrated.

Keywords: Contact homogenization, Multiscale approach, Rubber friction, Hysteretic
friction, Adhesion, Contact temperature
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Ich möchte mich herzlich bei meinem Doktorvater Prof. Peter Wriggers bedanken.
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Chapter 1

Introduction

1.1 Motivation

Tire manufacturers face a lot of challenging tasks in the development process of new
tires. The superior aim is to optimize characteristics like rolling resistance, handling,
noise, wear or braking performance among others. These aims partly contradict them-
selves leading to complex relationships and target conflicts during the development
process, see figure 1.1 a). In order to understand and improve all targets field stud-
ies with real tires (see figure 1.1 b)), experimental tests in laboratory and simulation
techniques are widely used.
For further improvement of the complex grip behaviour of tires, containing multiple
physical phenomena, more sophisticated and improved simulation tools in combina-
tion with new experimental approaches are demanded, see figure 1.1 c). This work
concentrates on modelling the safety-relevant aspect of grip performance on wet and
dry surfaces with the aim to improve it later on. A massive improvement of the car

Figure 1.1: a) Tire performances with exemplary braking performance of two tires. b) Dry and wet

braking (pictures taken by bluestudios GmbH / Volker Warning, courtesy of Continental). c) Fun-

damental studies: experiments (Courtesy of Continental) and numerical modelling of sliding rubber

blocks.
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2 CHAPTER 1. INTRODUCTION

braking performance was achieved over the last decades by introducing for example
anti-lock braking systems (ABS) or compounds with an improved grip level. Reduced
braking distances by improved tire performances will help to reduce the number of
traffic fatalities in the future, contributing to the desirable goal of zero fatalities and
accidents, called vision zero.
One goal of this work is to gain more knowledge of the physical processes of rubber
friction, taking place on a large range of length scales. In order to achieve this goal,
the work concentrates on effects of a macroscopic rubber block with the size of a few
centimeters down to the smallest relevant length scales of some micrometers excluding
the analysis of tire mechanics. The method is validated with experimental results and
generates a deeper understanding of the process, providing additional useful informa-
tion that is inaccessible in experimental studies. With this valuable knowledge, tire
engineers can further improve the grip performance of new innovative tires.

1.2 State of the Art

In order to understand the process of rubber friction, a lot of experimental and mod-
elling studies were performed, starting with the early works of Schallamach (1952,
1953) and Grosch (1963). Based on the performed measurements and observations,
fundamental statements regarding the physical mechanisms of rubber friction are de-
rived in Schallamach (1971), see also Roberts & Thomas (1975); Roberts
(1976); Barquins & Roberts (1986). Summarizing, a complex behaviour under
a lot of macroscopic parameters such as load, velocity, temperature, rubber material
and state of the counter surface is noticed and linked to the physical phenomena of
hysteretic friction, adhesion, and other effects. However, contemporary experimental
studies show still the necessity of further investigations, see Lahayne & Eberhard-
steiner (2007); Ripka et al. (2009); Ripka (2013); Wallaschek & Wies (2013).
The mechanism of hysteretic friction originates from the energy dissipation inside the
viscoelastic rubber material during sliding, leading to a different response of rubber
in contrast to non-viscoelastic materials like metals for example. The origin of ad-
hesion and its influence on the frictional response of sliding rubber is a topic under
controversial discussion. Adhesion is, contrary to the bulk phenomenon hysteresis, a
surface effect described from a macroscopic point of view as the sticking of the rub-
ber to the counter surface. This observation is a direct result of interactions between
rubber molecules and surface atoms on a nanometer length scale. Additionally, rubber
samples heat up during sliding and thus change the properties of hysteretic and adhe-
sive effects, especially for large sliding velocities. A lot of valuable results are provided
by the cited experimental studies and various questions about rubber friction are an-
swered. Nevertheless, certain effects at the contact interface, the complex interaction of
different mechanisms, and prediction of frictional responses remain an open question.
In order to predict the frictional response of rubber and to gain some additional under-
standing and information, multiple modelling approaches are developed. Starting with
Klüppel & Heinrich (2000) and Persson & Tosatti (2000); Persson (2001),
analytical approaches were proposed first for hysteretic friction and then extended by
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models for adhesion and thermomechanical interaction, see Persson (2002); Pers-
son et al. (2005); Le Gal et al. (2005); Le Gal & Klüppel (2008); Lorenz
et al. (2015) and Persson (2006, 2014); Fortunato et al. (2015). In addition
to the mentioned experimental studies, these analytical approaches revealed further
valuable insights of rubber friction and its mechanisms. Nonetheless, those analytical
approaches contain certain assumptions, uncertain input parameters or simplifications.
Within the analytical models, sub-models for e.g. calculating the current contact area
are necessary. Numerical modelling of the contact interaction with the help of finite
element technology can replace those sub-models and improve the prediction quality.
Also, more complex material models i.e. nonlinear instead of linear theories could be
used within a finite element framework, getting closer to the vision described in the
previous section 1.1.

Therefore, rubber friction is modelled with finite elements in this thesis trying to gen-
erate more knowledge about the process of a sliding rubber block besides the available
knowledge from experimental and analytical studies. A single numerical model with
all rough surface details would be hard to handle and very expensive from a com-
putational point of view, because a very fine resolution in space and time has to be
provided for sliding rubber samples on a rough surface. As a consequence, complex
contact problems with microscopic details are often solved with multiscale approaches
dividing the original problem into separate calculations. In contrast to single scale ap-
proaches like Hofstetter et al. (2006b), multiscale approaches reveal the chance
to model hysteresis directly. Hence, multiscale approaches are used as a basis of the
developed method in this thesis including hysteresis, adhesion and temperature effects
at the contact interface.

A popular finite element approach is based on a contact homogenization procedure
reducing the amount of information that has to be transferred between the scales, see
Temizer & Wriggers (2008); Wriggers & Reinelt (2009). With this approach
a very complex communication between the scales is omitted, see for example Nitsche
(2011). Macroscopic contact values (pressure, velocity) are passed as boundary condi-
tions to the microscopic length scales. The response of the microscopic sub-model is
used to compute a resulting coefficient of friction. This coefficient of friction is averaged
in time in order to be reduced to a time-independent value enhancing the macroscopic
contact formulation by microscopic interactions in a next step. These contact homog-
enization approaches, see also Wagner et al. (2015) and Wagner et al. (2017),
proved to be a powerful and useful tool for the simulation of complex contact prob-
lems consisting of details on a large range of length scales, especially rubber friction
on rough road surfaces.

In Wriggers & Reinelt (2009); Falk et al. (2016), also adhesive interactions on
the lowest length scale are introduced. Extensions to thermal interactions of rubber
on a rough surface can be found in Temizer & Wriggers (2010b); Temizer (2011,
2014, 2016). In addition to the general multiscale framework, a lot of numerical studies
on the microscopic length scale were performed to study the properties and outcome
of homogenization, see for example Temizer & Wriggers (2010a), de Lorenzis
& Wriggers (2013), Temizer (2013), Stupkiewicz et al. (2014) and Temizer
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(2014).

1.3 Structure of the Thesis

An overview of rubber friction physics including experimental studies, contributing
effects and modelling approaches is provided in chapter 2. Afterwards, the continuum
mechanical fundamentals and basic equations for the solution of contact problems
including rough surfaces and viscoelastic rubber materials in a geometrically nonlinear
setting are presented in chapter 3 and 4, respectively. The governing equations are
solved with the finite element method and therefore the background of finite elements
for solid mechanics and contact problems is explained in chapter 5. The developed
multiscale approach for rubber friction is divided into physical effects that are modelled
and explained in chapters 6, 7 and 8. First of all, the approach for hysteretic friction
and the main features of contact homogenization are derived in chapter 6 starting with
an overview of known approaches and main results. Secondly, the multiscale method is
extended for adhesive interactions in chapter 7. Finally, a modification of the multiscale
approach in order to include thermomechanical interactions is proposed in chapter 8.
Implementation details are provided in each chapter and certain important aspects
are examined with numerical studies. The results of the multiscale method and single
aspects are validated with experimental results at the end of chapters 6, 7 and 8 in order
to reveal the prediction quality of the multiscale method. The results are summarized
in chapter 9 and an outlook is given.



Chapter 2

Elastomer Friction Physics

For an appropriate modelling of rubber friction, a deep understanding of the experi-
mental observations and underlying physical processes is essential. Thus, the results of
the most important fundamental experimental studies are summarized in this chapter,
completed by a short review on contemporary experimental techniques. After an illus-
tration of the physical effects contributing to the frictional response of sliding rubber
samples, a brief overview on modelling approaches is given. Analytical approaches are
roughly summarized since some aspects of the later proposed multiscale approach and
results are compared to these approaches. The chapter is completed with a classifica-
tion of numerical studies on rubber friction.

2.1 Experimental Investigations

The fundamental studies of Schallamach and Grosch are summarized and as an
example for contemporary experiments, the test setups used for validation in later
chapters are explained. Details of the test results together with certain details of the
measurement techniques are explained during the validation studies in chapters 6, 7
and 8.

2.1.1 Fundamental Studies

Studies of friction between solid bodies started a few hundred years ago with the pi-
oneering works of Da Vinci, Amontons and Coulomb using simple experimental
setups. The latter developed a mathematical description summarizing the early ex-
perimental results. The proportional connection between normal force Fz and the
perpendicular friction force Fx during sliding, described by the friction coefficient µ,
depends mainly on the material pairing and is called Coloumb friction law

Fx = µFz. (2.1)

In Popova & Popov (2015) an overview of the early works by Amontons and
Coulomb is given, summarizing their experimental observations and formulated laws

5
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Figure 2.1: a) Measured coefficient of friction over apparent pressure pa = m/A (mass divided by

area) for two rubber compounds, extracted from Schallamach (1952). b) Measured pulling weight

(pull. w.) over temperature T (controlled via the surface track) for two velocities, extracted from

Schallamach (1953). c) Coefficient of friction over velocity v shifted with a constant factor aT for

two surfaces, extracted from Grosch (1963).

of friction. Coulomb investigated for example already several dependencies on friction
like weight, surface conditions or contact area and more.

The fundamental studies in Schallamach (1952, 1953) observe that rubber friction
depends significantly on the applied macroscopic pressure p, velocity v and temperature
T , see figure 2.3 for a schematic rubber block with applied loads. The well-known
dependence on the used materials is confirmed by experimental studies using different
sliding rubber materials and counter surfaces. As a consequence of the significant
influence of the macroscopic variables, a friction law with a constant coefficient of
friction does not hold for rubber friction: µ(p, v, T ).

Besides the mentioned dependencies, the coefficient of friction is time- and history-
dependent for sliding rubber samples induced by viscoelastic effects, local temperature
changes and different states of the rough counter surface. The time-dependency of a
single measurement is removed in most experimental results considering the kinetic
coefficient of friction by averaging over time, cf. equation (2.2). Thereby the dynamic
start of the sliding process with a force peak (also referred to as the static coefficient
of friction) as well as local fluctuations over time are excluded.

In Schallamach (1952) the load-dependency of the coefficient of friction of different
rubber materials is measured on a dry glass plate, displayed in figure 2.1 a). The
results show a decreasing coefficient of friction for increasing pressure values. All
experiments are performed with a velocity of 2.16 · 10−3cm/s and are repeated for
different vulcanizates of natural rubber showing different responses.

The velocity- and temperature-dependency of an unloaded vulcanizate of natural rub-
ber on a silicon-carbide surface is investigated in Schallamach (1953). For the used
setup a decrease of frictional force (less pulling weight in this experimental setup) with
increasing temperature at constant velocity is observed in Schallamach (1953), see
figure 2.1 b). This observation is assigned to the strong temperature dependency of the
viscoelastic material properties, details are explained in section 3.3.1. The additional
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variation of the applied velocity indicates a higher measured pulling weight for a higher
velocity. Nevertheless, this effect may change its direction for different velocity values.

In Grosch (1963), the velocity-dependency of rubber friction is investigated in more
detail observing that a strong connection between the loss modulus and the frictional
behaviour of different rubber materials exists. A typical bell-curve for the coefficient
of friction over velocity is measured in Grosch (1963) on wavy glass and dusted
silicone carbide surface, shown in figure 2.1 c). The curves are not directly measured
over the large velocity-range but mastered (shifting the single curves by a constant
factor aT ) from various measurements at different temperatures and low velocities. For
this purpose, the concept of frequency-temperature-equivalence derived by Williams,
Landel, and Ferry in Williams et al. (1955) (cf. subsection 3.3.1) is transferred
to rubber friction.

The fundamental friction properties of elastomers with respect to changing macroscopic
variables p, v, T are displayed in this section for a rough overview. They may change
for different experimental input parameters and are studied in detail together with
numerical results in chapters 6, 7 and 8. First links of the experimental observations to
the underlying physical effects hysteresis and adhesion are provided in Grosch (1963),
see section 2.2 for a detailed description.

In later decades further experimental studies were conducted that helped to understand
more about the mechanisms of rubber friction. The fundamental studies with the main
findings were summarized above and just an extract of further experimental works is
mentioned here. In Schallamach (1971) visual observations through transparent,
sliding rubber samples show waves of detachment at the interface. Furthermore, in
Roberts & Thomas (1975) the adhesion mechanism of smooth rubber surfaces is
studied more in detail. In Barquins & Roberts (1986) various rubber friction
measurements for different velocities, temperatures, loads, and geometries are carried
out, revealing a strong connection of frictional force to the area of contact and small
contributions of viscoelastic properties on smooth surfaces. The reader is referred to
Zeng (2013) for a larger review of experimental studies of rubber friction.

2.1.2 Contemporary Studies

Starting with friction test rigs for investigations of rubber friction in Schallamach
(1952, 1953) and Grosch (1963) a couple of test rigs with increasing complexity were
developed over the decades. Friction experiments are often performed on test rigs with
a linear movement of the rubber block or the counter surface. Rotational test rigs are
rather used for wear studies since larger sliding distances can be captured with such
setups, see Gäbel (2009) for an overview.

The numerical results of this work are compared at the end of chapters 6, 7 and 8 to
results measured at different linear test rigs. A machine used at Continental Reifen
Deutschland GmbH is named high speed linear friction tester (HSLFT). Furthermore,
a similar test rig (named HiLiTe) is used and developed at the Institute of Dynamics
and Vibration Research (IDS) in Hanover. The relevant macroscopic parameter range
for braking tires is assumed to be 0.1 < p < 0.5MPa and 0.1 < v < 3m/s. The
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Figure 2.2: a) High speed linear friction tester (HSLFT) with a sliding rubber sample (pictures taken

by bluestudios GmbH / Volker Warning, courtesy of Continental). b) Measured coefficient of friction,

c) temperature of the rubber sample bottom after sliding.

HSLFT and HiLiTe are able to apply such relevant loads and velocities on top of
fixed rubber blocks. Additionally, the whole test setups are placed in climate boxes
ensuring a constant ambient temperature, see figure 2.2 a). Materials and counter
surfaces can be exchanged easily, providing also the possibility to test winter conditions
with an ice surface. Some details and pictures of the linear friction test rigs can be
found in Hofstetter et al. (2006a,b) or in Ignatyev et al. (2015). Further
descriptions of the HiLiTe and the developments of the machine can be found in Ripka
et al. (2009); Ripka (2013) and Wallaschek & Wies (2013). Linear test rigs used
in other elastomer friction studies differentiate mainly in the possible pressure- and
velocity-ranges. Often, velocities below v = 0.01m/s and pressures of a low magnitude
(p = 0.01MPa for example) are applied, see described setups in Lorenz et al. (2011)
or Le Gal & Klüppel (2008).
During the experiment, the sum of the forces in x-(horizontal) Fx(t) and z-(vertical)
direction Fz(t) are measured on top of the rubber block. These quantities are used to
calculate the time-dependent coefficient of friction µ(t)

µ(t) =

∑
Fx(t)∑
Fz(t)

, µavg. =
1

tend − tstart

tend∫
tstart

µ(t) dt, (2.2)

In order to reduce the amount of information for a p, v, T -parameter-set the steady state
coefficient of friction µavg. is evaluated by averaging over a time interval tstart− tend, see
also figure 2.2 b). Additionally, further quantities like the temperature of the road track
or the temperature of the rubber sample (displayed in figure 2.2 c)) can be measured
with modern test rigs, see Lindner (2005); Lahayne & Eberhardsteiner (2007);
Linke et al. (2014).

2.2 Contributions to Elastomer Friction

A first distinction and classification of the relevant physical effects for rubber friction
can be found in Kummer (1966). Figure 2.3 shows a schematic overview of all known
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physical effects for a sliding rubber block on a partly wet rough surface. A complex
interaction in the contact layer between hysteresis, adhesion, viscous friction, cohe-
sion, and interlocking effects is observed. The total measured tangential force (Fx) in
experiments is the result of the interaction of all contributing effects:

Fx(FH , FA, FV , FC , FI). (2.3)

All quantities depend heavily on the applied load and the surface conditions. The single
effects are explained in detail in the following subsections. For a general overview of
different friction mechanisms for rubber and other materials, the reader is referred to
Persson (2000).

2.2.1 Hysteresis and Adhesion

The surface asperities of a rough surface enforce a cyclic loading and unloading of the
sliding rubber material. Due to viscoelastic properties of rubber materials, an inter-
nal energy dissipation is generated, leading to a horizontal resistance force during the
sliding process, named hysteresis or hysteretic friction, cf. subsection 2.3.2 for a math-
ematical description. In figure 2.3, two dissipation areas are displayed. Large energy
dissipation because of large local deformations (small bright red areas) is assumed to
be induced by the small surface asperities. Furthermore, less energy dissipation by the
larger surface asperities is expected (light red area), see also Persson & Tosatti
(2000) and Persson (2001). The reported velocity-dependency of rubber friction is
strongly linked to this effect since the rubber material is excited with different fre-
quencies for different sliding velocities. The frequency-dependent response of rubber
materials under cyclic loading can be measured in laboratories providing a basis for
modelling the effect of hysteretic friction.
The dissipated energy is transferred into heat causing a temperature rise of the rubber
during sliding, indicated in figure 2.3 in the hysteresis frame. Since the viscoelastic
rubber properties are temperature-dependent as well, a rising temperature causes a

Figure 2.3: Macroscopic rubber block with microscopic details showing relevant physical effects for

rubber friction.
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significant change of these properties. The change of the viscoelastic properties influ-
ences in turn the frictional response. Especially for high sliding velocities, this effect is
observed in experiments and has to be addressed in analytical or numerical models.

Intermolecular forces act in the close contact layer between rubber material and the
road surface on a nanometer length scale. This surface phenomenon is called adhesion,
for a general overview see Pocius (2002). On the macroscopic length scale, an oc-
curring sticking of the rubber to the rough surface can be observed and certain forces
are necessary to overcome the bonding of the bodies. There exist plenty of possible
explanations for the origin of this phenomenon like van-der-Waals forces or an interac-
tion of rubber molecules and rough surface atoms. The latter effect is assumed to be
the prevailing mechanism for rough surfaces and will be addressed in detail together
with some model assumptions in section 7.2. Further possibilities for the adhesion
mechanism would be interfacial crack propagation, an interaction between rubber filler
particles or wear effects, see Lorenz et al. (2015) for an overview.

Different frictional responses of rubber samples are measured for the same rough surface
under dry, partly wet and wet surface conditions. This observation is linked to the
assumption of different shares of hysteresis and adhesion for changing surface conditions
and a complex interaction of these effects. A loss of adhesive bonds for lubricated
surfaces is assumed, leading to a suppressed adhesional contribution. Consequently, a
lower frictional response for wet surfaces is expected.

2.2.2 Further Physical Effects

During the interaction with a rough road surface, the rubber material wears down.
This process (also called cohesion) leads to a significant change of the rubber contact
layer and contributes to the frictional behaviour of the material. Material is removed
from the rubber block and can create a complex interaction with the remaining rubber
material, shown in figure 2.3. The micro structure of rubber consisting of free rubber
and hard agglomerates influences the detachment of rubber particles at the microscopic
scale. Additionally, the worn surface can consist of different microscopic fractions (free
rubber or hard agglomerates) which may again significantly influence adhesion.

In contrast to the above described phenomena, viscous friction is only relevant for wet
surfaces. Small road cavities could be filled with water and contribute no longer to
hysteretic friction. Moreover, the frictional behaviour is changed because water fills the
space between rubber and road leading to a contribution to the overall friction force
resulting from shearing of the water film.

Another contribution to the frictional force are interlocking effects. The rubber block
hits with its edges asperities of the rough road surface causing a horizontal resistance
force. This effect is especially expected at the leading edge of the rubber block and
increases with the surface roughness.
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Figure 2.4: Exemplary rough road surface with microscopic details.

2.3 Modelling Elastomer Friction

After an introduction to mathematical descriptions of rough surfaces, a short overview
and classification of existing analytical and numerical models for rubber friction is
provided. Important results of pioneering works are summarized. Advantages and
disadvantages of the methods are discussed in order to demonstrate the necessity for
a numerical multiscale approach for elastomer friction on rough surfaces, introduced
later in chapters 6, 7 and 8.

2.3.1 Surface Description

Rough road surfaces usually made of asphalt or concrete are rough over many length
scales and exhibit the self-affine character of fractal surfaces. An overview of fractal
geometry is given in Mandelbrot (1983). An example of a rough road surface is
given in figure 2.4. By definition self-affine surfaces show statistical invariance under
anisotropic dilation in a certain surface-wavelength (λ) range (λmin−λmax), meaning a
rough surface shows the same statistical properties and morphology under a scaling α
in cross section direction and αH in the perpendicular direction. The so-called Hurst-
exponent H is introduced as a measure for surface irregularity and is linked to the
fractal dimension by D = 3−H for three-dimensional surfaces.

One way to describe rough surfaces mathematically is to calculate the height difference

Figure 2.5: a) Exemplary schematic height difference correlation function (HDC) of a rough road

surface. b) Exemplary schematic power spectral density function (PSD) of a rough road surface.
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correlation (HDC)

CHDC(λ) = 〈(z(x+ λ)− z(x))2〉. (2.4)

This function evaluates the average (〈...〉) square height difference of the height profile
z(x) for different horizontal wavelengths λ in x-direction. For self-affine surfaces, the
function CHDC is described by the power law

CHDC(λ) = ξ2
⊥

(
λ

ξ‖

)2H

, (2.5)

for λ < ξ‖ with 2H representing the slope. The cutoff-point is defined by the values
ξ‖ and ξ2

⊥, see figure 2.5 a) for a schematic example of a HDC function. Beyond the
cutoff-point, the HDC shows a characteristic plateau for a rough surface since the
height differences are determined by the surface envelope.
The description of a rough surface by the power spectral density (PSD) is in the context
of elastomer friction introduced in Persson et al. (2005) and reads

CPSD(q) =
1

(2π)2

∫
〈z(x)z(0)〉e−iq·xd2x, (2.6)

with the spatial vector x, the wave vector q, and the mean height of the profile z(0).
Under the assumption that the statistical properties of the considered surface are trans-
lationally invariant and isotropic, the magnitude of the wave vector q = |q| is used to
evaluate CPSD. A schematic example of a PSD function of a rough surface is given in
figure 2.5 b). The PSD function and HDC function can be used equally to describe the
characteristics of a self-affine, rough surface and can be transformed to each other.

2.3.2 Analytical Models

Two well known analytical approaches for the description of rubber friction are the ones
from Persson & Tosatti (2000); Persson (2001) and from Klüppel & Heinrich
(2000). The energy dissipation inside the rubber volume Vr during a certain time ∆t is
the origin of hysteretic friction (cf. section 2.2) and can be calculated by the product
of stress σ and the time derivative of strain ε̇:

∆Ediss =

∆t∫
0

Vr∫
0

σ : ε̇ dV dt. (2.7)

Transformations (see Klüppel & Heinrich (2000) or Persson (2001)) of the equa-
tion lead to a description including the frequency-dependent loss modulus E ′′(ω) of
the rubber material and the power spectral density CPSD(q) of the rough surface in-
troduced in the previous subsection. Furthermore, the dissipated energy during the
sliding interval T has to be equal to the product of the hysteretic friction force FH and
the applied velocity v

∆Ediss/T = FHv. (2.8)



2.3. MODELLING ELASTOMER FRICTION 13

Using this equation and integrating over all excitation wavelengths leads to equa-
tions for the hysteretic friction coefficient with some differences for the mentioned
approaches. In Klüppel & Heinrich (2000), µH is calculated with the applied
macroscopic pressure σ0 and the macroscopic velocity v

µH =
1

2(2π)2

〈zP 〉
σ0v

∫
E ′′(ω) · S(ω)ω dω, (2.9)

using a frequency-dependent description of the power spectral density S(ω) based on
the quantities (ξ‖, ξ

2
⊥, H) of the height difference correlation. The quantity 〈zP 〉 rep-

resents the mean penetration depth of the rubber into the rough surface. Klüppel
& Heinrich (2000) use an extension of the well-known theory of Greenwood &
Williamson (1966) for self-affine surfaces to determine 〈zP 〉.
In contrast to the the theory of Klüppel & Heinrich (2000); Persson (2001) uses
a function P (q) describing the interaction of the rubber block and the road surface on
each length scale, obtaining different results. The latest formulation for the coefficient
of friction by Persson (2014) reads

µH =
1

2

qmax∫
qmin

CPSD(q)S(q)P (q)q3 dq

2π∫
0

cosφ
E∗(qv cosφ, Tq)

(1− ν2)σ0

dφ. (2.10)

with the magnitude of the wave vector q, a reduction factor S(q), the complex viscoelas-
tic rubber modulus E∗, the Poisson ratio ν, the surface angle φ and the temperature
Tq. The detailed theory for the incorporation of flash temperature effects can be found
in Persson (2006, 2014) and Fortunato et al. (2015).
An additional important mechanism contributing to rubber friction is adhesion. Exten-
sions of the friction theory including adhesive effects are presented in Persson (2002);
Persson et al. (2005); Le Gal et al. (2005) and Le Gal & Klüppel (2008). In
Lorenz et al. (2015), the adhesive contribution is modelled with a frictional shear
stress τA and the contact area A1 = P (qmax)A0:

µA =
τA
σ0

A1

A0

=
τA
σ0

P (qmax). (2.11)

The used assumptions and the adhesion law which are applied in the later proposed
multiscale setup are explained in chapter 7.

2.3.3 Numerical Models

In order two provide an overview of numerical models for rubber friction using the
finite element method, the approaches are divided into two main categories and some
subcategories. An overview and details of single scale approaches are provided in this
subsection whereas the overview of multiscale approaches is postponed to section 6.1.

• Single scale approaches
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– Elastic or viscoelastic continuum on flat or rough surface without micro-
scopic details

– Viscoelastic continuum on rough surface with all surface details

• Multiscale approaches

– Contact homogenization

– Projection methods

Pure elastic or viscoelastic rubber models without modelling complex contact inter-
actions between the rubber and a flat or rough surface without microscopic details
belong to the first category. These models concentrate on the macroscopic modelling
of rubber friction predicting for example contact pressures or temperatures, see Hof-
stetter et al. (2006a). Furthermore, such models are also used to compare differ-
ent rubber block geometries on the macroscopic length scale. A drawback regarding
multiple rubber-surface combinations is that for such approaches a complex friction
experiment is needed to incorporate a friction law in the contact simulation. Thus, for
slight changes in material or surface properties, a completely new measurement has to
be performed. A prediction of the hysteretic contribution is thus not achievable.
Another way to model rubber friction is the direct modelling of the viscoelastic mate-
rial properties and the involved rough surface with all details. Predictions and detailed
studies of the contact interaction are possible with such approaches using friction exper-
iments for validation of the model. Consequently, no experimental data from friction
experiments are necessary as a model input. The viscoelastic material properties are
gained from well-known laboratory experiments. The rubber material is considered
to be homogeneous in most numerical studies of rubber friction. An extension to
complex heterogeneous rubber micro structures is possible and probably necessary for
detailed wear and adhesion studies. Nevertheless, modelling the surface roughness with
all asperity details directly makes a single scale calculation too expensive for today’s
computer technology.
Therefore, complex contact interactions with rough surfaces can be modelled with
numerical multiscale approaches in an efficient way. The two subcategories including
relevant literature about multiscale approaches for rubber friction are discussed at the
beginning of chapter 6 and 8.



Chapter 3

Continuum Mechanics

With the theory of continuum mechanics, three-dimensional thermomechanical prob-
lems can be described with a set of mathematical equations. The kinematical relations
and an adequate strain measure are the basis for the description. The universally valid
balance equations provide a system of differential equations for the considered continua.
Each material reacts differently to an applied load. Therefore, a proper constitutive
law has to capture the relationship between independent variables (displacement, tem-
perature) and dependent variables (e.g. stresses) for the considered material correctly.
Fundamental introductions and further continuum mechanical aspects can be found in
Altenbach (2012); Chadwick (1999); Haupt (2000); Holzapfel (2000); Mars-
den & Hughes (1994); Ogden (1984); Truesdell et al. (2004). In order to apply
a solution with the finite element method, the weak formulations of the balance laws
are stated at the end of this chapter.

3.1 Kinematics

This section introduces the fundamental quantities for a body undergoing large de-
formations. In a large deformation setting, it is necessary to distinguish between the
initial and the current configuration. Following the common literature, capital let-
ters are used for quantities defined in the initial configuration and small letters for
quantities defined in the current configuration.
By definition, a solid body B consists of a certain number of connected particles P .
During a deformation process no change in the amount of particles is assumed. The
position vector of a particle or material point is denoted with X in the initial con-
figuration at time t = 0 and with x at the current configuration, see figure 3.1. The
used basis system of unit vectors Ei, ei is denoted utilizing the Einstein summation
convention for both configurations

X = XiEi , x = xiei. (3.1)

A common notation for the deformation process is given by the mapping operator ϕ

x = ϕ (X, t) . (3.2)

15
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Figure 3.1: Kinematics of a solid body including surface, line and volume elements.

The displacement vector u of a given point is the difference between the position in
the current and the initial configuration

u (X, t) = x (X, t)−X. (3.3)

The time derivative of the position vector describes the velocity v and the second time
derivative describes the acceleration a

v =
du

dt
=

dx

dt
= ẋ, a =

d2x

dt2
=

dv

dt
= v̇ = ẍ. (3.4)

The deformation gradient F maps a line element from the initial configuration dX to
the current configuration dx during a deformation process

dx = F · dX , F =
∂x

∂X
. (3.5)

From a physical point of view, no points are allowed to vanish or to appear suddenly.
Thus, the inverse F−1 mapping has to exist. This is ensured by a condition for the
determinant

detF = J > 0. (3.6)

This quantity is also called Jacobian J , mapping infinitesimal volume elements:

dv = J dV. (3.7)

After a transformation surface elements can be mapped with the so-called Nanson’s
formula

n da = JF−T ·N dA, (3.8)

with n,N being the normal vector of the considered surface element in current and
initial configuration. In order to describe deformations, strain measures have to be
introduced. The deformation gradient is not suitable for this purpose since it also
includes rigid body motions. To circumvent this drawback, the Green-Lagrange
tensor E and the Euler-Almansi tensor e are defined in the following way

E =
1

2
(C − 1) , e =

1

2

(
1− b−1

)
, (3.9)
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with the right Cauchy-Green tensor C in the initial configuration and the left
Cauchy-Green tensor b in the current configuration, given by the following equa-
tions:

C = F T · F , b = F · F T . (3.10)

The time derivative of the deformation gradient F is often called material deformation
velocity gradient. A mapping to the current configuration leads to the spatial velocity
gradient l and its symmetric representation d

Ḟ =
∂ẋ

∂X
=

∂v

∂X
, l = Ḟ · F−1 =

∂ẋ

∂x
, d =

1

2

(
l + lT

)
. (3.11)

3.2 Balance Equations

In this section, all principle balance laws of continuum mechanics are derived that are
used for the weak formulations in section 3.4.

Conservation of Mass

During a deformation process, the mass m remains constant and does not change in
time for a closed system. This means that no mass, also expressed by the density ρ
integrated over the volume of a body, is added to the system or removed from it.

d

dt
m =

d

dt

∫
Bt

ρ dv =
d

dt

∫
B0

ρ0 dV =
d

dt

∫
B0

ρJ dV = 0. (3.12)

With (3.7) the equation can be reformulated in the initial configuration. The time
derivate can be applied on the inner part of the integral, leading to

ṁ =

∫
B0

d

dt
(ρJ) dV =

∫
B0

(ρ̇+ ρ div ẋ) J dV =

∫
Bt

(ρ̇+ ρ div ẋ) dv = 0. (3.13)

The local form of the continuity equation with the mass density field ρ = ρ (x, t) can
be written as

ρ̇+ ρ div ẋ = 0. (3.14)

Balance of Linear and Angular Momentum

The time derivative of the linear momentum L of a body Bt in the current configuration
equals the sum of the applied external forces forming the balance equation

d

dt
L =

d

dt

∫
Bt

ρẋ dv =

∫
Bt

ρb dv +

∫
∂Bt

t da. (3.15)
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The external forces include mass forces b and surface tractions t. The Cauchy theorem
defines the traction as the product of the stress tensor σ and the outward normal vector
n. With the use of the Gauss theorem the surface integral can be exchanged by a
volume integral ∫

∂Bt

t da =

∫
∂Bt

σ · n da =

∫
Bt

divσ dv. (3.16)

Equation (3.15) can be rewritten as∫
Bt

divσ dv +

∫
Bt

ρb dv =

∫
Bt

ρẍ dv. (3.17)

The local form for the balance of linear momentum for an arbitrary volume reads

divσ + ρb = ρẍ, (3.18)

with a vanishing inertia term ρẍ = 0 for static problems.
The balance of angular momentum is formulated with respect to a fixed point x0 as
a reference point. Thus, the time derivative of angular momentum in the current
configuration equals the sum of applied external moments

d

dt
J =

d

dt

∫
Bt

(x− x0)× ρv dv =

∫
Bt

(x− x0)× ρb dv +

∫
∂Bt

(x− x0)× t da. (3.19)

Using the Gauss theorem, the conservation of mass, and the balance of linear momen-
tum, it can be shown that the Cauchy stress tensor has to be symmetric

σ = σT . (3.20)

Balance of Energy

The first law of thermodynamics states: The sum of applied mechanical power P and
thermal power Q equals the time derivative of the total energy that can be decomposed
into a kinetic part K and an internal part U

d

dt
E =

d

dt
(K + U) = P +Q. (3.21)

The kinetic energy K is induced by the motion of the body in time and the inner
energy U contains the stored heat in the body and the strain energy in consequence of
elastic strains with u as the specific internal energy

K =

∫
Bt

1

2
ρv · v dv, U =

∫
Bt

ρu dv. (3.22)
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The origin of the mechanical power are all external forces (t and b) acting on the body.
The thermal power is decomposed into the internal heat source ρr and a heat flux q
across the surface.

P =

∫
Bt

ρv · b dv +

∫
∂Bt

v · t da, Q =

∫
Bt

ρr dv −
∫
∂Bt

q · n da, (3.23)

The heat flux vector direction is defined positive when pointing outside the body and
vice versa. Together with the normal vector which points outside, a negative contribu-
tion for heat fluxes out of the system is ensured and a positive contribution for applying
a heat flux. Inserting equations (3.23) and (3.22) in equation (3.21) leads to

d

dt

∫
Bt

ρ

(
u+

1

2
v · v

)
dv =

∫
Bt

(ρr + ρv · b) dv +

∫
∂Bt

(v · t− q · n) da. (3.24)

By the use of the Gauss theorem and the balance of linear momentum (3.18) the
equation is simplified and converted to the local form

ρu̇ = ρr + σ : d− div q. (3.25)

Entropy inequality

The second law of thermodynamics provides an inequality including the direction of
a thermodynamic process. The measure of entropy S is introduced and defined as
the integration of the specific entropy density s. In a thermomechanical process, the
transformation of mechanical energy into heat is irreversible and leads to an increase
of the entropy. As a consequence, the entropy introduced over the boundaries of the
system by thermal power (see equation (3.23)) divided by the temperature θ has to be
less than or equal to the time derivative of inner entropy

d

dt
S =

d

dt

∫
Bt

ρs dv ≥
∫
Bt

ρ
r

θ
dv −

∫
∂Bt

1

θ
q · n da. (3.26)

The local form is derived by applying the divergence theorem

ρθṡ ≥ ρr − div q +
1

θ
q · grad θ. (3.27)

The Helmholtz free energy density function ψ can be expressed by the Legendre-
transformation using the specific internal energy u and the entropy density s

ρψ = ρu− ρθs. (3.28)

The time derivative of the whole equation excluding mass changes is given by:

ρθṡ = ρu̇− ρψ̇ − ρsθ̇. (3.29)
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Using the time derivative of the Legendre-transformation, the first law of thermo-
dynamics (3.25), the second law of thermodynamics can be specified in the local form
which is often called Clausius-Duhem inequality

σ : d− ρψ̇ − ρsθ̇ − 1

θ
q · grad θ ≥ 0. (3.30)

3.3 Constitutive Equations

In a first step, a few material characteristics of rubber are described in order to choose
appropriate constitutive laws, completing the already derived set of equations. After-
wards, the thermodynamical theory including internal variables is described and the
constitutive relations for hyperelasticity and viscoelasticity are introduced in subsec-
tions 3.3.3 and 3.3.4. Two different formulations for the hyperelastic and viscoelastic
constitutive equations are used throughout this work within two finite element codes
FEAP and ABAQUS. For completeness, both sets of equations are derived and it is
indicated which finite element code uses the corresponding formulation.

3.3.1 Rubber Characteristics

This section describes and illustrates the most important physical properties of elas-
tomers, see Röthemeyer & Sommer (2013) and Gent (2012) for an overview. The
material model used throughout this thesis is based on the provided qualitative de-
scriptions.

The basic ingredients of an elastomer used for tire applications are natural rubber
(also called caoutchouc) and synthetic rubber. Natural rubber is a product of the
rubber tree (Hevea brasiliensis), whereas synthetic rubber is manufactured by the use
of petroleum byproducts. The raw product consists of long molecular chains of carbon
atoms and other ingredients like hydrogen, oxygen, nitrogen and chlorine. In the
initial state of maximized entropy, these chains are disordered and wadded. Under an
external mechanical loading, the chains are stretched in the direction of loading causing
a decrease in entropy. During the release of the external loading the chains entangle
again and the system returns into a state of maximized entropy.

One of the most known characteristics of elastomers is their ability to undergo large
deformations without material failure. Unfilled elastomers return to their undeformed
shape when the load is released. This reversible non-linear stress-strain-behaviour is
called hyperelasticity. A deformation up to 400% of the initial dimensions is possible,
showing a non-linear behaviour in a stress-strain-curve, see figure 3.2 a). With the same
material properties in all directions, the material is called isotropic. Thus, no direction
dependency is introduced in this work. In addition to the hyperelastic properties,
elastomers behave nearly incompressible under an applied load. This fact has to be
considered in material models for elastomers, see e.g. Reese (2001).

The polymer chains of natural or synthetic rubber are cross-linked during a vulcaniza-
tion process to set up physical properties for technical applications like tires or seals.
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Figure 3.2: a) Exemplary stress-strain curve for an unfilled elastomer. b) Exemplary micro structure

of a filled elastomer: 1) Polymer chain, 2) crosslink via sulfur bridges, 3) filler cluster. c) Exemplary

path dependency of the stress-strain curve (Mullins effect) for a filled elastomer: 1) Loading, 2)

unloading, 3) reloading.

Sulfur and fillers are added to the raw material, adjusting the final material proper-
ties. In a next step heat is applied during the vulcanization process. Carbon black or
silica is often used in tire industry to increase the strength of the filled elastomer. An
exemplary sketch showing a micro structure of a filled elastomer with polymer chains,
crosslinks via sulfur bridges, and filler particles forming clusters can be found in figure
3.2 b).

Usually, filled elastomers show a path dependency in their quasi-static stress-strain-
curve. It can also be detected for some unfilled elastomers, see Harwood et al.
(1965), Harwood & Payne (1966a) and Harwood & Payne (1966b). A previous
loading of the rubber material leads to an irreversible softening of the material, see
figure 3.2 c). This phenomenon is called Mullins effect, see Mullins (1948). This
effect is explained by the micro-mechanical breakage of hard filler clusters. Thus, after
unloading a softer behaviour in the next loading path according to the unloading path
is observed. In order to exclude the modelling of the Mullins effect in this work,
rubber samples are preconditioned before measurements. The stress-strain curves are
measured in a quasi-static test, loading rubber samples with tension and compression.

The material behaviour of elastomers under loading shows a time-dependency which is
called viscoelasticity and can be assigned to a mixture of solid- and fluid-like properties.
The viscous contribution is responsible for the observed energy dissipation under cyclic
loading. Phenomena like relaxation or creep of elastomers are observed in experiments.
Relaxation represents the decrease of stress under constant strain, whereas creep stands
for the increase of strain under constant stress. Elastomer materials used for tires
usually undergo deformations in a large frequency range, showing different stress-strain
relations at different frequencies.

For an appropriate modelling and characterization of elastomers a dynamical mechan-
ical analysis (DMA) is performed, see figure 3.3 a). A periodic time-dependent strain
is applied on a rubber sample and the resulting force is measured resulting in a strain-
stress response, including a time delay between both quantities, see figure 3.3 b). The
phase lag δ(ω) between strain ε(t) and stress σ(t) is a measure for the viscosity of the
elastomer at a certain frequency
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Figure 3.3: a) Test setup of a dynamical mechanical analysis, b) qualitative strain and stress signals,

c) exemplary mastering procedure of the storage modulus.

ε(t) = ε̂ sin(ωt), σ(t) = σ̂(ω) sin(ωt+ δ(ω)). (3.31)

The phase lag is used to determine the so-called storage modulus E ′(ω) and loss mod-
ulus E ′′(ω) of the elastomer by using the applied strain amplitude ε̂ and the measured
phase lag and stress amplitude σ̂(ω). The combination of the storage and loss modulus
is called complex modulus E∗(ω):

E ′ (ω) =
σ̂(ω)

ε̂
cos δ(ω), E ′′ (ω) =

σ̂(ω)

ε̂
sin δ(ω), E∗(ω) = E ′(ω) + iE ′′(ω). (3.32)

The storage modulus describes the elastic portion of the material whereas the loss
modulus stands for the viscous material fraction responsible for the energy dissipation.
Since it is quite difficult to measure all possible frequencies with a single test device,
a master curve is constructed by the use of a frequency-temperature-equivalent. The
illustrated measurement of the storage modulus in figure 3.3 c) is conducted for different
temperatures in the experimental frequency window ωexp.. The measured data for
different temperatures are then shifted during the so-called mastering process, see
figure 3.3 c), generating storage and loss modulus data over a wide range of frequencies.
During mastering, the shift factor equation derived in Williams et al. (1955) is used

log a (θ) = − c1 (θ − θref )
c2 + (θ − θref )

, (3.33)

Figure 3.4: a) Exemplary storage and loss modulus dependency on frequency and strain amplitude.

b)-c) Examplary storage and loss modulus over increasing strain amplitude (Payne effect) for a given

frequency.
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Figure 3.5: a) Fitted hyperelastic response (measurement represented by black crosses), b) rheologi-

cal model with Maxwell elements, c) Fitted storage and loss modulus over frequency (measurement

represented by black crosses).

with θref being a reference temperature. The material-dependent constants c1 and c2

have to be determined by a fitting procedure, resulting in mastered curves for storage
and loss modulus.

The so-called Payne effect is observed for filled elastomers, especially elastomers filled
with carbon-black. Measurements show that the storage and the loss moduli depend,
in addition to the frequency, on the prescribed strain-amplitude ε̂, see Payne (1962a),
Payne (1962b) and Fletcher & Gent (1954). This effect is illustrated exemplarily
in 3.4 a), cf. Höfer & Lion (2009) for the shape of the functions. The Payne effect
is very significant for low strain amplitudes in the range of 0.1%− 20% and varies for
the volume share of filler material. Usually, a decreasing storage modulus and a bell-
shaped curve for the loss modulus can be measured, see figure 3.4 b)-c). Additionally,
for increasing filler content this effect increases as well. A common explanation for
this phenomenon is the fracture of filler clusters under increasing strains. This theory
is not valid for every type of filler and some effects cannot be explained with this
theory, see Boehm (2001) for more details. This effect is excluded in this work by
using also preconditioned test samples for the dynamical mechanical analysis (DMA).
Another observed effect with respect to the applied loads during a dynamical test is
the dependency on the preload. For experimental and numerical studies of this effect
the reader is referred to Höfer & Lion (2009); Rendek & Lion (2010).

Physical effects like creep and relaxation in one-dimensional stress states of elastomers
can be described by simple one-dimensional rheological models containing a combina-
tion of one spring and one damper element with the associated relaxation time τ . For
the possibility to capture both effects, more complex models with an additional spring
element are necessary.

In order to describe the viscoelastic material response, a common rheological model is
used in this work. It provides the basis for an extended three-dimensional description
considering finite strains in subsection 3.3.4. The rheological model consists of a spring
for the equilibrium response (EQ) and parallel Maxwell elements containing a linear
spring and a damper each for the non-equilibrium response (NEQ), see figure 3.5 b)
and e.g. Reese & Govindjee (1998b) and Rust (2011). The parallel network
of Maxwell elements is called Prony series defined by the Prony parameters Ek
and τk. For the equilibrium part data of a quasi-static test is used and for the non-
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equilibrium response a dynamic measurement is used, see figure 3.5 a)/c) and above
for descriptions of the measurements. The applied loads of the dynamic measurement
equipment are limited leading to small deformations of the test sample in the range of
0.1%−2% and therefore the spring response is characterized by a linear behaviour with
the Young’s modulus Ek. The number of elements and values for the desciption of
a certain elastomer are determined during a fitting process approaching the measured
and mastered storage and loss modulus data, see figure 3.5 c). For the approximation
of both moduli, the serial representation of the complex modulus is used

E∗ (ω) = E∞ +
n∑
k=1

Ekτ
2
kω

2

1 + τ 2
kω

2︸ ︷︷ ︸
E′(ω)

+i
n∑
k=1

Ekτkω

1 + τ 2
kω

2︸ ︷︷ ︸
E′′(ω)

. (3.34)

The long-term modulus E∞ and instantaneous modulus E0 are definied by

E∞ = E∗ (ω → 0, t→∞) , E0 = E∗ (ω →∞, t→ 0) = E∞ +
n∑
k=1

Ek. (3.35)

The opposite notation based on the consideration of the frequency boundary values
instead of a time dependent notation is also used in literature. The dimensionless
modulus γk (also called ei or gi in literature) reads

γk =
Ek
E0

=
Gk

G0

. (3.36)

It can also be expressed by the shear modulus G and is used later in subsection 3.3.4
for viscoelastic material models.
In order to describe the thermal behaviour of elastomers, thermal material parameters
are determined in experiments. Parameters of interest and necessary for thermome-
chanical simulations are the specific heat capacity c, the thermal conductivity k and
the thermal expansion coefficient α. The viscoelastic material response is influenced
by the prevailing temperature inside the rubber material. This fact can be addressed
by a shift of the reference relaxation time τref with the introduced shift factor a (cf.
equation (3.33))

τ (θ) = a (θ) τref . (3.37)

3.3.2 Thermodynamics with State Variables

All derived constitutive models have to fulfill certain principles, avoiding unphysical
descriptions. Important principles are:

• Determinism: The thermodynamical behaviour of a material point is described
by its past and present states. Future or stochastic processes are not relevant for
an appropriate constitutive theory.
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• Frame indifference: The derived constitutive relations do not depend on the
observer position and are invariant to rigid body motions.

• Local action: The behaviour of a material point is only affected by near points.

Further principles can be found e.g. in Holzapfel (2000); Truesdell et al. (2004).
Thermomechanical processes can be described by a set of state variables{
F , θ, grad θ,Qk

i

}
. In order to be able to describe dissipative processes, like plastic

or viscoelastic effects, a set (k = 1− n) of additional inelastic (i) variables Qk
i is used.

Since this work concentrates on homogeneous continua, the position vector is not in-
troduced as an internal variable. The Helmholtz free energy density function is used
for the derivation of a constitutive theory in this section. It is a function of the state
variables

ψ = ψ(F , θ, grad θ,Qk
i ). (3.38)

The time derivative of this function together with the relation

σ : d =
(
σ · F−T

)
: Ḟ (3.39)

are inserted into the local form of the Clausius-Duhem inequality (see equation
(3.30)), following Coleman & Noll (1963)(

σ · F−T − ρ ∂ψ
∂F

)
: Ḟ − ρ

(
s+

∂ψ

∂θ

)
θ̇ − ρ ∂ψ

∂grad θ

d

dt
(grad θ)

−
n∑
k=1

(
ρ
∂ψ

∂Qk
i

: Q̇
k

i

)
− 1

θ
q · grad θ ≥ 0.

(3.40)

In order to fulfill the inequality, the following expression is assumed for the Cauchy
stress tensor σ

σ = ρ
∂ψ

∂F
· F T . (3.41)

Consequently, the stress can be computed from the derivative of the Helmholtz free
energy density function. Furthermore, the Cauchy stress tensor σ can also be derived
based on the left Cauchy-Green tensor

σ = 2ρb · J−1∂ψ

∂b
. (3.42)

In Holzapfel (2000) detailed derivations are stated, including also the expressions
for the second Piola-Kirchhoff stress tensor S in the initial configuration

S = ρ0
∂ψ

∂E
= 2ρ0

∂ψ

∂C
. (3.43)

Another important quantity for constitutive relations is the elasticity tensor, used in
this work for the equilibrium part of a viscoelastic material model, see subsection 3.3.1.
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Like stress tensors, it can be defined in the initial or in the current configuration by
using the second derivative of the free energy density function

C = ρ0
∂2ψ

∂E∂E
= 4ρ0

∂2ψ

∂C∂C
, c = 4ρb

∂2Ψ

∂b∂b
. (3.44)

In addition to stress and elasticity tensors, the following equation for the entropy s can
be derived from equation (3.40)

s = −∂ψ
∂θ
. (3.45)

Furthermore, the following equations have to hold for the temperature gradient depen-
dency of the free energy density function and the temperature gradient

∂ψ

∂grad θ
= 0, −1

θ
q · grad θ ≥ 0. (3.46)

The second term states that heat flows from warmer to colder regions at constant
deformation. The remaining term of equation (3.40) is named internal dissipation Dint

and associated with n inelastic variables Qk
i

Dint = −
n∑
k=1

(
ρ
∂ψ

∂Qk
i

: Q̇k
i

)
≥ 0. (3.47)

The heat flux q through a material at a certain temperature gradient differs for different
materials and has to be specified. A constitutive relation based on the temperature
gradient with the heat conductivity tensor k is introduced

q = −k · grad (θ). (3.48)

It reduces to a constant parameter k multiplied with the unity tensor for materials
with isotropic heat conductance properties and will be used in this thesis.
For a detailed description of the thermal behaviour, the energy balance (3.25) has to be
considered. Together with the time derivative of the Legendre-transformation (3.29)
it is rewritten as

ρsθ̇ + ρṡθ + ρψ̇ = ρr + σ : d− div q. (3.49)

Inserting the derived expressions for the derivates leads to

ρsθ̇ + ρθ

(
− ∂2ψ

∂θ∂F
: Ḟ −

n∑
k=1

∂2ψ

∂θ∂Qk
i

: Q̇
k

i −
∂2ψ

∂θ∂θ
: θ̇

)
+ σ : d−Dint − ρsθ̇

= ρr + σ : d− div q.

(3.50)

Introducing the heat capacity c = −θ ∂2ψ
∂θ2 the equation transforms to

ρcθ̇ + ρθ

(
− ∂2ψ

∂θ∂F
: Ḟ −

n∑
k=1

∂2ψ

∂θ∂Qk
i

: Q̇
k

i

)
+ div q −Dint − ρr = 0. (3.51)
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The expression in brackets contains coupled derivatives describing structural thermo-
elastic and thermo-inelastic heating or cooling, cf. Holzapfel (2000). Since this effect
is relevant for high deformation rates and is rather small in comparison to the other
studied effects in this work, it is neglected in the following sections and chapters.

3.3.3 Isotropic Thermo-Hyperelastic Material Models

Hyperelastic material behaviour of rubber-like materials is described with certain strain
energy functions Ψ. The specific strain energy function per unit volume can be iden-
tified as the Helmholtz free energy density function from equation (3.38)

Ψ = ρ0ψ, ΨEQ = ΨEQ (IC , IIC , IIIC , θ) = ΨEQ (Ib, IIb, IIIb, θ) . (3.52)

For an isotropic material with the same response in all directions, the strain energy
function depends on the temperature and the three invariants of the left or right
Cauchy-Green-tensor I∗, II∗, III∗. A description with the principal stretches λ∗ is
also possible and used for example for strain energies based on Ogden’s theory. The
invariants are connected to the Cauchy-Green tensors or the principal stretches, see
equation (A.1), (A.2) and (A.3) in appendix A. The pure hyperelastic response under
small deformation velocities is often called equilibrium (EQ) response and thus used
as an index.
A specific representation of the Mooney-Rivlin strain energy function (cf. Mooney
(1940) and Rivlin (1948)) is used for a FEAP element with the material parameters
µ1, µ2 and λ (Lamé constants)

ΨMR
EQ (J, Ib, IIb) =

µ1

2
(Ib − 3− 2 ln J)− µ2

2
(IIb − 3− 4 ln J)

+
λ

4

(
J2 − 1− 2 ln J

)
.

(3.53)

The corresponding Cauchy stress tensors are derived by the use of equation (3.42)
and the derivatives of the invariants of the Cauchy-Green tensors (equation (A.4),
(A.5) and (A.6))

σMR
EQ =

µ1

J
(b− 1)− µ2

J

(
Ibb− b2 − 2 · 1

)
+

λ

2J

(
J2 − 1

)
1. (3.54)

A strain energy function and the corresponding stress vectors for a Neo-Hookean
material model are listed for completeness in equation (A.10), (A.11) and (A.12).
In the software ABAQUS (see SIMULIA (2014a,c)) a different formulation for mod-
elling hyperelastic material behaviour is used and explained in the following. Since
rubber materials show incompressibility, a multiplicative split of the deformation gra-
dient in a volumetric and isochoric part with volume preserving properties is often
applied, cf. Flory (1961),

F = J1/3F̄ , C̄ = F̄
T · F̄ , (3.55)

defining the corresponding isochoric right Cauchy-Green tensor. The equilibrium
part of the specific strain energy function is consequently split in two parts. The
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volumetric part (VOL) describes volume changes and the isochoric part (ISO) depends
on the invariants of the isochoric right Cauchy-Green tensor:

ΨEQ(J, IC̄ , IIC̄ , θ) = ΨEQ ,VOL(J, θ) + Ψ̄EQ ,ISO(IC̄ , IIC̄). (3.56)

The invariants of the right Cauchy-Green tensor are linked through the following
relations:

IC̄ = J−2/3IC , IIC̄ = J−4/3IIC , IIIC̄ = 1. (3.57)

A specific strain energy function based on the works of Mooney and Rivlin together
with a split in volumetric and isochoric parts reads

ΨMR
EQ (J, IC̄ , IIC̄ , θ) = C10 (IC̄ − 3)− C01 (IIC̄ − 3) +

1

D1

(
J

Jth
− 1

)2

, (3.58)

with the material constants C10, C01 and D1. In order to describe thermal expan-
sion behaviour, the thermal Jacobian Jth is introduced with the thermal expansion
coefficient α

Jth = (1 + α (θ − θ0))3 . (3.59)

Since thermal expansion is a effect of minor importance for the later proposed anal-
ysis of the thermomechanical friction process of rubber, it is neglected in this work.
Therefore, the last part of the specific strain energy reduces to 1

D1
(J − 1)2.

Fittings to the quasi-static stress-strain measurement are performed by an industry
partner providing values for the material parameter E, ν and the non-linearity factor
f of a Blatz-Ko model, Blatz & Ko (1962). The combination of (A.7), (A.8) and
(A.9) leads to the expressions for the used Mooney-Rivlin parameters by use of the
provided parameters

C10 =
Ef

4(1 + ν)
, C01 =

E(1− f)

4(1 + ν)
, D1 =

6(1− 2ν)

E
. (3.60)

Rubber materials are considered as incompressible materials that enforce the volume
constraint J = 1. In order to account for this incompressibility constraint, a modified
strain energy function is postulated, cf. Holzapfel (2000),

Ψ̃ = Ψ(C̄)− p(J − 1), (3.61)

introducing the Lagrange-multiplier p. The Lagrange-multiplier is identified as the
hydrostatic pressure and has to be identified from equilibrium equations and boundary
conditions in a further step. The modified strain energy function provides the basis for
a Q1P0 finite element formulation needed for the later executed calculations.
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3.3.4 Finite Linear Viscoelasticity

The description of the viscoelastic material behaviour is based on a rheological model
(cf. section 3.3.1) for finite strains and is therefore called finite. The strain energy
function is split accordingly into a history-independent equilibrium part (EQ) and
a history-dependent, dissipative and non-equilibrium part (NEQ). The EQ part is
defined by a hyperelastic spring, see figure 3.5. The NEQ part is modelled by n
Maxwell elements connected in parallel to the equilibrium spring. The equilibrium
part and particular forms of the strain energy function are described in the previous
section.
The specific strain energy functions of the non-equilibrium part are based on the in-
elastic variables Qk

i in addition to the inner variables temperature θ and the isochoric
right Cauchy-Green tensor

Ψ(J, C̄, θ,Qi) = ΨEQ(J, C̄, θ) +
n∑
k=1

Ψk
NEQ(C̄, θ,Qk

i ). (3.62)

The volumetric changes are associated to the hyperelastic equilibrium part and the non-
equilibrium part depends only on deviatoric changes. The second Piola-Kirchhoff
stress tensor with a split of the equilibrium part in volumetric and isochoric contribu-
tions is derived by using equation (3.43) and equation (3.56)

S(J, C̄, θ,Qi) = SEQ ,VOL(J, θ) + SEQ ,ISO(C̄) +
n∑
k=1

SkNEQ ,ISO(C̄, θ,Qk
i ). (3.63)

A formulation without a split in volumetric and isochoric parts in the current config-
uration reads

σ(b, θ,Qk
i ) = σEQ(b, θ) +

n∑
k=1

σkNEQ(b, θ,Qk
i ). (3.64)

Furthermore, all temperature dependencies of the strain energy function are neglected
since no thermal expansion, no coupling effects and no changes of the non-equilibrium
part due to temperature are considered in this work, see chapter 8 for further expla-
nations. The viscoelastic formulation is completed by an evolution equation for the
history-dependent inelastic internal variables Qk

i . The first order differential equation
is given by

Q̇
k

i = F(C̄,Qk
i ). (3.65)

Time-dependency (t) will be highlighted at certain equations which are important for
the later used algorithmic treatment in chapter 5 and omitted elsewhere for clarity.
Since the evolution equation is defined by a linear dependency of the variables C̄,Qk

i

and the theory is able to capture large deformations, the whole formulation is called
finite linear viscoelasticity. It is restricted to small deformation rates and small de-
viations from the thermomechanical equilibrium, see Reese & Govindjee (1998b),
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Reese (2001) or Lion (1997) for further details. There exist two common approaches
for the choice of the inelastic inner variables and the corresponding evolution equation,
a deformation- and stress-based approach.
The deformation-based approach is used in the software FEAP and described hence-
forth. A multiplicative split of the deformation gradient in elastic (e) and inelastic (i)
parts is introduced

F = F k
e · F k

i . (3.66)

Furthermore, the inelastic inner variable equals the inelastic right Cauchy-Green
tensor which can be expressed by the inelastic deformation gradient F k

i

Qk
i = Ck

i =
(
F k
i

)T · F k
i . (3.67)

Analogously, the elastic left Cauchy-Green tensor is calculated with the help of the
inelastic right Cauchy-Green tensor Ck

i

bke = F k
e ·
(
F k
)T
e

= F ·
(
Ck
i

)−1 · F T . (3.68)

Following Reese & Govindjee (1998b), the linear evolution equation with respect
to the time-dependent tensors C(t),Ck

i (t), for finite linear viscoelasticy, is introduced
as

Ċk
i (t) =

1

τk

(
C(t)−Ck

i (t)
)
. (3.69)

With the evolution equation, the inelastic right Cauchy-Green tensor Ck
i (tn+1) for

Maxwell element k with the relaxation time τk at the new time step tn+1 is calculated
using the trapezoid rule

Ck
i (tn+1) =

∆t

2τk + ∆t

(
C(tn) +C(tn+1)−Ck

i (tn)
)

+
2τk

2τk + ∆t
Ck
i (tn). (3.70)

In a next step, the inelastic right Cauchy-Green tensor can be transferred to the
elastic left Cauchy-Green tensor by using equation (3.68). Consequently, it is possi-
ble to derive the Cauchy stress tensor for every Maxwell element by use of equation
(3.42) from a Mooney-Rivlin strain energy function with the material parameters
µk1, µk2 and λk

σMR,k
NEQ =

µk1
J

(
bke − 1

)
− µk2

J

(
Ikbe · b

k
e − bke · bke − 2 · 1

)
+
λk

2J

((
Jke
)2 − 1

)
1. (3.71)

The reader is referred to Reese & Govindjee (1998a); Reese (2001) for further
details regarding the exact derivation of stress and elasticity tensors for the Maxwell
elements.
The stress-based approach of finite linear viscoelasticity is applied in the software
ABAQUS and explained below, see also SIMULIA (2014a). As a basis for the ap-
proach, a strain energy function is introduced (cf. Simo (1987))
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Ψ(J, C̄,Qk
i ) = ΨEQ ,VOL(J) + ΨEQ ,ISO(C̄)︸ ︷︷ ︸

ΨEQ

−
n∑
k=1

1

2
C̄ : Qk

i +
n∑
k=1

Ψk(Q
k
i )︸ ︷︷ ︸

ΨNEQ

, (3.72)

defining an equilibrium part (already described in the previous subsection) and a non-
equilibrium part that contains the time-dependent inner variable Qk

i . The evolution
equation is given by a linear function, see also Holzapfel & Simo (1996b,a) and
Simo & Hughes (1998), with the relaxation time τk and dimensionless modulus γk
(cf. equation (3.36)) for each Maxwell element k

Q̇k
i (t) +

1

τk
Qk
i (t) =

γk
τk

DEV

{
2
∂ΨEQ ,ISO(C̄(t))

∂C̄(t)

}
, lim

t→∞
Qk
i (t) = 0. (3.73)

The operator DEV, also called deviator in literature, is defined as follows

DEV[•] = (•)− 1

3
[(•) : C]C−1. (3.74)

The inner variable approaches a value of zero for an infinite time interval leading to
a stress response that is just defined by the equilibrium part. In order to solve the
evolution equation within a finite element framework, an algorithmic internal variable
Hk(t) is introduced by the use of a convolution integral (see Simo & Hughes (1998)
for further details)

Hk(t) =

t∫
−∞

e
− t−s

τk
d

ds
DEV

{
2
∂ΨEQ ,ISO(C̄(s))

∂C̄(s)

}
ds. (3.75)

The time dependent integral can be approached by the use of the midpoint rule in the
time interval [tn, tn+1] leading to an updated algorithmic internal variable

Hk(tn+1) = e
−∆t
τkHk(tn)

+ e
− ∆t

2τk

(
DEV

{
2
∂ΨEQ ,ISO(C̄(tn+1))

∂C̄(tn+1)

}
−DEV

{
2
∂ΨEQ ,ISO(C̄(tn))

∂C̄(tn)

})
.

(3.76)

The updated variable is used to determine the whole second Piola-Kirchhoff stress
tensor S(tn+1) of the current time step

S(tn+1) = SEQ ,VOL(tn+1) + γ∞SEQ ,ISO(tn+1) + J−2/3

n∑
k=1

γkDEV
{
Hk(tn+1)

}
, (3.77)

with the expressions for the volumetric and isochoric stresses

SEQ ,VOL = J
∂ΨEQ ,VOL(J)

∂J
·C−1, SEQ ,ISO = J−2/3DEV

{
2
∂ΨEQ ,ISO(C̄)

∂C̄

}
. (3.78)
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This model can be directly linked to Prony parameters, see subsection 3.3.1. Further
details regarding the derivation of the elasticity tensor for the non-equilibrium part can
be found in Simo (1987); Simo & Hughes (1998).

3.4 Weak Forms of Equilibrium

In order to solve the partial differential equations from section 3.2, weak forms are
derived for the later introduced finite element method in chapter 5. Mechanical and
thermal parts are introduced subsequently to calculate the primary variables displace-
ment u and temperature θ.
The balance of linear momentum was derived in section 3.2 and is given for the quasi-
static case with applied (marked by the superscript) body forces b̂

divσ + ρb̂ = 0. (3.79)

In order to specify the problem, boundary conditions are introduced for the mechanical
problem. Dirichlet boundary conditions prescribe the displacement û on ∂uBt and
Neumann boundary conditions are used to apply tractions t̂ on ∂tBt

u− û = 0 on ∂uBt, t− t̂ = 0 on ∂tBt, u(t = 0) = u0 in Bt. (3.80)

The so-called initial boundary value problem (IBVP) is accomplished by the definition
of initial conditions, for example an initial displacement u(t = 0).
A weak form of a differential equation G is derived by multiplying the differential
equation with a test function and integration over the domain. The superscript b
indicates that all equations are applied to a solid body, whereas c indicates contact
contributions, cf. section 4. The test function can also be seen as a virtual displacement
or a weighting function and equals zero at the Dirichlet boundary. The balance of
linear momentum and the Neumann boundary condition are multiplied with the test
function δu: ∫

Bt

(
divσ + ρb̂

)
· δu dv =

∫
∂tBt

(
t− t̂

)
· δu da. (3.81)

With the use of the divergence theorem

div (σ · δu) = divσ · δu+ σ : grad δu, (3.82)

the equation is transferred to

Gb
u(u, δu) =

∫
Bt

(
div (σ · δu)− σ : grad δu+ ρb̂ · δu

)
dv −

∫
∂tBt

(
t− t̂

)
· δu da = 0.

(3.83)
Further simplification is achieved by using the Gauss theorem, leading to
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Gb
u(u, δu) =

∫
Bt

σ : grad sδu dv −
∫
Bt

ρb̂ · δu dv −
∫
∂tBt

t̂ · δu da = 0. (3.84)

The complete weak form derived in the initial configuration with the variation of the
Green-Lagrange tensor δE reads

Gb
u(u, δu) =

∫
B0

S : δE dV −
∫
B0

ρb̂0 · δu dV −
∫
∂tB0

t̂0 · δu dA = 0. (3.85)

In order to calculate the temperature θ of a body the reformulated first law of thermo-
dynamics without heat sources r is used (cf. equation (3.51))

ρcθ̇ + div q −Dint = 0. (3.86)

In analogy to the mechanical boundary conditions, the IBVP is set up with Dirichlet
boundary conditions for the temperature θ, Neumann boundary conditions for the
normal component of the heat flux q and initial temperature values θ0

θ − θ̂ = 0 on ∂θBt, q · n− q̂ · n̂ = 0 on ∂qBt, θ(t = 0) = θ0 in Bt. (3.87)

The weak form of equilibrium is derived by multiplication of equation (3.86) and the
heat flux condition (3.87) with the thermal test function δθ.∫

Bt

(
ρcθ̇ + div q −Dint

)
· δθ dv =

∫
∂qBt

(q · n− q̂ · n̂) · δθ da. (3.88)

Similar to the transformations for the mechanical part, the divergence and Gaussian
theorems are applied. Additionally, the constitutive relation for the heat flux (equation
(3.48)) is inserted, leading to

Gb
θ(θ, δθ) =

∫
Bt

(
ρcθ̇δθ + kgrad T θgrad δθ −Dintδθ

)
dv +

∫
∂qBt

q̂ · n̂δθ da = 0. (3.89)
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Chapter 4

Contact Mechanics

In order to model large sliding distances of a rubber block on a rough surface, a
close look on contact mechanics is essential. The kinematical relations in normal and
tangential directions of the contact interface are described and used for the formulation
of the contact interface constraints. Afterwards, the most common solution methods
for mechanical contact problems are presented, introducing the weak forms. In the
last section, the contribution of a thermal interface to the weak form is derived since
thermomechanical coupling will be considered in chapter 8. Fundamental introductions
to contact mechanics can be found in Laursen (2003); Willner (2012); Wriggers
(2006). The derived weak forms provide the basis for the discretization of the contact
problem with finite elements in chapter 5.

4.1 Contact Kinematics

In figure 4.1 two separated bodies are displayed that might get a common contact
surface ∂cBt. Following the literature, the upper body is the so-called slave and the
lower body is called master. The slave body and all slave quantities are superscripted
with 1 and all master quantities with 2. The position vector xi for each possible contact
point on each surface is introduced and a parametrization is provided by the convective
coordinates ξ1 and ξ2 without the use of the superscript for slave and master, see also
figure 4.1. The tangential and normal vectors aiα and ni can be calculated for each
surface-point of the two bodies i in this way:

aiα =
∂xi

∂ξα
= xi,α, ni =

ai1 × ai2
‖ai1 × ai2‖

, (4.1)

with α = 1, 2 for the considered tangential direction within a three-dimensional setup.
For the description of the normal contact, the normal gap ḡN between slave and master
is calculated as follows

ḡN =
(
x2 − x̄1

)
· n̄1 ≥ 0. (4.2)

The bar indicates the projection of a chosen slave point onto the master surface, ob-
taining the minimal distance between point P and Q, see figure 4.1 a). The projection
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Figure 4.1: Contact quantities of two bodies coming into contact at point P and Q.

point is determined with the help of the parametrized distance function d

d (ξ1, ξ2) =
∥∥x2 − x1 (ξ1, ξ2)

∥∥ . (4.3)

Since we are interested in the minimum of the distance function d (ξ1, ξ2), its derivative
must be equal to zero

∂d (ξ1, ξ2)

∂ξα
=

x2 − x1 (ξ1, ξ2)

‖x2 − x1 (ξ1, ξ2)‖
· x1

,α (ξ1, ξ2) = 0. (4.4)

With the projected coordinates ξ̄1 and ξ̄2 on the master surface, the normal vector of
the projection point n̄1 is calculated with equation (4.1). During a contact situation, a
relative movement between the bodies may occur with the result that the master point
x2 moves relatively to the projected slave point x̄1. The path of the master point is
unknown a priori and therefore calculated with quantities defined on the slave surface
at the projection point. Following Wriggers (2006), the total sliding distance ḡT is
determined by the integral of the incremental path of the slave point along the master
surface, starting with the time t0 until t:

ḡT =

t∫
t0

‖ ˙̄gT‖ dt =

t∫
t0

∥∥∥ā1
α

˙̄ξα

∥∥∥ dt. (4.5)

4.2 Contact Interface Constraints

Considering normal contact between two bodies, two possible states may occur. A
closed gap results in the gap function (gN = 0) and a negative pressure value (pN < 0),
whereas an open gap (gN > 0) is accompanied by (pN = 0). Combining both conditions
leads to the well-known Hertz-Signorini-Moreau conditions

gN ≥ 0, pN ≤ 0, gNpN = 0. (4.6)

Adding a constraint equation for the tangential part, the conditions are often sum-
marized as Kuhn-Tucker-Karush conditions. Two states are distinguished for the
tangential direction, stick and slip. The tangential velocity ġT has to be equal to zero
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for the stick case, because no relative movement between the bodies occurs. A slip
criterion fs is used, being smaller than zero for the stick case (fs < 0) and zero for
slipping bodies (fs = 0). For example the Coloumb-friction-law with the constant
coefficient of friction µ, the tangential contact stress vector tT , and normal pressure
pN is widely used

fs = ‖tT‖ − µ |pN | ≤ 0. (4.7)

Additionally, the so-called slip rate γ̇ is introduced, being zero (γ̇ = 0) for the stick case
and greater than zero for sliding bodies (γ̇ > 0). In the case of tangential movement,
an evolution equation is used to calculate the tangential gap

ġT = γ̇
tT
‖tT‖

. (4.8)

It is derived from considering the dissipation introduced during sliding, see Wrig-
gers (2006). Furthermore, it states the same direction for the tangential gap and the
tangential contact stress vector. Similar to the constraints in normal direction, the
combination of the conditions for the slip criterion and the slip rate are summarized
as the tangential interface constraints

γ̇ ≥ 0, fs ≤ 0, γ̇fs = 0. (4.9)

4.3 Enforcement of Contact Constraints and Weak

Forms

There exist different numerical methods for obtaining a solution of pure mechanical
contact problems. For a detailed description of various methods see Wriggers (2006).
In this work, weak forms for the contact contributions are introduced, adding the
derived weak forms in a final step to the continuum-mechanical contributions for a
mechanical contact problem.
Generally, the weak form for contact problems Gc can be formulated as a sum of the
virtual contact work part Gc

u and a part for the enforcement of the contact constraints
Gc
l

Gc = Gc
u +Gc

l . (4.10)

Two methods are introduced in this work, the Lagrange-multiplier method and the
penalty method. Within the Lagrange-multiplier method the contact constraints are
enforced exactly by adding the additional unknowns λN in normal and λT in tangential
direction. The penalty method introduces no further unknowns and provides just an
approximated solution of the mechanical contact problem at hand. Nevertheless, it
reduces the computational effort and will be used therefore throughout this work. The
Lagrange-multiplier method is explained in a first step, since it provides the basis
for the introduced mortar contact element in chapter 5. Afterwards, the main features
of the penalty method are given.
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Following Wriggers (2006), the potential energy function for the derivation of the
weak contact form can be written as

ΠLM
c =

∫
∂cBt

(gNλN + gT · λT ) da. (4.11)

The variation of ΠLM
c leads to the virtual contact work part Gc

u for the Lagrange-
multiplier method

Gc
u =

∫
∂cBt

(δgNλN + δgT · λT ) da. (4.12)

The weak forms for the enforcement of contact constraints differ for the cases of stick,
slip and no contact. For the stick case, no penetration, no tangential movement and
no incremental slip is assumed, leading to

Gc
l =

∫
∂cBt

(
δλNgN + δλT ·∆tgT + δγ

1

cC
∆tγ

)
da = 0. (4.13)

For detailed derivations of the terms to enforce the contact constraints the reader is
referred to Weißenfels (2013). During slipping, the constitutive equation (see last
section 4.2 is used and thus the tangential Lagrange-multiplier is identified as the
tangential stress tT , cf. Wriggers (2006).
For the penalty method the weak form consists only of the part with regard to the
virtual contact work. Since no additional unknowns are introduced, it reads

Gc
u =

∫
∂cBt

(δgNpN + δgT · tT ) da. (4.14)

The complete tangential gap splits in an elastic (e) and an irreversible slip part (s) for
the penalty method

gT = geT + gsT . (4.15)

The normal pressure pN is approximated by the product of a penalty factor cN and the
normal gap gN . The same approximation is introduced for the tangential stress vector
using the tangential penalty factor cT and the elastic part of the tangential gap geT

pN = cNgN , tT = cTg
e
T . (4.16)

The penalty parameters cN and cT have to be chosen carefully since a compromise
between solution quality and stability has to be achieved. The solution quality increases
with a penalty factor approaching the stiffness of the stiffer body in contact, loosing
numerical stability since the equation system is becoming more ill-conditioned.
Similar to trial elastic steps in plasticity and the use of radial-return-mapping algo-
rithms, a trial tangential stress vector ttr,n+1

T is introduced. It is evaluated under the
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presumption of sticking and a pure elastic movement, completed by the corresponding
trial slip criterion f s,tr

ttr,n+1
T = cT

(
gn+1
T − gs,nT

)
, f s,tr =

∥∥ttr,n+1
T

∥∥− µcN |gN | . (4.17)

After the evaluation of the trial slip criterion, the node either sticks (f s,tr ≤ 0) without
a change in the tangential gap, leading to an unchanged tangential stress (tT = ttrT ).
For the slip case (f s,tr > 0) the tangential gap and the tangential stress vector have to
be updated using a radial-return-mapping algorithm:

gs n+1
T = gs nT +

f s,tr

cT

ttrT
‖ttrT ‖

, tn+1
T = −µcN |gN |

ttrT
‖ttrT ‖

. (4.18)

4.4 Thermal Contact Interface

The first law of thermodynamics (compare equation (3.24)) is reduced to an interface
in a first step excluding all volume terms. Thus, all relevant interface terms are used,
adding a surface source term ra:∫

∂cBt

t · v da−
∫
∂cBt

q · n da+

∫
∂cBt

ra da = 0. (4.19)

The work of external forces t̃ and the heat flux q̃ on the contact interface are given as

t · v − t̃ · ṽ = 0 on ∂cBt, q · n− q̃ · ñ = 0 on ∂cBt. (4.20)

Assuming traction- and heat flux-free behaviour in normal direction on the rest of the
boundary, the contact quantities are directly inserted in equation (4.19). The source
term ra is neglected further on, since no external contact heat sources are applied in
this work. Multiplying the whole equation (4.19) with a test function δθ leads to∫

∂cBt

t̃ · ṽδθ da−
∫
∂cBt

q̃ · ñδθ da = 0. (4.21)

Each interface integral is divided into a contribution of surface 1 and surface 2 of the
two contact bodies

∫
∂cB1

t

t̃1 · ṽ1δθ1 da+

∫
∂cB2

t

t̃2 · ṽ2δθ2 da−
∫

∂cB1
t

q̃1 · ñ1δθ1 da−
∫

∂cB2
t

q̃2 · ñ2δθ2 da = 0. (4.22)

With ñ2 = −ñ1 = ñc and t̃2 = −t̃1 = t̃c the equation is rewritten as∫
∂cBt

t̃c · [ṽ2δθ2 − ṽ1δθ1] da−
∫
∂cBt

[q̃2δθ2 − q̃1δθ1] · ñc da = 0. (4.23)
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The distribution factor κ is introduced enabling arbitrary shares of the dissipative
quantity (t̃c · ṽc) for both surfaces. The quantities ṽ2 = ṽ1 = ṽc and q̃2 = q̃1 = q̃c are
introduced additionally simplifying equation (4.23)∫

∂cBt

t̃c · ṽc (κδθ1 + (1− κ)δθ2)︸ ︷︷ ︸
δθD

da−
∫
∂cBt

q̃c · ñc (δθ2 − δθ1)︸ ︷︷ ︸
δgθ

da = 0. (4.24)

With these transformations, the terms in brackets contain only the test functions for
surfaces 1 and 2 and the introduced parameter κ. The first term δθD is often used
with κ = 0.5 distributing the frictional heat equally to the surfaces. The second term
is called variational thermal gap δgθ.
The heat flux q̃c · ñc is modelled with a constitutive equation including a thermal
conductivity parameter hc and the thermal gap gθ

q̃c · ñc = hc · (θ2 − θ1)︸ ︷︷ ︸
gθ

(4.25)

leading to the compact weak form for a thermal contact interface

Gc
θ(θ, δθ) =

∫
∂cBt

t̃c · ṽcδθD da+

∫
∂cBt

hc · gθδgθ da. (4.26)

For rough surfaces, the macroscopic contact interface represents the nominal contact
area ∂cBt. Contributions of body interfaces that are not in direct macroscopic contact
are not considered in this section. The real contact area, in which microscopic surface
asperities are in direct contact, is only a portion of the nominal contact area. Thus,
the heat transfer is split into a real contact (rc) part and a part with a microscopical
gap (gc) (displayed in figure 4.2 b))

q̃c = q̃rc + q̃gc. (4.27)

Direct heat transfer takes place between the contact spots and through the interface
gap several effects can contribute to the heat transfer. In Persson et al. (2010),

Figure 4.2: a) Two bodies in contact with heat transfer at the contact interface. b) Detailed heat

transfer at a microscopic length scale. Heat flux q̃c is splitted into real contact part (rc) and gap

contact part (gc).
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for instance, different heat transfer mechanisms are studied, such as a radiative con-
tribution, a contribution from surrounding gas or liquid and the heat transfer through
capillary bridges. Especially the real contact area heat conductivity parameter will
increase with increasing nominal pressure. More parts of the surface asperities get in
contact with each other and the microscopic gap is closed with increasing pressure.
A simple numerical description for the real contact contribution including a normal
pressure dependency can be found in Wriggers & Miehe (1994). Experimental
access to the single quantities and a separation of the physical contributions is quite
complex. In this work a very simple model for the contact heat transfer described with
the coefficient hc will be introduced without any distinctions between different phys-
ical effects and without a normal pressure dependency. As a physical background a
contribution from real microscopic contact spots and a contribution of the surrounding
gas is assumed, neglecting all other effects. Detailed explanations and the underlying
assumptions are explained in subsection 8.3.1.
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Chapter 5

Finite Element Method

In this chapter, the general framework of finite elements is described in a first step.
Afterwards, details regarding the implementation of a thermomechanical continuum
finite element and a thermomechanical mortar contact finite element are explained.

Both elements are implemented in the software FEAP with the possibility to access all
quantities. Within the software ABAQUS, thermomechanical continuum elements and
different contact formulations are available based on the same principles although direct
access to certain variables and intermediate results of the framework is limited. No
differentiation between two-dimensional and three-dimensional formulations is applied
in this chapter, since the FEAP elements are formulated in a three-dimensional setup.
In chapter 6, further comments on the used elements are given.

5.1 Background

The idea of the finite element method (FEM) is based on a division of a continuous
initial boundary value problem (IBVP) in a defined, finite number of elements ap-
proximating the solution of the IBVP, see Zienkiewicz & Taylor (2000a,c,b) and
Wriggers (2008). Applying the methodology to solid mechanics means that a body
B and its surface ∂B are approximated by a number ne of elements Ωe, see figure 5.1
a)-b)

B ≈ Bh =
ne⋃
e=1

Ωe. (5.1)

Figure 5.1: a) Solid two-dimensional body, b) discretized body, c) one dimensional linear ansatz

functions.
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The superscript h is used to declare an approximation, for example elements with four
nodes (black dots) can be used for a two dimensional problem. Besides the geometry
described by the position vector x, the solution field (in the case of a solid body the
displacement u(x) as well as the temperature θ(x)) is approximated element-wise. The
displacement solution field can be expressed by the nodal values uI within the finite
element method using so-called shape functions NI to interpolate the solution for the
whole element

u (x) ≈ uh (x) =

np∑
I=1

NI (x)uI . (5.2)

This is achieved by summation of all nodal contributions np. The basic principles are
derived exemplarily for the mechanical part of finite elements in this section and details
with respect to the temperature field are described in section 5.2.
In order to simplify the construction of shape functions for arbitrary finite elements,
the isoparametric concept is often used in finite element frameworks. The classical
isoparametric concept uses the same shape functions for the geometry and the solution
field on a reference element with the reference coordinates ξ:

x (ξ) ≈ xh (ξ) =

np∑
I=1

NI (ξ)xI , u (ξ) ≈ uh (ξ) =

np∑
I=1

NI (ξ)uI . (5.3)

Furthermore, the virtual displacement δu is discretized throughout this work with the
same shape functions NI (Bubnov-Galerkin-Approach)

δu (ξ) ≈ δuh (ξ) =

np∑
I=1

NI (ξ) δuI . (5.4)

For 3D simulations, a hexahedral reference element Ω� with local coordinates ξ =
{ξ, η, ζ} is often used, see figure 5.2. The shape functions NI are constructed in the
way that they equal one at node I and are zero at all other nodes J (Kronecker-Delta
property). Furthermore, the partition of unity is applied ensuring that the sum of all
shape functions in one element equals one at each position:

NI (ξJ) = δIJ ,

np∑
I=1

NI(ξ) = 1. (5.5)

Figure 5.2: Isoparametric concept with initial, reference and current configuration.
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A simple one-dimensional reference element and its shape functions are displayed in
figure 5.1 c). The trilinear shape functions for a three-dimensional eight node element
read

NI (ξ) =
1

2
(1 + ξIξ) ·

1

2
(1 + ηIη) · 1

2
(1 + ζIζ) . (5.6)

A reduction by crossing the term with ζ leads to the bilinear two-dimensional shape
functions for a four node element. Mappings (see figure 5.2) between the reference
configuration Ω�, the initial configuration, and the current configuration are derived
as

J(ξ) =
∂X(ξ)

∂ξ
=
∑
I

XI ⊗
∂NI(ξ)

∂ξ
, j(ξ) =

∂x(ξ)

∂ξ
=
∑
I

xI ⊗
∂NI(ξ)

∂ξ
. (5.7)

The quantities J and j are called Jacobian matrix in the initial and the current
configuration, respectively.
Using the mapping scheme described above, integrals can be transferred to the refer-
ence element Ω�. These integrals can be solved in various ways, using for example a
Gaussian integration scheme, solving the integral approximately. This is done by in-
troducing a summation over the function evaluated at a certain number of integration
points ng multiplied with the corresponding weight function wg for each integration
point. With functions f which depend on the current coordinate vector x, the inte-
gration is given in the following form∫

Ωe

f(x) dv =

∫
Ω�

f(x(ξ)) det j(ξ) dv ≈
ng∑
g=1

f(x(ξg))wg det j(ξg). (5.8)

The coordinates of the integration points (ξg) are listed in various books, see for ex-
ample Wriggers (2008).
In order to describe the whole process of solving partial differential equations using
the finite element method, the weak form based on the balance of linear momentum
is used as an example. The inner part of the weak form Gb

u is determined by the first
term of equation (3.84) containing the Cauchy stress and the gradient of the virtual
displacement∫

Bt

σ : grad sδu dv ≈
ne⋃
e=1

np∑
I=1

δuTI ·
∫
Ωe

(gradNI)
T · σ dv = δũT ·R(u). (5.9)

The finite element formulation is introduced using the assembling operator
⋃

over all
elements ne. Therefore, the volume integral over the whole domain is transferred to
an integral over the element domain and a summation over all nodes. The same shape
functions like for the displacement are used for the virtual displacement. The derived
element contributions in equation (5.9) are integrated over the volume of the finite
element, using the introduced Gaussian integration scheme (cf. equation (5.8)). In a
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next step, an assembled virtual displacement δũ is multiplied with an assembled vector
of internal nodal forces R(u), using the Gaussian integration scheme described above.
The reader is referred to Zienkiewicz & Taylor (2000b,c,a) and Wriggers (2008)
for further details regarding the assembly process.

In addition to the internal forces, external forces are applied as boundary conditions by
body forces and tractions at the body surface. Since no body forces b̂ are considered
in this work, only surface tractions t̂ are transferred in the same way as the internal
nodal forces ∫

∂Bt

t̂ · δu da ≈
ne⋃
e=1

np∑
I=1

δuTI ·
∫
∂Ωe

NI · t̂ da = δũT · Pext. (5.10)

with the difference that a surface integral has to be evaluated and the resulting assem-
bled vector of traction forces is named Pext assuming an independence of the displace-
ment. The whole system of equations is determined by the so-called residual vector
G(u)

G(u) = R(u)− Pext = 0. (5.11)

An iterative solution of the non-linear equation system is often provided by the use of
a Newton-Raphson scheme based on the use of a Taylor series aborted after the
first derivative

G(uk+1) = G(uk) +
∂G(u)

∂u

∣∣∣∣
u=uk

(uk+1 − uk) = 0. (5.12)

The solution for the next iteration step k + 1 is calculated by

uk+1 = uk −K−1
T G(uk), (5.13)

introducing the tangent stiffness matrix KT

KT =
∂G(u)

∂u

∣∣∣∣
u=uk

. (5.14)

The whole iterative procedure is interrupted in the case a certain convergence criterion
is fulfilled, achieving a solution for the displacement vector, see Wriggers (2008) for
details.

5.2 Thermomechanical Continuum Element

A three-dimensional thermomechanical continuum finite element is derived in this sec-
tion. First, the mechanical part is derived, thereafter the thermal part is given. Both
are combined in a last step. The displacement and virtual displacements are discretized
by bilinear or trilinear ansatz functions as described in the previous subsection
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u(ξ) =

np∑
I=1

NI(ξ)uI , δu(ξ) =

np∑
I=1

NI(ξ)δuI . (5.15)

The gradients of the displacement and virtual displacement are often described with
so-called B-matrices including the derivatives of the shape functions with respect to
x.

gradu(ξ) =

np∑
I=1

Bu
I (ξ)uI , grad δu(ξ) =

np∑
I=1

Bu
I (ξ)δuI . (5.16)

The internal part of the mechanical weak form is used as the basis for the derivation of
the necessary internal nodal force vector and the tangent stiffness matrix. All quantities
are considered on the element level using the integration over the element volume Ωe

Gb,int
u =

∫
Ωe

σ : grad sδu dv = δuTI ·
∫
Ωe

(gradNI)
T · σ dv. (5.17)

The Voigt notation used for matrix operations is indicated by the superscript v. Using
Gaussian integration with eight integration points (ng = 8), the internal nodal force
vector is given by

Re
u =

ng∑
g=1

np∑
I=1

BuT
I (ξg)σ

v(ξg) det j(ξg)wg. (5.18)

The weak form is linearized with respect to the displacements u and after some trans-
formations, cf. Wriggers (2008), an expression with the elasticity tensor c and the
Cauchy stress tensor (see subsection 3.3.3) is derived

DuG
b,int
u =

∫
Ωe

(grad sδu : c : grad s∆u+ (grad sδu · σ) : grad s∆u) dv. (5.19)

The element stiffness matrix Ke
uu is again derived in Voigt notation transferring the

elasticity tensor in square matrix Cv

Ke
uu =

ng∑
g=1

np∑
I=1

np∑
K=1

(
BuT
I (ξg)C

vBu
K(ξg) + 1GIK

)
det j(ξg)wg, (5.20)

with the first term being the non-linear material part. In addition to the index I for
the virtual displacement, the index K is introduced for the linearized displacement.
The non-linear geometrical part is written as

GIK = NI,i(ξg)σijNK,j(ξg). (5.21)

After the mechanical part, the thermal part is described. For the temperature θ the
same linear shape functions as in the mechanical part are used
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θ(ξ) =

np∑
I=1

NI(ξ)θI , grad θ(ξ) =

np∑
I=1

Bθ
I(ξ)θI . (5.22)

TheB-matrices for the description of the gradient (marked with the superscript θ) have
a different size compared to the mechanical part, because the temperature is described
by one value at each node. Following the previous subsection, the virtual temperature
δθ is described by the same shape function NI andBθ

I . The internal thermal weak form
derived from the first law of thermodynamics and the heat equation can be expressed
on element level as

Gb,int
θ (θ, δθ) =

∫
Ωe

(
ρcθ̇δθ + kgrad T θgrad δθ −Dintδθ

)
dv. (5.23)

Following the described procedure according to the mechanical part, the element in-
ternal residual vector is derived as

Re
θ =

ng∑
g=1

np∑
I=1

(
ρcNI(ξg)θ̇

e +BθT
I (ξg)kgrad θe

)
det j(ξg)wg. (5.24)

The included elemental time derivative of the temperature is approximated by an
implicit Euler scheme

θ̇e(tn+1) =

np∑
K=1

NK(ξg)
θK(tn+1)− θK(tn)

∆t
. (5.25)

Furthermore, the elemental gradient of the temperature reads

grad θe =

np∑
K=1

Bθ
K(ξg)θK . (5.26)

The linearization of the thermal part of the internal weak form with respect to the
temperature yields

DθG
b,int
θ =

∫
Ωe

(
ρc∆θ̇δθ + grad T∆θkgrad δθ

)
dv. (5.27)

The thermal tangent stiffness matrix is then computed by Gaussian integration and
summation over nodes I and K

Ke
θθ =

ng∑
g=1

np∑
I=1

np∑
K=1

( ρc
∆t
NI(ξg)NK(ξg) +BθT

I (ξg)kB
θ
K(ξg)

)
det j(ξg)wg. (5.28)

Direct modelling of thermomechanical terms originating from coupling effects like a
temperature dependent stress vector or a displacement-induced internal dissipation
are neglected in this work (Dint = 0). These terms could be gained by a linearization
of the mechanical part with respect to temperature and vice versa
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DθG
b,int
u =

∫
Ωe

∂σ

∂θ
∆θ : grad sδudv = 0, DuG

b,int
θ = −

∫
Ωe

∂Dint

∂u
·∆uδθ dv = 0. (5.29)

Therefore, the mechanical-thermal and thermomechanical stiffness matrices are not
evaluated in this work. This leads consequently to a decoupled stiffness matrix K

K =

[
Kuu Kuθ

Kθu Kθθ

]
=

[
Kuu 0

0 Kθθ

]
. (5.30)

For a viscoelastic continuum, the described thermal effects are introduced in the hy-
perelastic part, see subsection 3.3.3 and 3.3.4.
Since the used rubber materials are nearly incompressible, special techniques are used
within finite elements in order to avoid volume locking phenomena. One possibility
is the Q1P0 formulation introduced in subsection 3.3.3 that will be later used for
calculations with the software ABAQUS. In FEAP, a different possibility is available
to avoid locking. The total stiffness matrix is decomposed in a constant part integrated
by one Gauss point and an additional stabilization term

K = K0 +Kstab. (5.31)

The concept is based on the enhanced strain theory and the element is called Q1SP,
see Reese (2001) for further details.

5.3 Thermomechanical Mortar Contact Element

In this work, finite deformations and a complex contact interaction between rubber
material and the rough counter surface are expected. In contrast to other numerical
contact approaches like the node-to-segment (NTS) strategy, the mortar method is
robust for large deformations and sliding, avoiding locking phenomena or failing pro-
jections, cf. Laursen (2003); Wriggers (2006). In contrast to the NTS method, a
weak coupling of the contact constraints is enforced, leading to a segment-to-segment
based formulation. One main feature of the mortar method is to determine the contact
area in an appropriate way with a projection plane. Another important feature is to
average kinematical quantities providing smooth contact forces. The proposed ther-
momechanical mortar contact element is based on the formulation in Weißenfels
(2013) and Dobberstein (2014).
The contact constraint using a Lagrange-multiplier is given in section 4.3 providing
the basis for the mortar contact formulation

Gc
l =

∫
∂cBt

δλ · g da. (5.32)

An appropriate integration over the contact interface ∂cBt is a crucial point in numerical
contact mechanics algorithms. The idea of the mortar approach is to project the
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slave and master elements on an intermediate projection plane and to perform the
integration on the emerging geometrical intersections, see figure 5.3 a). Following
the isoparametric concept and Gaussian integration introduced in section 5.1, the
global contact interface is approximated by a summation over all slave nodes n1

sl and
all adjacent elements n1

ad since the base vectors are averaged over these elements.
Furthermore, the contact area is divided into segments nseg and in a next step the
arbitrary segments are divided into triangular pallets npa containing a certain number
of integration points x̄pg per pallet npagp as displayed in figure 5.3 b)

∫
∂cBt

da ≈
n1
sl∑

a=1

n1
ad∑

b=1

nseg∑
s=1

npa∑
p=1

npagp∑
g=1

det jwg =

n1
glob∑
a=1

ngp∑
g=1

det jwg. (5.33)

Projected master and slave nodes x̄ij and certain intersection points construct an in-
tersection area, white area in figure 5.3 a)-b). Lines between all projected points on
the projection plane are constructed in order to determine the intersection points x̄int.
Details regarding the segmentation, construction of pallets, and the positions of inte-
gration points can be found in Puso & Laursen (2004a,b); Weißenfels (2013).
The determinant of the Jacobian det j is calculated as the area of the three j = 1−3
pallet points x̄pj . In order to simplify the notation, the summation over global slave
nodes n1

glob is used for the summation over slave nodes, adjacent elements, segments
and pallets.

The slave and master coordinates x1 and x2 are discretized with linear shape functions
based on the convective coordinates ξi

x1
(
ξ1
)

=
ns∑
B=1

NB

(
ξ1
)
x1
B, x2

(
ξ2
)

=
nm∑
C=1

NC

(
ξ2
)
x2
C . (5.34)

The number of nodes for each contact element on the slave and master side is defined by
ns and nm. Additionally, Lagrange-multipliers are introduced with the same linear
shape functions at the slave side

λ
(
ξ1
)

=
ns∑
A=1

MA

(
ξ1
)
λA. (5.35)

Figure 5.3: a) Mortar projection, b) construction of a segment and associated pallets including inte-

gration points, c) smoothing of base vectors.
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In this work, for MA the same linear shape functions are used as for the slave side. But,
generally it is possible to use special dual shape functions for MA (see Wohlmuth
(2000), Popp et al. (2009), Popp et al. (2010), Popp (2012)). Mortar approaches
are based on smoothing the slave base vectors a1, tangential vectors t1 and normal
vectors n1 by averaging over all adjacent elements n1

ad (see figure 5.3 c) for an example),

a1
α =

n1
ad∑

b=1

ns∑
I=1

NI,α

(
ξ1(b)
α

)
x

1(b)
I , t1α =

a1
α

‖a1
α‖
, n1 = t11 × t12. (5.36)

In this way, jumps in contact forces are avoided leading to a robust algorithm.
The introduced discretizations for the slave surface, the master surface, and the La-
grange-multipliers are inserted in equation (5.32). In this way, the contact surface is
approximated by the described summation, leading to

Gc
l =

n1
glob∑
a=1

δλA

ngp∑
g=1

MA

(
ξ1
g

)( nm∑
C=1

NC

(
ξ2
g

)
x2
C −

ns∑
B=1

NB

(
ξ1
g

)
x1
B

)
det jwg. (5.37)

A mean gap function between slave and master side is identified as

ḡA =

ngp∑
g=1

MA

(
ξ1
g

)( nm∑
C=1

NC

(
ξ2
g

)
x2
C −

ns∑
B=1

NB

(
ξ1
g

)
x1
B

)
det jwg, (5.38)

which can be split into normal and tangential parts by multiplication with the cor-
responding normal or tangential vectors. Corresponding to equation (5.38), a virtual
mean gap δḡA and a gap including the old time step quantities o are defined. The
penalty method introduced in section 4.3 is used to solve the contact part of the weak
form introducing the approximations of the normal pressure and the tangential stress
with the penalty factors cN and cT

t̄NA = cN ḡA · nA, (5.39)

t̄TαA = −cT
[
(ḡA − ḡoA) · tAα + ∆tγ̄A

t̄A · tAα
‖t̄TA‖

]
+ t̄nTαA, ‖t̄TA‖ =

√
(t̄A · tAα)

2
. (5.40)

Using the penalty method, the only contribution to the contact weak form is formed by
the virtual contact work (cf. section 4.3) which is divided into normal and tangential
parts

Gch
uA = δḡ · (nAcN ḡA · nA + tAαt̄TαA) =

nAseg∑
s=1

δdus ·Rs
u. (5.41)

The superscript h indicates the discretization and the index A is introduced as a node
index, since the residual and stiffness matrix are derived nodal-wise, see also Weißen-
fels (2013) for details. The equation can be reformulated in a product of virtual
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displacements δdus containing slave and master contributions of all involved segments
nAseg and the residual for each segment Rs

u

Rs
u = Gs

δg (nacN ḡA · nA + tAαt̄TαA) . (5.42)

Parts of the linearization procedure in order to derive stiffness matrices for the mortar
contact element are listed in equations (B.1)-(B.6). Moreover, the interested reader is
referred to Weißenfels (2013) and Dobberstein (2014) for details regarding the
complex linearization procedure for mortar contact elements.
The extension of the contact element towards a fully coupled thermomechanical element
starts with the definition of slave and master temperatures

θ1
(
ξ1
)

=
ns∑
B=1

NB

(
ξ1
)
θ1
B, θ2

(
ξ2
)

=
nm∑
C=1

NC

(
ξ2
)
θ2
C , (5.43)

applying the same shape functions introduced in the mechanical part. A temperature
gap ḡθA following equation (5.38) and a dissipative gap δθD (cf. equation (4.24)) are
defined

ḡθA =

ngp∑
g=1

MA

(
ξ1
g

) (
θ2
(
ξ2
g

)
− θ1

(
ξ1
g

))
det jwg, δθD = κδθ1 + (1− κ)δθ2. (5.44)

Similar to the mechanical part and with the use of equation (4.26), a nodal discretized
weak form can be derived for the contact element

Gch
θA = δḡθA

(
h̃cḡθA

)
+ δθGA

(
gTA − goTA

∆t
· tTA

)
=

nAseg∑
s=1

δdθs ·Rs
θ, (5.45)

with the thermal residual vectorRs
θ. Details regarding the formulation, implementation

and linearization of the thermomechanical contact contributions can be found e.g. in
Dittmann et al. (2014).



Chapter 6

Multiscale Approach for Hysteretic
Friction

First, a review and summary of existing multiscale approaches for rubber friction is
provided in section 6.1, accomplished by a review of some microscopic studies. Af-
terwards, a multiscale finite element approach for hysteretic rubber friction on rough
surfaces based on contact homogenization is proposed in section 6.2. The approach is
modified and enhanced in order to deal with real rough surfaces in section 6.3. Some
features of the introduced method are studied in detail with single scale calculations in
section 6.4. Finally, the introduced multiscale method for rough surfaces is validated
with results of friction experiments in section 6.5.

6.1 Review of Previous Multiscale Approaches

Following subsection 2.3.2, two categories of numerical multiscale approaches for rub-
ber friction are defined. The first approach is named multiscale projection method
and is proposed in Nitsche (2011). Frictionless behaviour is established on all scales
and the solution is gained by a complex communication between the scales. For ev-
ery macroscopic contact spot, a microscopic calculation starts, applying the current
macroscopic displacement on the micro scale as a boundary condition. Afterwards,
a projection of microscopic stresses and contact forces on the finite elements of the
macroscopic scale is performed. This process is repeated until a defined convergence
criterion of the residual norm is reached. An advantage of this method is that no infor-
mation is lost because all quantities are transferred between the scales. However, a bad
convergence rate of the macroscopic solution and instabilities due to the projection are
a drawback. Additionally, an implementation of viscoelastic effects, which is elemen-
tary for the study of elastomer friction, is not demonstrated in Nitsche (2011). The
extension to viscoelasticity could be difficult, because the data structure and handling
are complicated within such a framework. Therefore, approaches with a reduction of
passed information promise a way to study the hysteretic effect of rubber friction.

Another method called multiscale contact homogenization technique was proposed by
Temizer & Wriggers (2008) for the first time, dealing with contact between a

53
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macroscopic rubber block and moving micro particles. The scales are separated into
a macroscopic scale without microscopic details and a microscopic scale containing in
this case the micro particles. The local macroscopic contact pressure and velocity are
used as spatially constant boundary conditions on the microscopic scale. That implies
that the macroscopic length scale L has to be significant larger than the microscopic
length scale l

L� l, (6.1)

to allow for an application of this approach. Otherwise, the assumed constant boundary
conditions would become inadequate. A periodic representative microscopic setup is
constructed since the microscopic structure has repetitive character. Thus, the micro-
scopic simulation setup is often called representative volume element or representative
contact element (RVE/RCE). The resulting total reaction forces on top of the rubber
block in x- and z-direction are calculated (cf. figure 2.3), transferred to a coefficient of
friction and averaged over time in a homogenization step

µ(t) =
|Fx(t)|
|Fz(t)|

, µavg. =
1

t1 − t0

t1∫
t0

µ(t) dt. (6.2)

For the force evaluation, dynamic and interlocking effects are considered in Temizer
& Wriggers (2008), viscoelasticity is added in Temizer & Wriggers (2010a). The
gained friction coefficient is incorporated in the macroscopic calculation and thus en-
hancing the contact calculation with the microscopic result. In Temizer & Wriggers
(2008) this operation is repeated in every contact integration point with a different mi-
croscopic input for every time step resulting in a large calculation time. A similar
scheme is used in FE-square methods for continuum setups, see Feyel (1999) and
Zohdi & Wriggers (2008). This procedure is quite expensive from a computational
point of view since many microscopic calculations with different velocity and pressure
values are performed in each macroscopic time step.
The method was transferred to the contact of rubber including a viscoelastic material
law with a rigid rough surface in Reinelt (2008) and Wriggers & Reinelt (2009).
An important feature of this approach is that the rough surface is idealized by a certain
number of sinusoidal waves increasing also the number of involved scales in contrast to
two scales in Temizer & Wriggers (2008). The choice of these scales is based on
an approximation of the rough surface HDC function (see subsection 2.3.1) by a sum
of single HDC functions

∑
|Czi| of each scale i. This represents the most critical point

of this approach since the self-affine rough surface is reproduced by periodic sinusoidal
waves that are by definition not self-affine. Thus, the individual HDC functions are
manipulated by an idealization introducing a constant value after the cut off point,
although the HDC functions fluctuate after this point for sinusoidal functions, see
Reinelt (2008). With the manipulated HDC functions, a problematic approximation
of the HDC function of the rough surface is performed since the number of introduced
sinusoidal scales is an uncertain parameter with unknown convergence properties. In
Reinelt (2008) and Wriggers & Reinelt (2009), global results obtained with
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a three-scale or four-scale approximation of the rough surface are compared and a
large influence on the global result is detected, although the HDC function of the
rough surface is approximated in a similar manner. Adding a very small length scale
or a completely different choice of intermediate scales could result in a very similar
approximation quality with respect to the HDC function, but a complete different
result for the final coefficient of friction could be obtained. Criteria how to choose the
number of scales and the corresponding wavelengths and amplitudes remain an open
and difficult question of this approach.

In contrast to the approach in Temizer & Wriggers (2008), pressure and velocity
values for the microscopic calculations are not extracted during a macroscopic calcu-
lation in Wriggers & Reinelt (2009). This procedure results in a reduced compu-
tational time and is therefore the basis of the later proposed multiscale approach in
this work. Furthermore, the pressure values applied on the lower scales are determined
by estimation of the true contact area before the calculation, see Reinelt (2008) for
details. Following Temizer & Wriggers (2008), the microscopic coefficient of fric-
tion is obtained by homogenization starting the whole framework with a frictionless
calculation on the lowest scale. The resulting coefficient of friction depending on the
contact pressure and velocity is then incorporated on the next larger scale followed by
another homogenization step until the final macroscopic length scale is reached. The
gained coefficient of friction is a result of the viscoelastic energy dissipation inside the
material (cf. subsection 2.3.2) providing the chance to study the hysteretic contribu-
tion of rubber friction. Furthermore, in Reinelt (2008) and Wriggers & Reinelt
(2009) the approach is also extended by an adhesive interaction on the lowest scale,
see chapter 7 for more details.

An important factor which influences the outcome of the homogenization procedure is
the appropriate choice of parameters like microscopic block size or boundary conditions
among others. There exist various scientific publications dealing especially with the
correct choice of these parameters in order to achieve converged results. In Temizer
& Wriggers (2008) the influence of microscopic block height, block length and the
number of involved micro particles is investigated since these quantities represent free
parameters. Additionally, in Temizer & Wriggers (2010a) the difference between
displacement boundary conditions and traction boundary conditions applied on the
microscopic block are investigated. Dealing with viscoelastic solids, the compression
time ∆tp for applying the pressure on top of a microscopic sinusoidal RCE is identified
as an important parameter in de Lorenzis & Wriggers (2013). The compression
time influences the oscillations of the resulting coefficient of friction since the contact
area is adjusted in this phase and a large difference to the stationary contact area during
the dragging phase results in large oscillations. As a consequence, the compression time
has to be adopted for different velocities and pressures in the way that the contact
area of the compression phase approaches the contact area of the dragging phase, see
subsection 6.2.2. In Scaraggi et al. (2016) the influence of geometrical and material
non-linearities on a sinusoidal RCE is studied and compared to analytical approaches.

The description of the rough surface is a crucial and important point for the modelling
of a sliding rubber block on a rough surface. Some microscopic studies take complex
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geometries into account, for example micro particles with non-circular shapes are in-
vestigated in Temizer (2013). In Temizer (2014) and Stupkiewicz et al. (2014),
microscopic rough surfaces for the rubber block bottom as well as for the counter
surface are introduced in order to study geometrical effects and surface anisotropy.

6.2 Multiscale Contact Homogenization

In contrast to the already introduced multiscale approach for hysteretic rubber friction
on rough surfaces in Wriggers & Reinelt (2009), the proposed algorithm incorpo-
rates the rough surface directly without a transformation to sinusoidal functions, see
Wagner et al. (2015). It is based on splitting the surface into separate scales and
contact homogenization techniques like proposed in Temizer & Wriggers (2008).
The focus of this section is to describe the main idea of the contact homogenization
multiscale framework, providing the basis for a detailed description of the surface treat-
ment and extension of the method in section 6.3.

6.2.1 General Framework

The proposed multiscale framework of this section is only universally applicable for
separated length scales, because it is based on introduced homogenization multiscale
approaches of section 6.1. Therefore, the range of application is limited to problems
with separated scales. An extension and modification of the approach towards rough
road surfaces which are naturally not separated is introduced in the next section.

In order to reduce the computational costs for the multiscale method, the numerical
calculations on all scales are reduced to two-dimensional setups throughout this work.
Furthermore, a plane strain approach is applied in this work calculating sections of
the plane in sliding direction (x-z-plane in figure 2.3). It is used because the dimen-
sion of the rubber block in y-direction is comparatively large, leading to a relative
small strain component in this direction. The difference between two-dimensional and
three-dimensional setups with respect to results and calculation time is discussed in
subsection 6.4.3 in detail.

The framework of a multiscale homogenization approach is divided in the most impor-
tant steps and features in figure 6.1. In a first step A) the rough surface is decomposed
in macroscopic (1) and microscopic (2) parts. This step is very essential for real rough
road surfaces and requires therefore special techniques which will be described in sub-
section 6.3.1 and are excluded in this subsection. The global input parameters are the
material properties of the rubber material, the rough surface, the global pressure p1

and the velocity v1 (bold letters in step A) of figure 6.1). The whole approach starts
with a frictionless macroscopic calculation including a viscoelastic material law (see
subsection 3.3.4). Following the previous chapters the complete weak form, neglecting
body forces b̂, can be constructed by a continuum part and contact part (see equation
(3.84) and (4.14))
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Figure 6.1: A) Surface split. B) Contact pressure evaluation. C) Definition of microscopic boundary

values. D) Calculation of representative microscopic sample. E) Homogenization. F) Micro friction

law. G) Macroscopic calculation with microscopic friction law.

G0,n
u (u, δu) =

∫
Bnt

σ : grad sδu dv −
∫

∂tBnt

t̂ · δu da+

∫
∂cBnt

δgNpN da = 0. (6.3)

The weak form is superscripted with a 0 to indicate frictionless behaviour and the
superscript n represents the considered scale. No tangential contact contribution is
considered for the frictionless case and the penalty method is used, introducing a
normal pressure pN , see section 4.3 for details. This first macroscopic calculation is
used to determine contact pressure values p1,c of all time steps and contact elements,
see step B), in order to estimate the pressure distribution n(p1,c). Following the idea
of scale separation, the information is used to construct a field of spatially constant
boundary conditions in step C) for the microscopic representative setup by dividing the
whole pressure range in a finite number of pressure values p2,i. The high pressure range
occurs less often than the lower pressure range, see figure 6.1, and is therefore divided
with fewer points than the lower range in the sketched example. This procedure has to
be repeated for large changes in the global parameter set p1, v1 since the local contact
pressure distribution may differ. Furthermore, the velocity field v2,j can be divided
through the definition of velocities between the highest applied macroscopic velocity
v1 and a small velocity close to 0m/s.
In step D) a periodic microscopic representative finite element setup is constructed and
various calculations with the defined pressures p2,i and velocities v2,j are performed.
The periodicity is introduced since the microscopic length scale represents a cutout
of the full problem with rubber material on each side of the cutout. Wihout periodic
boundary conditions the microscopic rubber samples would start to buckle at the left
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and right side. The calculations are again frictionless and the same viscoelastic ma-
terial law from the macroscopic scale is applied. By the use of a rough surface and a
viscoelastic material an energy dissipation is caused that can be evaluated through bal-
ancing the reaction forces on top of the rubber block leading to a generated coefficient
of friction, see equations (2.8) and (6.2). This effect is known as hysteretic friction
(cf. section 2.2). Furthermore, it has to be remarked that the pure hysteretic response
can be evaluated by an analysis of the dissipated energy, whereas an evaluation of
the reaction forces includes automatically geometric effects, such as interlocking (see
figure 6.3). After a transition phase, the applied periodic boundary conditions lead to
a stationary response of the coefficient of friction. Following the concept of contact
homogenization and based on equation (6.2), the time dependency is removed by time
homogenization in step E), leading to µ2,avg., see Temizer & Wriggers (2008) and
Wriggers & Reinelt (2009). The boundary conditions of the microscopic calcula-
tion and some important details regarding the homogenization procedure are discussed
in subsection 6.2.2.
After all microscopic calculations were executed, a pressure- and velocity-dependent
friction law µ2(p, v) is constructed in step F). This friction law can be directly inserted
in the macroscopic contact formulation, evaluating the law for the macroscopic contact
pressure and velocity, see step G). The weak form for the frictional case is indicated
with the superscript f . Introducing also a tangential contribution of the contact virtual
work, results in

Gf,n
u (u, δu) =

∫
Bnt

σ : grad sδudv−
∫

∂tBnt

t̂ ·δuda+

∫
∂cBnt

(δgNpN + δgT · tT ) da = 0. (6.4)

The friction law obtained by homogenization is considered in every contact element
and time step and can additionally be linearized with respect to contact pressure and
velocity. Details on how to construct the microscopic friction law with splines can be
found in subsection 6.2.2. Finally, the frictional macroscopic calculation generates a
hysteretic contribution in the same way as the microscopic calculation. The resulting
coefficient of friction is then containing also the interlocking response. The macroscopic
response is evaluated again by balancing the reaction forces. The final result µ1,avg.

(marked with bold letters in step G) of figure 6.1), which is the stationary coefficient
of friction, is gained through time homogenization following equation (6.2). In general,
the method could be extended to more than two scales by applying a further loop
between step D) and E).

6.2.2 Homogenization and Micro Friction Law

The most important features of the microscopic scale calculation and boundary con-
ditions are explained in this subsection. Afterwards, remarks and comments on the
homogenization procedure and on the micro friction law generation are given.
An exemplary microscopic setup is displayed in figure 6.2 a). As already explained
in the last sections, a frictionless setup with a periodic rough surface is constructed.
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Figure 6.2: a) Periodic microscopic setup with boundary conditions and exemplary solution, b) re-

sulting coefficient of friction and exemplary homogenized values.

A finite linear viscoelastic material law is used to generate the hysteretic response,
see subsection 3.3.4. The contact calculation between the rubber block and the rough
surface on ∂cBt is based on the derived equations of chapters 3, 4 and the finite element
formulation provided in chapter 5.
The applied boundary conditions are motivated by the explained multiscale setup, a
constant pressure p is applied on the top of the rubber block at ∂tBt distributed to
equivalent nodal forces by the finite element software. Before the pressure is applied a
first simulation step is calculated with a constant displacement ū on ∂tBt in order to
establish a very small contact area between the rubber block and the rough surface.
After the initial contact step and the compression phase, in which the pressure is
applied in a certain time interval tp, a dragging or sliding phase is started keeping the
pressure constant on the upper part of the body, cf. Temizer & Wriggers (2008),
de Lorenzis & Wriggers (2013) or Wagner et al. (2015). The dragging velocity
v is applied on the same edge like the pressure ∂tBt indicated by an arrow in figure 6.2
a). It has to be remarked that the z-displacements of the element nodes of the upper
edge ∂tBt are linked following Wagner et al. (2015). This procedure is motivated
by more stable simulations for this setup without remarkable differences in the later
evaluated coefficient of friction.
As already mentioned, periodic microscopic surface samples are used for the introduced
multiscale method. This setup has to be completed by periodic boundary conditions
on the outer left boundary ∂lBt and the outer right boundary ∂rBt of the rubber block,
see figure 6.2 a), by the following conditions

xr − xl = Xr −X l, tr = −tl on ∂lBt ∪ ∂rBt, (6.5)

ensuring periodicity of the position vector x and anti-periodicity of the tractions t.
The position vector in the initial configuration is given by X.
After a solution is obtained, see for example the displacement in z-direction in figure
6.2 a), the total reaction forces are evaluated with the described microscopic setup.
This step is performed by evaluating the reaction forces on top of the rubber block,
see Wagner et al. (2015). Afterwards, the time dependent coefficient of friction
originating from hysteretic and interlocking effects is calculated using equation (6.2)
and transferred to a homogenized coefficient of friction µavg..
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The homogenized solution depends on several parameters like homogenization interval
∆t, compression time tp, finite element mesh and discretization level, block dimensions
and further aspects. Discretization studies are for example discussed in de Lorenzis
& Wriggers (2013) and Wagner et al. (2015). The rubber block height is set equal
to the block length throughout this work, avoiding a free parameter. Additionally, the
surface wavelengths are in contrast to approaches with sinusoidal functions (Wrig-
gers & Reinelt (2009); de Lorenzis & Wriggers (2013)) not freely chosen and
therefore also excluded from an intensive analysis. Nevertheless, the homogenization
time (indicated in figure 6.2 b)) is identified as an important parameter in Wagner
et al. (2015) due to an insufficient separation of time and length scales for the studied
examples. Thus, this effect is discussed in the next subsection in a numerical validation
study. The importance of the compression time is already mentioned and explained in
section 6.1. Following de Lorenzis & Wriggers (2013), this parameter is adopted
manually for different global simulation parameters throughout this work, avoiding
large oscillations of the frictional response, see for example figure 6.2 b).
Next to the homogenization procedure, a micro friction law can be constructed with
the calculated microscopic coefficients of friction used as a raw data field. In order to
circumvent a special shape of the friction law like proposed in Wriggers & Reinelt
(2009), that may fail for different surfaces or rubber materials, a spline surface with
piecewise polynomial functions is fitted to the generated raw data

µ(p, v) =

np∑
i=1

nv∑
j=1

cij · (p− ξp)np−i · (v − ξv)nv−j. (6.6)

The spline coefficients cij, break points ξp, ξv and spline dimensions np, nv are deter-
mined within the software MATLAB. The smoothness of the spline surface provides
good properties for the linearization within a mortar contact element, see Wagner
et al. (2015) and equations (B.7)-(B.9) in appendix B.

6.2.3 Numerical Validation

The ability to solve complex contact interactions with the proposed multiscale method
as well as the performance of the method is demonstrated for a simple test case with

Figure 6.3: a) Surface profiles for reference setup and multiscale setup, b) reference setup (top) and

multiscale setup (bottom) with pref. = 0.3MPa, vref. = 500mm/s.
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Figure 6.4: a) Microscopic friction law, black dots indicate raw data. b) Coefficient of friction for

reference setup and multiscale setup. c) Relative calculation time for reference and multiscale setup.

sinusoidal functions, cf. Wagner et al. (2015). The framework described in the last
subsections is implemented in the finite element software FEAP. The available three-
dimensional code is reduced to a quasi-two-dimensional setup by linking the nodes of
one used element in y-direction to each other in the x-z-plane. A deformation-based
finite linear viscoelastic material model is used for the rubber samples (see subsection
3.3.4) within the described continuum finite element framework of 5.2. The rough
surface is modelled with a linear elastic material model and fixed elements at the
bottom of the body, since almost no deformations are expected for the rough surface.
The reader is referred to Wagner et al. (2015) for all material parameters. Within
FEAP the described mortar contact element (cf. section 5.3) is used to solve the
mechanical contact interaction of the two deformable bodies.

An artificial reference problem represented by the summation of two defined sinusoidal
functions is constructed

zref.(x) = z1(x) + z2(x), (6.7)

z1(x) = 0.075 sin (2π/5x) , z2(x) = 0.01 sin (2π/0.5x) . (6.8)

Furthermore, a multiscale setup consisting of a macroscopic simulation on z1(x) and
a microscopic simulation on z2(x) are conducted, see figure 6.3. In a first step, a
micro friction law on the microscopic setup is calculated, following the procedure of
the previous subsections, see figure 6.4. Further on, the resulting friction law is inserted
into a macroscopic calculation and the resulting global coefficient of friction is compared
to the reference solution.

This simple test case reveals that the multiscale result (mul.) approaches the reference
solution (ref.), see figure 6.4 b), by reducing the calculation time drastically, see figure
6.4 c). The reference solution is approached, if the starting process of the microscopic
rubber block is included in the homogenization step, see figure 6.4 b). The exemplary
outcome of different homogenization times (µavg.(∆t1), µavg.(∆t2)) is demonstrated in
figure 6.2 b). The surface scales and time scales for macroscopic and microscopic in-
teractions are not fully separated in this test case and the reference solution contains
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microscopic run-in effects that are neglected by homogenization of the stationary re-
sponse µavg.(∆t2). Therefore, the homogenization time is chosen as ∆t1 = 0.75 · 10−3s
(equals 1.5 wavelenghts of the surface profile) in order to include these run-in effects.

6.3 Extension to Rough Road Surfaces

This section provides an overview of surface descriptions and decomposition techniques
for real rough road surfaces, being necessary for numerical multiscale frameworks. In
order to incorporate rough road surfaces with non-separated length scales and arbitrary
shape, the introduced multiscale framework of the last section is extended and certain
steps of the framework are modified. Finally, details regarding implementation and
automation of the multiscale method are explained in the last subsection.

6.3.1 Surface Description

The incorporation of a real rough road surface into multiscale approaches can be per-
formed by different approximations. Reconstructions based on HDC functions and all
resulting difficulties are mentioned and discussed in section 6.1.

In order to avoid the problematic reconstruction by sinusoidal functions, see approach
1) in figure 6.5, a new method is proposed in Wagner et al. (2015). It is based on
a reconstruction using a PSD function CPSD(q), see subsection 2.3.1, and generates
rough surface profiles for all considered scales. First of all, equally to the HDC-based
approach, a rough surface measurement is performed and then transformed into a PSD
function of the measured rough surface (step 2a in figure 6.5). In step 2b, the rough
surface is reconstructed by a sum over a large number of sinusoidal functions i

z(x) =
N∑
i=1

2

√
2π

X
CPSD(qi) sin(qix+ φi), (6.9)

with a random shift angle φi and the largest wavelength X. Based on the derived
equations in Persson et al. (2005), this procedure is used in Wagner et al. (2015)
to reconstruct a real rough road surface. Furthermore, the reconstructed surface can
be split into macroscopic and microscopic parts by dividing the introduced sum at a
certain split frequency. In figure 6.5 (approach 2) a PSD function and the corresponding
macroscopic and microscopic surface parts are displayed, see Wagner et al. (2015).
A continuous spectrum is used and a problematic choice of certain frequencies for each
scale is avoided, revealing a benefit in contrast to HDC-based approaches. Afterwards,
representative cutouts of the reproduced surface parts are chosen, exhibiting directly
periodic structure due to the reconstruction procedure. Nevertheless, the choice of a
representative cutout reveals a drawback of the PSD-based reconstruction because it
is very difficult to define a scientific criterion for an adequate choice. Therefore, in the
following subsection 6.3.2 an extension of the multiscale approach is proposed, avoiding
this difficulty.
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Figure 6.5: Three approaches for processing and decomposition of a rough surface measurement: 1)

HDC-based approximation, 2) PSD-based reconstruction, 3) Direct filtering of the rough surface.

Another drawback of the PSD-based approach is the introduction of the random phase
shift angle φi, leading to a loss of surface characteristics. This is illustrated in figure
6.5 by displaying the real rough surface profile in approach 3. Unfortunately, the
reconstruction of the same rough surface in step 2b overestimates for example the
amplitude of the surface profile. Furthermore, the reconstructed shape is also quite
different compared to the measurement.

Thus, this work proposes, following Wagner et al. (2017), to use the rough surface
measurement directly for setting up the multiscale method without loss of any surface
characteristics and without any transformation or reconstruction, see figure 6.5 with
approach 3. The necessary decomposition of the rough surface measurement for apply-
ing a multiscale setup is performed by the use of band-pass filters. A two-scale problem
can be for example defined by three wavelengths λmax, λsplit, λmin and two band-pass

Figure 6.6: a) Choice of mesoscopic cutout for the construction of a representative finite element

setup. b) Manipulation of the cutout to ensure a periodic surface sample by using a connecting spline.
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filters F , one defining the macroscopic surface and the other the microscopic surface
part

Fmacro(λmax − λsplit), Fmicro(λsplit − λmin). (6.10)

By choosing the same split wavelength λsplit for both filters, a continuous spectrum
is ensured and the surface characteristics are captured by this approach. Similar to
the PSD-based approach, cutouts of the rough surface have to be chosen to construct
numerical setups for microscopic scales. This leads to the same difficulties regarding the
choice of a representative surface part for the whole rough surface structure. Therefore,
an extension to include surface statistics is presented in the next subsection 6.3.2.
Additionally, no periodicity is achieved for chosen surface parts, if the rough surface is
used directly, see for instance the mesoscopic surface part in figure 6.6 a). Therefore,
chosen surface samples are manipulated at the ends by introducing a smooth spline
function that enforces a periodic surface sample because it represents a cutout of a
long rough surface profile, cf. figure 6.6 b).
It has to be remarked that all proposed surface decompositions (HDC, PSD, filtering)
violate the assumption of scale separation since no significant offset between the scales
is applied. Furthermore, the approaches in Wriggers & Reinelt (2009) and Wag-
ner et al. (2015) (cf. section 6.2) introduce a certain amount of scale separation,
since the sinusoidal and rough surface profiles for the scales differ significantly in am-
plitude. Thus, the contact homogenization of section 6.2 is applied revealing that the
methodology works in principle. Nevertheless, the assumptions of scale separation are
not completely fulfilled. Therefore, a way to adopt the multiscale approach of the last
section is discussed in the next subsection 6.3.2.

6.3.2 Multiscale Framework

Dealing with real rough road surfaces, a few critical points of the multiscale framework
for separated length scales of section 6.2 are encountered. First of all, the choice
of a representative cutout for macroscopic and microscopic surface scales is rather
problematic since a real rough surface consists of profiles fluctuating in amplitude and
frequency, cf. figure 6.5. Hence, an adequate choice of a single profile representing all
rough surface characteristics of the considered scale remains a very challenging task and
no profound criteria are defined in literature. In order to circumvent this problem, a
certain number of surface profiles is introduced in Wagner et al. (2017), enhancing
the multiscale framework with surface characteristics on each scale, see step A) in
figure 6.7. In principle, a different number of surface samples k and j can be used to
determine pressure values for the microscopic scale (k) and microscopic coefficients of
friction for the upscaling part (j). How to proceed with the additional information
of a few surface samples is discussed after a modification of the multiscale contact
homogenization approach is introduced.
The assumption of scale separation fails for the complex contact problem at hand,
including real rough road surfaces. Road surfaces are self-affine and rough over many
length scales including a continuous spectrum, see subsection 2.3.1 and subsection 6.3.1.
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Figure 6.7: Modified multiscale approach with a certain number of surface samples and expanded

averaging between the scales.

Thus, scale separation could only be enforced for rough road surfaces by neglecting in-
termediate scales and fulfilling for that reason equation (6.1). Since the contribution
of intermediate scales is very essential for the final result of rubber friction problems
(see Persson (2001)), the smallest wavelength of the macroscopic length scale is au-
tomatically the largest surface wavelength of the microscopic length scale, comparable
to the PSD-based decomposition in Wagner et al. (2015). Consequently, the choice
of local contact pressures as constant input parameters for the smaller scale becomes
inadequate. Moreover, a fluctuating pressure field motivated from the macroscopic
contact pressures would be an accurate boundary condition for the microscopic scale.
Avoiding a complex procedure with fluctuating boundary conditions, an averaged con-
tact pressure is introduced in Falk et al. (2016) or Wagner et al. (2017) repre-
senting the characteristics of the macroscopic pressure field, see step B) in figure 6.7.
This averaged contact pressure p1,avg.(k) is determined by using all (nc) local macro-
scopic contact pressures p1,c,i of all time steps and for each introduced surface profile
k

p1,avg.(k) =

nc∑
i=1

( ∫
A1,c,i

p1,c,i(k) da

)
nc∑
i=1

A1,c,i

=
1

nc
·
nc∑
i=1

p1,c,i(k). (6.11)

The element contact area surrounding each contact node is given as A1,c,i and the
evaluation can be simplified for meshes with equidistant nodes (see second part of
the equation (6.11)). Accordingly to this procedure, high and low pressure values are
excluded from the analysis introducing a simplification. Due to the fact that these
pressures occur with less frequency (see figure 6.7 B)) and the mean pressure value is
used rather often in a multiscale procedure (cf. contact pressure histogram in Wagner
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et al. (2015)), the approach provides an acceptable approximation. Moreover, it has
to be remarked that for pressure values around the mean pressure p1,avg.(k) the gained
coefficient of friction behaves nearly constant in a certain range (comparable to the
peak plateau in figure 6.1) and therefore more calculations in order to gain the mean
pressure value could not enhance the result. Therefore, the number of surface samples
(k) for pressure evaluation can be reduced for the proposed multiscale setup compared
to the number of surface samples j for the evaluation of the coefficient of friction
(k < j).

In a next step, the dependency of the surface profiles is removed by averaging, see step
C) in figure 6.7,

p̄avg. =
1

nk

nk∑
k=1

pavg.(k). (6.12)

As a consequence, a defined pressure value is transferred as a constant pressure bound-
ary condition on the microscopic scale. Following this procedure, the computational
costs are reduced in comparison to the approach calculating the microscopic setup for
various pressure and velocity values (see section 6.2). In addition and based on the fact
that only the stationary response is considered in this work, a full slip condition for
the microscopic scale is assumed revealing the possibility to apply only the considered
macroscopic velocity v1 on the microscopic scale. Consequently, this procedure is an
adequate way to reduce the computational effort once again. Only the global velocities
of interest are calculated with the whole setup.

The calculated microscopic coefficients of friction are homogenized µavg.(j) in step E)
following the already explained homogenization technique. Comparable to the ap-
proach for the resulting pressures, the same averaging operation over all calculated
surface samples j is executed in step F)

µ̄avg. =
1

nj

nj∑
j=1

µavg.(j). (6.13)

Due to this step, the incorporation of the homogenized microscopic friction response
simplifies, in contrast to section 6.2, to a setting of the macroscopic coefficient of friction
to µ̄avg., see step G) in figure 6.7.

The proposed multiscale method is extended by the incorporation of more than two
length scales, cf. Wagner et al. (2017). It is necessary to expand the approach
for a treatment of rubber friction on rough road surfaces (centimeter to micrometer
length scale) since a division into only two scales would lead to immense calculation
times for each scale. Each scale would involve a lot of surface details and the necessary
finite element meshes to resolve the rough surface would introduce a lot of degrees of
freedom and a large active set of contact points. Hence, the approach is expanded
to more length scales with less details for each scale leading to acceptable calculation
times. Therefore, equation (6.10) is adopted to more than two scales by introducing
further splitting wavelengths λsplit,i between the upper and lower limit λmax, λmin,
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Figure 6.8: Exemplary expanded multiscale setup to three scales. Capital letters belong to the

automation process and are explained in subsection 6.3.3

Fmacro(λmax − λsplit,1), Fmeso(λsplit,1 − λsplit,2) ... Fmicro(λsplit,n−1 − λmin), (6.14)

introducing for example a mesoscopic length scale (meso) between λsplit,1 and λsplit,2.
Further scales are indicated by dots (...) and for n possible scales a total number of
n−1 splitting wavelengths would be introduced. Based on the description in subsection
6.3.1, the decomposing band-pass filters F are used between the defined wavelengths,
ensuring that no surface wavelengths are neglected and a continuous spectrum is cal-
culated.
An exemplary decomposition in three scales with an intermediate mesoscopic length
scale (meso) is shown in figure 6.8. All passed quantities between the scales represent
averaged values (subscripts are excluded in the figure) and the loops for averaging
pressures and coefficients of friction are indicated by arrows. The capital letters A-F are
introduced to describe the automated ABAQUS-script and all necessary subroutines in
the next subsection. In principle, the setup is extended by introducing further pressure
and friction homogenization steps starting with a frictionless branch that is used to
downscale the pressure. Afterwards, the gained coefficient of friction is upscaled from
the smallest length scale to the largest scale following the procedure described above.

6.3.3 Implementation and Automation

The introduced multiscale method offers large potential for automation, because a lot
of finite element calculations and repeating operations have to be started deriving the
simulation parameters from a global input. For this reason, an automated version of the
multiscale setup is developed in the software package ABAQUS using Python-scripts,
see SIMULIA (2014b) for an introduction. ABAQUS offers with the possibility to use
Python-scripts for preprocessing and postprocessing an advantageously environment
for the implementation of the extended multiscale method. All necessary modules for
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the modelling of hysteretic rubber friction that were implemented in FEAP (see last
section 6.2) are also available in ABAQUS.

The main differences between FEAP and ABAQUS elements are explained and hence-
forth ABAQUS is used for all calculations in this work. The elements are based ac-
cordingly to the FEAP elements on the described continuum and contact mechanical
background and the introduced finite element methodology of chapters 3, 4 and 5.
Nevertheless, some small differences exist. Therefore, a brief overview on the most im-
portant features and chosen settings for the elements and differences to FEAP elements
are provided.

In contrast to reduced three-dimensional elements in FEAP, two dimensional plane
strain elements are used within ABAQUS. The hyperelastic material response is mod-
elled by a Mooney-Rivlin material and a stress based finite linear viscoelastic ma-
terial model, see subsection 3.3.4. In order to avoid volume locking, quadrilateral four
node hybrid elements based on a Q1P0 formulation are used for the rubber material,
see subsection 3.3.3. The formulation is based on linear shape functions for the dis-
placement and constant shape function for the element pressure. Within ABAQUS,
two different contact formulations can be chosen: node to surface (NTS) or surface
to surface (STS) contact elements. As already mentioned in section 5.3, NTS contact
elements are less stable in the context of large sliding distances and large deformations
in the contact zone. Additionally, the contact patch test is not passed by NTS ele-
ments and the calculated contact pressure values may be less accurate, see SIMULIA
(2014a). As a consequence and to ensure stable simulations, the STS contact element
is chosen for the multiscale calculations. Nevertheless, aborting simulations with a
bad convergence rate are checked and are sometimes recalculated by applying the NTS
contact formulation or automatic stabilization. Furthermore, calculations with NTS-
elements are less time consuming since the integration procedure for the contact area
is less expensive. In order to reduce the calculation time, the rough counter surface is
modelled by linear one-dimensional rigid elements within ABAQUS.

Before an automated script is executed (master script in figure 6.9), all global pa-
rameters m are defined, for example the used surface(s), the rubber compound(s),
macroscopic pressure and velocity values. The number of scales n and the amount
of surface samples k/j for the downpassing and uppassing branch of the multiscale
framework are also defined in advance. Both quantities present important input pa-
rameters for the whole framework. Especially the number of surface samples used for
the homogenization procedure is an important free parameter and thus addressed in
subsection 6.4.2 in more detail. Further explanations regarding the choice of calculated
scales are provided in section 6.5 with the experimental validation of the method. Prior
to the automated script, also a scripted surface evaluation is performed that generates
data files (*.csv files) for all chosen scales and surface samples from a rough surface
measurement.

A short description of the automated multiscale framework and the executing master
script is provided henceforward. First of all, the global parameters m are set, see
script A) in figure 6.8 and figure 6.9. The work flow of the multiscale framework is
extendable to different materials or velocities for example, indicated by the loop over m
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Figure 6.9: Workflow of automated multiscale framework using Python scripts within ABAQUS.

in figure 6.9. Further on, these parameters are saved globally by using a pickle format,
see SIMULIA (2014b) for details, together with the geometrical information for the
surface scales, hyperelastic and viscoelastic material parameters and some options for
the simulation setups.

In a next step, this information is used and slave scripts for the macroscopic length
scale (B) and all smaller length scales (C) are started from the master script. Since the
boundary conditions (non-periodic or periodic) and the appearance of the leading edge
differ for the macroscopic and all other smaller scales (cf. figure 6.8), separate scripts
have to be used. Alongside with the saved global information, the generated surface
data files are called within the slave scripts for the automated construction of finite
element calculations with all necessary options and boundary conditions following the
already given descriptions of the setups. The ABAQUS calculations are furthermore
directly started from the slave scripts generating an output and statistic file (*.sta)
with information about the performed time steps of the simulation. After the started
simulation finished, the script D (check) inspects the number of performed time steps
to see if enough time steps for a homogenization are available or if the simulation failed.

The post processing scripts are separated for the pressure evaluation (E) and homog-
enization of the coefficient of friction (F), see figure 6.8 and figure 6.9. Based on
the information saved in the data-check pickle (failed or successful calculation) the
post-processing is started (saving the results in the results pickle) or skipped (possible
skipping is indicated by dotted lines in figure 6.9). This step is included to ensure
that the whole framework is able to continue, if single calculations fail. The master
script performs later on the averaging over surface samples, the processing to the next
scale and the transition from the frictionless to the frictional branch of the multiscale
framework, compare subsection 6.3.2. Finally, the global results are saved in *.csv-files.
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6.4 Single Scale Numerical Studies

In a first step, the ability of the introduced surface processing to capture surface
anisotropy is demonstrated on the basis of a single scale macroscopic calculation. Fur-
thermore, two important micromechanical aspects with impact on the homogenization
result are investigated in detail. First, a large number of microscopic rough surface
samples is calculated, providing conclusions for the choice of surface samples within the
multiscale framework. Second, a three-dimensional calculation on a rough surface is
compared to two-dimensional calculations on profiles from the same surface substrate.

6.4.1 Anisotropy on Macroscopic Rough Surfaces

An interesting property of the introduced direct modelling of rough surfaces is that
surface anisotropy can be modelled and predicted. The described analytical approaches
of subsection 2.3.2 would use the same PSD function for a mirrored surface profile and
predict hence the same coefficient of friction for both profiles. A modified analytical
approach that is able to capture the results of friction measurements for different sliding
directions is introduced in Carbone et al. (2009).
A simple macroscopic test case with two mirrored sawtooth profiles for the counter
surface and an introduced initial coefficient of friction µ = 0.2 is calculated, see figure
6.10. The first orientation is called smooth profile and the second orientation (lower
profile in figure 6.10 a)) is named sharp profile. The names of the profiles are directly
attributed to the expected and calculated hysteretic response. In figure 6.11 the result-
ing coefficient of friction over time for both profiles, and the time averaged response, as
well as the relative difference for the generated coefficient of friction are presented. As
already mentioned, this work does not differentiate between hysteretic and interlocking
phenomena and therefore the generated coefficient of friction evaluated by the reac-
tion forces contains both effects. The sharp sawtooth profile reveals an approximately
40% larger generated coefficient of friction revealing how large the influence of surface
anisotropy might be. Another interesting fact is that two geometrical effects can be dis-
tinguished by numerical simulations. First, a large interlocking peak in figure 6.10 a) is
caused by the impact of the leading edge of the rubber block on the rough surface. The
second effect that can be detected is a higher coefficient of friction over the remaining
time interval, excluding an interlocking peak for the smooth profile. Concluding, this

Figure 6.10: a) Smooth profile (top) and sharp profile (bottom), b) exemplary finite element setup for

smooth profile with parameters p =0.3 MPa, v =0.5m/s, height h = 8mm, length l =20mm, applied

µ=0.2 and material m2 (see appendix C for the used material parameter).
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Figure 6.11: a) Coefficient of friction over time, b) averaged coefficient of fricion, c) relative difference

of generated coefficient of friction.

means that also during sliding without leading edge impacts, a higher frictional force
is generated for the sharp profile. Surface anisotropy might therefore be an important
effect on all scales, see Stupkiewicz et al. (2014) for a microscopic numerical study,
and the proposed rough surface treatment incorporates this effect directly. In Tiwari
et al. (2016), also an anisotropy in the frictional response is observed introduced
by changing the sliding direction of a preconditioned rubber sample after each sliding
experiment. This effect arises from the conditioned profile of the macroscopic rubber
sample and is not modelled in this work, although it would be in principle possible to
capture this effect by introducing different sliding directions and the rubber profiles in
the simulation.

6.4.2 Microscopic Rough Surface Statistics

The smallest length scale of the later calculated multiscale setup is chosen for this study,
because large fluctuations in frequency and amplitude of the rough surface samples are
expected on this scale, cf. Wagner et al. (2017). A microscopic rough surface
measurement is filtered between the measurement resolution of λmin = 0.003mm and
the size of a microscopic rubber block with a length of l = 0.04mm. Thus, the up-
per cutoff of the band-pass filter is set to λl = 0.04mm. Afterwards, three hundred
different cutouts are chosen and periodicity is enforced by the procedure described in
subsection 6.3.1. Finite element setups are created with all surface samples choosing
the same settings for the microscopic rubber block, for example a viscoelastic material
and frictionless behaviour at the interface. An exemplary finite element setup and four
further surface samples are displayed in figure 6.12. The microscopic input parameters
are p = 3MPa, v = 0.01m/s.

As a result, the homogenized hysteretic coefficient of friction µ of 287 simulations is
obtained since 13 calculations failed due to large element distortions. Nevertheless, the
large amount of information is used to perform an analysis of two features: microscopic
statistics with the frequency of occurrence m(µ) and convergence properties of surface
sample average µkavg. are studied.

The distribution of the microscopic coefficients of friction plotted for an increasing
number of calculations n (cf. figure 6.13 a)) demonstrates that the overall result of the
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Figure 6.12: a) Exemplary finite element setup with p = 3MPa, v = 0.01m/s, h = l = 0.04mm, rubber

compound A (cf. subsection 7.4 for all material parameters), µ = 0. b) Four of three hundred surface

representations.

microscopic scale approaches an asymmetric distribution. Consequently, by the use of
a large amount of surface samples the complete statistical distribution is approximated.
Despite this interesting property, it is not recommended to use such a large number of
samples for each scale in a multiscale setup due to an immense resulting calculation
time.

The calculated 287 coefficients of friction provide the basis for an evaluation of the
averaged coefficient of friction. This quantity is analyzed, because the sample average
is of high importance for the multiscale method. The coefficient of friction obtained
from averaging over all results is used as the reference solution µref.avg. assuming that this
value represents the rough surface response properly. Furthermore, different evaluation
orders k with a random choice of the calculated surface samples are analyzed over an
increasing number of surface samples n for the calculation of the average. For example
for ten surface samples n = 10, the first or last ten results can be averaged providing
different results. Since it is not known a priori which surface samples have to be

Figure 6.13: a) Frequency of occurrence m(µ) of calculated µ with increasing set of calculations. b)

Averaged coefficient of friction over number of surface samples n for three random evaluation orders

k. Standard deviation S(n) is added for 1000 evaluation orders.
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chosen, this procedure is applied. With an increasing surface sample number n the
reference solution is approached in the limit case, since it is of less importance which
surface samples are chosen for the evaluation. In figure 6.13 b) three random evaluation
orders (k = 1, k = 2, k = 3), the reference value and a standard deviation value S(n)
are displayed. This standard deviation is gained by the evaluation of 1000 random
evaluation orders k, providing an idea how fast the surface sample average decreases
with arbitrary choice of microscopic surface samples n. In conclusion, the average
over ten surface samples already causes a significant decrease of the standard deviation
from S(1) = +/ − 0.047 down to S(10) = +/ − 0.015 and therefore the reliability
of the homogenized result. This result is of course linked to the considered surface
characteristics, input parameters and further details. Nevertheless, the number of ten
surface samples is used in later performed calculations with the multiscale method
since it allows for a good compromise between result quality and affordable calculation
time.

6.4.3 Comparison of 2D and 3D Micromechanical Solutions

A comparison of two-dimensional (2D) and three-dimensional (3D) setups is executed
in this subsection in order to quantify the difference with respect to the homogenized
coefficient of friction and the calculation times. Since different surface cutouts are used
on each scale within the multiscale setup, surface characteristics are already included.
Nevertheless, the contact of a real rubber block with a rough surface remains a 3D
problem and a reduction to a 2D setup introduces an error that is analyzed in this
subsection. This remaining error is induced by different contact conditions and surface
asperities that support certain rubber parts excluding meanwhile rough surface parts
from the contact patch. These effects and also complicated deformation states are
excluded from a 2D analysis causing a different frictional response.
The calculated 2D and 3D setups, their parameters and an exemplary solution are
displayed in figure 6.14. All seventeen 3D surface profile lines ly in 3D y-direction
(distance between the lines ∆y = 0.01875mm), that get into contact with the rubber
block, are calculated also with a 2D setup. The same boundary conditions are applied
accomplished by a non periodic setup in this case. The gained homogenized coefficients
of friction for all lines ly are displayed in figure 6.15 a).

Figure 6.14: a) 3D setup, b) exemplary 2D setup with displacement solution in z-direction. Used

parameters v = 1m/s, p1 = 0.3MPa, p2 = 2MPa, material m1 (see appendix C for all viscoelastic

material parameters), h = l = 0.3mm, µ = 0.
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Figure 6.15: Results for p2 = 2MPa. a) 2D coefficients of friction for lines ly, b) combined averages

µavg.(ny) of ny lines, c) relative error with respect to 3D solution for combined averages.

In a next step, random combinations of ny lines are averaged and this procedure is
repeated seven times for ny = 2, four times for ny = 4 and twice for ny = 8. For example
the first and sixth line (indicated by a black box in figure 6.15 a)) are averaged resulting
in the first combined value µavg.(ny) of figure 6.15 b). Afterwards, the relative error
e(ny) of these combined line averages with respect to the 3D solution is calculated and
displayed in figure 6.15 c). Depending on the choice of surface profiles for the combined
average, the error to the 3D solution may become quite large. Especially, if only two
lines are considered for the combined averaging procedure. Nevertheless, a decrease for
an increasing number of averaged lines is detected.

The results for both applied pressure values are summarized in figure 6.16. In figure
6.16 a) the resulting contact areas are displayed. Obviously, the higher pressure causes
a larger contact area and more profile lines get into contact with the rubber block.
The results of figure 6.15 c) are averaged once again (eavg.(ny)) in order to derive a
unique plot of the relative error for both pressure values, see figure 6.16 b). During the
increase of averaged lines, the relative error decreases for both pressures. Nevertheless,
the error becomes smaller for the larger pressure value p2 approaching five percent

Figure 6.16: a) Rubber contact area with displayed gap for p1 and p2. b) Averaged relative error for

different random choices of ny random 2D lines. c) Calculation time for 8 lines in a 2D setup and the

full 3D calculation.
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deviation in the limit of averaging over all possible 17 lines. This fact can directly be
linked to the larger contact area: for the small pressure p1 some profiles are not in
contact in the 3D setting, but come into contact for the 2D setting. In consequence,
this leads to the incorporation of false values into the calculated average value for the
2D setup. Since the pressure value p2 is in the range of used microscopic pressures
within the multiscale method, the impact on the result is expected to be rather small,
if enough surface lines are incorporated (this property was already investigated in the
last subsection 6.4.2).

This conclusion is in accordance with the result of the micromechanical statistics of the
last subsection. Moreover, the enforcement of periodic boundary conditions become
very complicated for 3D setups, since the introduced manipulation with splines at the
end of surface cutouts has to be performed in two dimensions (cf. 6.3.1). Additionally,
the comparison of calculation times in figure 6.16 c) reveals the large effort that is
enforced with 3D setups, making it rather difficult to use 3D setups in the proposed
multiscale method. Therefore, all following studies are performed with two-dimensional
setups.

6.5 Experimental Validation

In this section, the multiscale method for hysteretic friction of section 6.3 is validated
with experiments on wet surfaces. Wet surface experiments are chosen because a
partly suppressed adhesive contribution is assumed, see also chapter 7 for a detailed
discussion. The focus of the section is to study the ability of the method to predict
the influence of a global parameter change (velocity and pressure) on performances of
different rubber compounds, cf. subsection 6.5.1. The differentiation between rough
surfaces is investigated in subsection 6.5.2. Furthermore, the surface polishing effect
(changing rough surface properties) is modelled with the introduced methodology, see
subsection 6.5.3. Finally, exemplary interesting quantities gained by the multiscale
method are displayed in subsection 6.5.4.

6.5.1 Material Comparison

The multiscale method needs two main experimental inputs for an appropriate mod-
elling of hysteretic effects: a measurement of the rough surface used for the friction
experiments and a measurement of the viscoelastic material properties of the consid-
ered rubber compounds. The rough surface is measured with two optical profilometers
by the use of 3D scanning in this work. The first device measures the macroscopic
details of the surface with a nominal lateral resolution of 0.019mm, see upper surface
measurement in figure 6.17 a). Besides, the second device measures the microscopic
details with a nominal lateral resolution of 0.003mm, see lower surface measurement
in figure 6.17 a). Both measurements make it possible to include details of the rough
surface in the multiscale analysis, i.e. from macroscopic asperities down to microscopic
roughness.
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The contact of the rubber block with the rough surface is assumed on the top asperities
of the rough surface and therefore the upper parts of the rough surface measurement
are evaluated for the choice of surface samples included later in the multiscale setup.
Furthermore, two geometrical dimensions for the surface evaluation and the construc-
tion of the multiscale setup for the validation are determined by the executed friction
experiments: based on the macroscopic dimensions of the rubber block (20mm x 8mm,
see top of figure 6.17 c)) and the lowest captured surface detail with a resolution of
0.003mm, four scales are chosen for the construction of the multiscale setup.

Using four scales for the multiscale setup leads to the possibility to divide each surface
measurement into two scales. Each measurement (coarse and fine resolution) is decom-
posed into two scales to keep the single calculation time of the finite element simulations
in an acceptable range. Furthermore, using one scale for the macroscopic rough sur-
face measurement and including all surface asperities, would result in approximately
1000 necessary contact elements on the rough surface, because the lowest wavelength
of 0.2mm has to be resolved with at least a few elements. In addition, the rubber block
represents the slave body in the contact algorithm. For this surface it is recommended
to use at least twice more elements, leading to a lot of finite elements for the whole
problem. Even in a two-dimensional setup, such a finite element calculation leads to
enormous simulation times since a lot of sliding steps with an embedded contact search
are performed during a single finite element analysis, see also subsection 6.2.2. A com-
parison of calculation times between a few fast solvable two-dimensional setups and a
three-dimensional setup with a very high calculation time is given in subsection 6.4.3.
Since a few surface samples have to be included in the multiscale analysis, a very large
calculation time for single calculations increases the effort drastically. Therefore, four
scales deliver a compromise between the increasing effort for the multiscale setup with

Figure 6.17: Surface 1: a) Macroscopic and microscopic surface measurements. b) Ten extracted

surface samples on each scale for the construction of four scales. c) Four-scale setup with rubber block

dimensions.
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Table 6.1: Physical properties of rubber compounds c1-c6: filler amount f in parts per hundred

rubber, shore hardness A h, glass transition temperature Tg, Mooney-Rivlin parameters C10, C01, D1.

Comp. f (Phr) h (ShA) Tg (◦C) C10 (MPa) C01 (MPa) D1 (MPa)
c1 f0 + 35 h0 + 10 Tg0 0.136 0.518 0.031
c2 f0 h0 + 10 Tg0 0.246 0.489 0.027
c3 f0 + 35 h0 Tg0 0.174 0.309 0.042
c4 f0 + 35 h0 + 10 Tg0 - 20 0.150 0.623 0.026
c5 f0 h0 + 10 Tg0 - 20 0.327 0.613 0.021
c6 f0 h0 Tg0 0.219 0.318 0.038

an increasing number of scales and the decreasing calculation time of each single finite
element setup, cf. calculation times for undivided scales and multiscale approach in
subsection 6.2.3.

The second set parameter of the multiscale setup, the use of ten surface samples on
each scale, is motivated by the study in subsection 6.4.2. This study provides a quanti-
tative proof that the variance of the homogenized coefficient of friction is reduced if ten
samples are used for averaging. The resulting and chosen surface samples for the two
measurements are displayed in figure 6.17 b). Following subsection 6.3.1, band-pass
filters are used to extract the wavelength ranges for all scales: for the macroscopic scale
the range is 20mm-3mm, followed by 3mm-0.3mm for the mesoscopic scale. Further-
more, the two microscopic scales are defined as follows: The range of micro 1 scale is
given by 0.3mm-0.04mm and micro 2 by 0.04mm-0.003mm. The chosen edge wave-
lengths and the scale names for the multiscale setup are displayed in figure 6.17 c). In
general, a ratio around r = 10 : 1 between the block lengths of two following scales
is chosen to provide the possibility to include microscopic details with an acceptable
calculation time, cf. subsection 6.2.3.

Defined physical properties of different rubber compounds are investigated in this sub-
section: filler amount (f), hardness (h) and glass transition temperature (Tg) of six
rubber compounds are varied around initial values f0, h0, Tg0. The values for all char-
acteristics of the six rubber compounds are listed in table 6.1, see also Ignatyev
et al. (2015). Furthermore, Mooney-Rivlin parameters and Prony parameters
are necessary for the calculation using a viscoelastic material model in ABAQUS, see
subsection 3.3.4. A preconditioned rubber sample is loaded with compression and ten-
sion providing the hysteretic response to which the Mooney-Rivlin parameters are
fitted for each rubber compound, the resulting values are listed in table 6.1. Moreover,
the viscoelastic material parameters are determined by a dynamic mechanical analy-
sis (DMA), see subsection 3.3.1 for details. A prestrained rubber sample is exposed
to a harmonically oscillating load with a small strain amplitude used to generate the
frequency-dependent storage- and loss-modulus, i.e. E ′(ω) and E ′′(ω). Following the
description in subsection 3.3.1, the measured data in the temperature range of −40◦C
up to +70◦C and the frequency range of 0.01Hz up to 50Hz are mastered for a large
frequency range by the use of the time-temperature superposition principle, eliminating
the temperature dependency (master temperature of T = 20◦C). Afterwards, a fitting
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Figure 6.18: Storage- (upper part of figure) and loss-moduli (lower part of figure) for six different

rubber compounds c1-c6.

is applied to adapt the moduli Ei and relaxation times τi of the Maxwell elements
in order to reproduce the measured curves of E ′(ω) and E ′′(ω), displayed in figure 6.18
for all compounds.

A picture of the used experimental setup for the friction experiment is displayed in
figure 2.2 a) accompanied by a description of the test rig in subsection 2.1.2. The
macroscopic size of the rubber sample (20mm x 8mm) is already shown in figure 6.17,
including a rounded front generated by a run-in procedure, see also subsection 2.1.2. All
experiments are performed for a global temperature of T0 = 20◦C, velocities between
v = 0.1m/s−3m/s and pressures between p = 2MPa−8MPa on a surface covered with
water. Therefore, it is assumed that the adhesive contribution is partly suppressed
and the frictional response is dominated by the hysteretic response, see also section
7.2. Furthermore, all experimental values of the coefficient of friction are gained by
time averaging over the part of stationary sliding, see also figure 2.2 b). The simulated
values are gained by the hysteretic multiscale setup of section 6.3 with the introduced
four scales for the six materials.

First of all, a closer look on the velocity- and pressure-dependency of one exemplary
rubber compound (c2) is provided in figure 6.19. In figure 6.19 a) an increasing trend
over global velocity of the simulated coefficient of friction is revealed, whereas the
experimental values decrease for increasing velocity. This incorrect reproduction of
the global trend is attributed to the physical effects that are not considered in the
multiscale simulation, mainly adhesive interactions and temperature effects. An ad-
hesive contribution µA(v) could increase the global coefficient of friction especially for
low velocities, cf. Lorenz et al. (2015). Additionally, for wet surfaces also a flash
temperature effect (lower than for dry surfaces due to cooling) is expected. This tem-
perature effect generates a lower frictional response, especially for large velocities. The
direction of both effects (adhesion and temperature) are indicated in figure 6.19. Due
to water filling the cavities of the rough surface and also in the large velocity range a
viscous contribution of shearing a thin water film could influence the response.
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Figure 6.19: Experimental and simulated coefficient of friction for rubber compound c2. a) Macro-

scopic pressure p = 0.3MPa, b) velocity v = 1m/s.

For the pressure dependency, an increasing value is at least reproduced for the low
pressure values, whereas the prediction does not reproduce the large pressure range
correctly, see figure 6.19 b). This observation can again be attributed to the not con-
sidered adhesive contributions that would increase proportionally to the contact area
the coefficient of friction, see chapter 7. Nevertheless, the gained simulated hysteretic
results are used to compare different responses for materials with the above defined
characteristics.

The first studied physical parameter is the glass transition temperature Tg of the rubber
compounds that indicates at which temperature the material begins to behave softly
and flexibly in contrast to a brittle and hard (therefore called glassy) behaviour beneath
this temperature. A lower glass transition temperature is used for rubber compounds
of winter tires since the material stays flexible in a larger range of cold temperatures.
At room temperature (used in the friction experiments) a summer tire reveals a better
frictional performance since the dissipation behaviour is optimal in a higher temper-
ature range (higher Tg). The introduced rubber materials make it possible to study

Figure 6.20: Comparison of compound pairs over velocity with different glass transition temperature

(Tg) for a) low filler level and b) high filler level. Global pressure p = 0.3MPa.
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Figure 6.21: Comparison of compound pairs over velocity with different hardness (h) and same high

Tg0 for a) low filler level and b) high filler level. Global pressure p = 0.3MPa.

this effect for two material combinations, one at a low (c5-c2) and the other at a high
filler level (c4-c1), both with the same hardness h0 + ∆h, cf. table 6.1. In figure 6.20,
the experimental and simulated coefficients of friction over velocity are compared for
the two compound combinations, revealing that the difference between the materials is
predicted correctly. The expected higher coefficient of friction for high Tg compounds
is achieved for both filler levels, indicated by arrows in figure 6.20.

The next physical property that is studied is the material hardness h. A shift of the
frictional response to a lower level for an increasing hardness is expected, because a
softer compound undergoes larger deformations and therefore more hysteresis is gen-
erated in a certain range. This effect is reproduced for the low filler level (c6-c2) over
the whole velocity range and for the high filler level (c3-c1) at least for velocities above
v = 0.5m/s, see figure 6.21.

The last material property of the six compound setup is the variation of filler level that
can be studied for three compound combinations, expecting a higher frictional response
for the high filler level. The ranking for a filler variation at a high hardness and high

Figure 6.22: Comparison of compound pairs over velocity with different filler level (f) for a) high h,

high Tg, b) low h, high Tg and c) high h, low Tg. Global pressure p = 0.3MPa.
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Tg (c2-c1) level is captured properly with the method, see figure 6.22 a). Nevertheless,
the prediction of the ranking for changing filler levels in the other two cases is not
predicted, cf. figure 6.22 b)-c). This gap is attributed to the used viscoelastic material
model which is based on a finite linear viscoelastic theory and therefore unable to
capture for example the Payne-Effect. Especially, this effect may be very important
for material responses with different filler levels.

6.5.2 Surface Comparison

In this subsection, the response of two different rough surfaces is analyzed with the
hysteretic multiscale method of section 6.3. Therefore, a second rough surface (surf.
2) is introduced and decomposed in the same manner like the rough surface (surf. 1)
in the previous subsection 6.5.1. As a consequence, the same band-pass filter edge
wavelengths are used to construct four scales with ten surface samples on each scale,
see figure 6.23. The texture of the displayed surface is rougher than the one of the
previous surface, compare also figure 6.17. This observation is also outlined in figure
6.24 which displays two exemplary surface samples for each of the two lowest scales
of both surfaces. Although surface 2 consists of some surface samples with higher
amplitudes than surface 1, similar surface samples can also be found in the whole
setup for both surfaces. Hence, it is very important to include more than one surface
sample for each scale in order to capture surface characteristics in a correct manner.

The same experimental setup as described in the previous subsection is used for a
friction experiment on both surfaces. Rubber compound c3 (see previous subsection
for the material parameters) is used for the study on a surface covered with water and
the global velocity v = 0.5m/s, pressure p = 0.3MPa and temperature T0 = 20◦C.

Figure 6.23: Surface 2: a) Macroscopic and microscopic surface measurements. b) Ten extracted

surface samples on each scale for the construction of four scales. c) Four-scale setup with rubber block

dimensions.
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Figure 6.24: Exemplary surface samples of surface 1 (dark profiles) and surface 2 (bright profiles) for

a) micro 1 scale and b) micro 2 scale.

The experimental and simulated results are displayed in figure 6.25, the absolute values
in a) and the relative values using the result of the second surface as a reference in
b). First of all, the simulated absolute values are lower than the experimental values,
because again adhesive effects are neglected in a pure hysteresis study. Second, the
correct prediction of the surface ranking is achieved with the simulation. Thus, the
proposed multiscale method is able to capture different surface textures that may for
example become more difficult with the approaches proposed in Wriggers (2008),
Wagner et al. (2015) or Falk et al. (2016).

6.5.3 Surface Polishing Effects

The rough surface is modelled as a rigid body in all previous simulations, because it
does not change its shape strongly during a few friction experiments. However, a lot
of experimental studies observe the effect of flattening rough road surface asperities
during a large number of sliding or polishing cycles (called runs n in this work). This
effect is often called surface polishing effect, see Knill (1960) for an early description,
Do et al. (2009), Wang et al. (2013), Wang et al. (2015), Chen et al. (2016)
for more recent studies providing experimental results. In Wang et al. (2015), a

Figure 6.25: a) Absolute values of the experimental (wet) and simulated coefficient of friction for

v = 0.5m/s, p = 0.3MPa, T0 = 20◦C, material c3. b) Relative values of experimental and simulated

coefficient of friction, reference surf. 2.
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Figure 6.26: a) Schematic overview of surface polishing effects on two length scales. b) Exemplary

microscopic surface measurements between n wet experimental runs.

schematic overview of the effect is given and also the effect of an increasing coefficient
of friction for the first polishing cycles is described, attributing it to the removal of
binder material on top of the surface revealing the rough surface aggregates. After a
peak value is reached, a decreasing coefficient of friction due to polishing of the surface
asperities is observed, converging to a final value, often called µend. The effect of
removed binder material is not studied in this subsection concentrating on the polishing
behaviour of wet road surfaces.

In order to study geometrical surface polishing effects, often a detailed analysis of single
road surface stones is performed revealing that the surface polishing can be observed
at different length scales, see results in Chen et al. (2016). On the one hand, the
single stone asperities are polished on a macroscopic level. On the other hand, the
microscopic roughness is decreased during n runs of a sliding rubber block, see figure
6.26 a) for a schematic overview. In this subsection, only the evolution of microscopic
surface texture is studied, exemplary surface measurements are displayed in figure
6.26 b). The experimental results are provided in normalized form by the industrial
partner, but nevertheless the data is sufficient to study the observed trends of surface
polishing (rubber compound m2 is used for the study, see appendix C for the material
parameters).

In this study, a hysteretic two-scale setup is constructed out of microscopic surface
measurements that are performed and repeated after a certain number of runs n. The
principle procedure is displayed in figure 6.27. The microscopic pressure values and
dimensions of the two microscopic scales are according to the previous multiscale sim-
ulations, see subsection 6.5.1 and 6.5.2. Similar to the multiscale setup, a frictionless

Figure 6.27: Construction of the two-scale setup for every measurement point after n runs. Parameters

v = 0.5m/s, p1 = 2.5MPa, h1 = l1 = 0.3mm, p2 = 4.5MPa, h2 = l2 = 0.04mm, rubber compound m2.
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Figure 6.28: a) Normalized experimental results for wet and dry experiments after n runs. b) Nor-

malized simulated coefficient of friction (averaged). c) Normalized simulated contact area (averaged).

behaviour is assumed on the lowest scale (micro 2) and the resulting hysteretic coeffi-
cient of friction is passed to the next scale (micro 1). In order to capture the surface
characteristics in an appropriate way, 100 surface samples are introduced for each scale
and all resulting time averaged coefficients of friction are averaged afterwards over the
number of surface samples. Consequently, 200 single calculations are performed for
each run n leading to the final result in form of the coefficient of friction µ1,avg.(n).

In figure 6.28 a) the normalized results of the coefficient of friction over the normalized
number of friction experiment runs n are displayed. Whereas a decreasing coefficient
of friction is observed for wet conditions, a few dry experiments are performed in
between, revealing an increasing trend over the number of runs n. On a wet surface,
the dominant physical effect is assumed to be hysteresis. And thus, due to the surface
polishing effect, less microscopic deformation is induced through the rough surface
leading to the observed decreasing trend of µ(n). Meanwhile, the microscopic contact
area is assumed to increase and therefore the expected larger effect of adhesion for
dry surfaces is assumed to increase. This is the explanation for a slight increase of
the measured coefficient of friction under dry conditions. Trend lines for wet and dry
measurements are added to figure 6.28 a).

Figure 6.28 b) displays the normalized numerical results for the pure hysteretic co-
efficient of friction gained with the described two-scale setup. First of all, through
the direct incorporation of the rough surface, the decreasing trend of the coefficient
of friction for the wet measurement is reproduced. Furthermore, an evaluation of the
normalized relative contact area over runs n confirms the assumption of an increasing
microscopic contact area, cf. 6.28 c). This surface property is linked to the slightly
increasing dry coefficient of friction, since adhesive effects would increase with a larger
contact area, see also chapter 7.

Another effect is observed in the experiment and highlighted with a black circle at the
end of the wet measurements in figure 6.28 a). After a dry measurement point, a run-in
effect is observed for the wet condition, starting with a coefficient of friction above the
general trend for the wet measurement. The effect is just displayed for the last dry
measurement point, cf. figure 6.28 a). During the following wet measurements, again a
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decreasing coefficient of friction is observed reaching the trend line after a while. This
effect is attributed to wear effects, that are more present for dry surfaces, inducing a
roughening of the rubber surface and maybe also the road surface. In summation, this
effects may lead to a temporary increased hysteretic response. Furthermore, remaining
wear products at the rough road surface may also increase the wet frictional response
for a while. The temporary increase of the wet coefficient of friction after the dry
measurement is demonstrated with one additional simulation near the dry measure-
ment point, cf. black circle in figure 6.28 b). This result indicates that the surface
roughness (tracked with a surface measurement) is increased for that point, confirming
the formulated assumptions of introduced roughening.

6.5.4 Quantities from Multiscale Calculations

In subsections 6.5.1 and 6.5.2, the global coefficient of friction was presented as the
output of the multiscale method and validated with experimental results in order to
investigate the prediction quality of global trends. Nevertheless, also different quanti-
ties like the contact area (see subsection 6.5.3) can be evaluated with the multiscale
method and provide further results that are not accessible with experimental meth-
ods. Furthermore, a detailed analysis of the distribution of certain quantities over the
introduced length scales can be performed with the multiscale method.

For the setup of subsection 6.5.1 and the global parameters p = 0.3MPa, v = 1m/s
and material c3, the evaluated quantities for the pressure, the coefficient of friction,
and the contact area are displayed for each scale in figure 6.29 a). The quantities

Figure 6.29: Global parameters: p = 0.3MPa, v = 1m/s, material c3. Scale ns: 1 = macro, 2 = meso,

3 = micro1, 4 = micro2. a) Overall pressure p, overall coefficient of friction µ and overall relative

contact area Ar over number of scales ns.. b) p, µ,Ar over calculated surface samples k for certain

exemplary scales ns. c) Local relative dissipated energy at mesoscopic scale.
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are displayed as the overall result including the previous responses of the other scales,
e.g. the combined coefficient of friction is displayed for each scale. The analysis of
the down-scaled pressure, the up-scaled coefficient of friction and the contact area can
reveal interesting information how the quantities are distributed over length scales, for
example how much friction is generated on certain scales.
In addition, closer looks on all quantities can be performed by displaying the quantities
over surface samples k before averaging is applied, see figure 6.29 b) for examples. Con-
sequently, also the statistical distribution of the quantities can be evaluated, revealing
maybe interesting differences between used rubber compounds or surfaces that can be
used to improve future tires, cf. formulated goals in section 1.1. Beyond quantities over
scales and surface samples, various local quantities like stresses, strains or dissipated
energy can be evaluated locally for each finite element calculation, see figure 6.29 c).
As an example, the dissipated energy over height could provide additional valuable
information how a certain material reacts on a defined surface.
Summarizing, a lot of quantities that are not reachable in experiments can be evaluated
with the proposed multiscale setup revealing the chance to tune material properties to
improve tire relevant properties of the rubber compounds.



Chapter 7

Multiscale Approach including
Adhesive Friction

The chapter provides a short overview of existing numerical approaches for adhesion
of rubber on various surfaces. Further, the assumed prevailing physical mechanism
is described in the second section providing the basis for a multiscale finite element
framework including adhesive effects. The multiscale framework is explained in section
7.3 following Wagner et al. (2017). Afterwards, the multiscale approach is validated
with experimental results provided by the German Institute of Rubber Technology
(DIK), cf. subsection 2.1.2. Based on the achieved results, a modification of the
assumptions and a consequently slightly different multiscale procedure is introduced in
section 7.5. This approach is again validated with the same experimental results.

7.1 Preliminary Numerical Approaches for Adhe-

sion

A brief overview of adhesion models incorporated in finite element frameworks is pro-
vided in this section. The overview is limited to adhesion models that are already
coupled to multiscale analyses of rubber friction on rough surfaces and the methods
these approaches are based on. Beyond these particular models, a lot of numerical ap-
proaches for adhesive contact are developed, see Sauer (2015) and the therein provided
references for an overview.

The most common approach to include adhesion in a numerical contact analysis is the
use of a traction-separation model, also often referred to as cohesive zone modelling, cf.
Xu & Needleman (1994); Rahulkumar et al. (2000). In addition to the standard
contact algorithms of chapter 4, the normal and tangential mechanical interaction is
enhanced with a gap-dependent adhesive force with inverse algebraic signs allowing
also positive contact stresses. Furthermore, this force increases with an increasing gap
until a certain adhesive limit is reached, followed by a decreasing branch of the traction-
separation curve. In Raous et al. (1999) a thermodynamically consistent pseudo-
potential is introduced for the interface leading to a modification of the Karush-
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Kuhn-Tucker conditions (see section 4.2) with an adhesive force. The theory is
accomplished by an adhesion intensity factor β being one for full adhesion and zero if
full separation of the bodies is reached. In order to complete the set of equations, an
evolution equation for β is introduced. Finally, a constitutive law has to be chosen for
the method, leading to the problem of parameter identification.
The model of Raous et al. (1999) is used and applied to multiscale frameworks for
rubber friction in Wriggers & Reinelt (2009) and Falk et al. (2016) introduc-
ing in both studies six parameters for the adhesive law. The adhesive interaction is
added on the smallest length scale enhancing the coefficient of friction on this scale.
Despite the motivation of some parameters by physical considerations in Wriggers &
Reinelt (2009), the choice of the adhesive parameters remains a very challenging task,
because the range of adhesive interaction forces is a few nanometers. Furthermore, no
link to repeatable and defined laboratory tests is provided, leading to a more or less
large range of possible parameters. In Reinelt (2008), the difficulties of parameter
choice and the large impact on the final coefficient of friction are discussed.
Further studies that provide interesting approaches for finite element adhesion models
are developed e.g. in Dobberstein (2014), Sauer & Li (2007) or Sauer & Wrig-
gers (2009). In Dobberstein (2014), a complex traction-separation law based on the
theory of Talon & Curnier (2003) with tangential contact is incorporated in a three-
dimensional mortar contact element to simulate a demolding process of rubber on a
macroscopic length scale. In Sauer & Li (2007) and Sauer & Wriggers (2009), an
interatomic interaction potential is coupled to finite elements on a continuum level, pro-
viding the chance to describe van-der-Waals interactions. These formulations provide
a more direct access to the adhesive interaction than traction-separation approaches.
Nevertheless, the determination of appropriate model parameters for a rubber material
on a rough surface with an additional complex tangential interaction remains an open
question.
Because of the unknown and hard to measure adhesive parameters for all introduced
numerical adhesion models, a direct modelling of adhesion is omitted in this work.
Instead, a phenomenological model based on physical assumptions, experimental ob-
servations and analytical theories is introduced in the following sections, cf. Wagner
et al. (2017). The assumptions link the nanoscopic mechanism to a macroscopic ad-
hesion law providing the possibility to fit it to macroscopic friction experiments and
validate the theory in this chapter.

7.2 Adhesion Model and Assumptions

In subsection 2.2.1, a brief overview of possible origins for adhesion of sliding rubber on
a rough surface is listed. Following the analytical studies adding adhesive interactions
to sliding rubber on a rough surface, adhesion is considered to be generated by the
interaction of rubber molecules with atoms of the rough counter surface, see Persson
& Volokitin (2006) or Lorenz et al. (2015). The rubber molecules are assumed
to be elastic chains undergoing bonding-stretching-debonding cycles at a nanometer
length scale, see figure 7.1 a)-b). Whenever a chain sticks to the rough surface a
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Figure 7.1: a) Rubber friction with adhesive contribution at the interface. b) Chain dynamics at the

interface on a nanometer length scale. c) Qualitative shape of adhesive shear stress.

velocity-dependent adhesive force fA(v) for this single chain is built up

fA(v) = c · dx(v), (7.1)

with the spring stiffness c and elongation dx(v) of the chain. For an increasing macro-
scopic velocity v the single chains are stretched more at the interface, indicated in figure
7.1 b). Simultaneously, the number of bonded chains Nb(v) decreases for an increasing
velocity as a result of less time for bonding and less resistance to a debonding cycle.
Multiplying both quantities, the number of bonded chains and the single chain force
fA(v), the local mechanism of adhesion can be transferred to the macroscopic shear
force FA(v)

FA(v) = Nb(v) · fA(v), τA(v) =
FA(v)

Ac(v)
. (7.2)

By dividing the total adhesive shear force by the current contact area, also depending on
the macroscopic velocity, a global adhesive shear stress is derived, cf. Lorenz et al.
(2015). As a consequence of the combination of the single shear force and the number
of bonded chains, the global shear stress has a bell-shaped appearance over velocity,
see figure 7.1 c). A mathematical description of the bell-shaped curve is provided

Figure 7.2: a) Qualitative result of friction experiments over a large range of global velocities for

different surface conditions. b) Rough surface with soap-water mixture, no adhesion (adh.) assumed.

c) Rough surface with water, partial adhesion. d) Dry surface with full adhesive contribution.
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among others in Le Gal et al. (2005), Le Gal & Klüppel (2008) and Lorenz
et al. (2015). To summarize, the global adhesive shear stress is motivated by physical
assumptions on the nanoscopic length scale for the adhesion mechanism of sliding
rubber samples. The concrete parameters to describe the shear stress quantitatively
can be obtained by fitting to experimental results. Details are provided in the next
section.
In addition to the derived chain dynamics, further common assumptions for rubber fric-
tion and the global coefficient of friction µ(v) are introduced in this section. Following
section 2.2 and the observations of friction studies with rubber samples on rough road
surfaces, the decomposition of the global coefficient of friction and a link to adhesive
and hysteretic interactions for different surface conditions is provided. Three different
surface states are considered in this work: a surface covered with a soap-water mixture
(figure 7.2 b)), a surface covered with water (figure 7.2 c)), and a completely dry surface
(figure 7.2 d)). First of all, for moderate global pressure values the same amount of
hysteresis µH(v) is assumed for different surface conditions on the same rough surface,
see red shaded areas in figure 7.2 b)-d). In general, the rubber sample is able to follow
the top surface asperities under all surface conditions, since the surface is covered with
thin liquid layers on the top asperities.
Additionally, certain amounts of the liquid can be wiped away from the surface asper-
ities, leading to dry contact regions. Under large macroscopic pressures some surface
asperities may be suppressed by water, because the rubber block is not able to remove
the incompressible water from the surface valleys, leading in consequence to a different
hysteretic contribution in comparison to a dry surface. This case is not considered in
this work and thus hysteresis provides the basic contribution with the same magnitude
for all surface conditions.
The differences of the global coefficient of friction for different surface states (see figure
7.2 a)) are attributed to a changing adhesive contribution, cf. Wagner et al. (2017),

µ(v) = µH(v) + αµA(v), α ∈ [0, 1] . (7.3)

In order to represent different amounts of the adhesive contribution, a coefficient α
indicating the share of adhesion is introduced, being zero for no adhesion and taking the
value of one for the largest adhesive contribution. Accordingly to experimental studies
(cf. Le Gal et al. (2005)), the lowest global coefficient of friction is measured for a
rough surface covered with a soap-water mixture, see figure 7.2 a). This observation
is linked to the physical properties of the used liquid. Since a soap-water mixture
provides a very low surface tension, it is assumed that the whole surface is covered
with the liquid. Hence, a separation medium may be provided on the whole surface,
figure 7.2 b). This separation medium prevents the rubber chains from bonding to
the surface, avoiding a significant contribution of adhesion for this surface condition.
Therefore, regarding this assumptions the coefficient α equals zero for a rough surface
covered with a soap-water mixture.
For dry surfaces, no suppression of the bonding-stretching-debonding cycles of the
rubber molecules is present and hence the coefficient α is set to one. This choice is
based on the largest measured coefficient of friction for dry conditions, cf. figure 7.2
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a). The measured coefficient of friction for a surface covered with water is higher than
for a soap-water covered surface, but lower than on a dry surface. In particular, it is
assumed that water is wiped away from the surface asperities revealing dry parts of the
rough surface where bonding cycles of rubber molecules occur. Thus, the coefficient α
takes a value between zero and one for a rough surface covered with water, leading to
a combination of a hysteretic and an adhesive contribution.

It has to be remarked, that wiping of the interface liquid may also occur for a soap-
water mixture. However, the amount of liquid wiped away may be less than for a water
covered surface. This circumstance is addressed in section 7.5 in more detail.

7.3 Multiscale Framework including Adhesion

Based on the assumptions of the last section and the introduced adhesion mechanism,
the multiscale framework for hysteretic friction (cf. chapter 6) is enhanced with an
adhesion part. The adhesive interaction is incorporated through a phenomenological
model at the macroscopic length scale and fitted to experimental data, cf. Wagner
et al. (2017). Following the last section, a bell shaped adhesive shear stress with free
fitting parameters is introduced and coupled to the current contact area calculated by
the numerical multiscale setup of the hysteretic part, see figure 7.3.

The framework starts as described in section 6.3 with the pressure down-passing branch
on frictionless finite element setups, see step A) in figure 7.3. Three scales (n = 3) are
exemplarily displayed, although in general the method is extendable to more scales. Ad-
ditionally to the homogenization of the coefficient of friction in the up-passing branch,
the current contact area of each surface sample j is evaluated. Correspondingly to the

Figure 7.3: Multiscale framework coupling hysteretic and adhesive contributions. A) Down-scaling of

pressure. B) Calculation of the contact area. C) Calculation of µdiff (v). D) Adoption of adhesive

parameters. E) Combination of hysteretic and adhesive coefficients of friction.
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procedure for the time homogenization and surface sample averaging of the coefficient
of friction (see section 6.1 and section 6.3), the same operations are performed for the
current contact area of each scale

An,c,avg. =
1

t1 − t0

t1∫
t0

An,c(t) dt, Ān,c =
1

nj

nj∑
j=1

An,c,avg.(j). (7.4)

These values, named for simplification An,c from now on, depend on the global ap-
plied velocity. Moreover, the contact area also depends on the global pressure. This
dependency is not indicated in the equations and in figure 7.3, since a validation for
a large velocity range without varying the global pressure is performed in section 7.4.
The whole framework is interrupted before the calculation of the frictional macroscopic
scale, providing the possibility to impose an adhesive contribution, see figure 7.3. The
global relative contact area is calculated by all evaluated current contact areas and the
nominal contact areas (step B))

Ar(v) =
A1,c(v)

A1,0

·

(
ns∏
n=2

An,c(v)

An,0

)
. (7.5)

Since the current contact area of the macroscopic frictional calculation is not available
at this moment, the evaluated current contact area of the frictionless calculation is
used in equation (7.5). The error introduced by this evaluation is only marginal.

Correspondingly to the introduced assumptions, experimental results enter the whole
framework in step C), see figure 7.3. The difference µdiff (v) between friction exper-
iments on a dry surface and on a rough surface covered with a soap-water mixture
is calculated. The whole difference is assumed to be generated by adhesive interac-
tions. Therefore, µdiff (v) is approximated by the bell shaped shear stress introduced
in section 7.2.

A law for the bell shaped shear stress τA(v) is chosen from the analytical literature,
following the proposal of Lorenz et al. (2015)

τA(v) = τ0 exp

(
−c
[
log

(
v

v0

)]2
)
, (7.6)

with the parameter τ0 defining the curve amplitude, parameter c describing the width,
and parameter v0 determining the position of the peak value. This parameter set
provides the possibility to fit macroscopic responses for different materials or rough
surfaces. In order to fit the difference of the coefficient of friction provided by the
experimental results, the shear stress is transferred to an adhesive coefficient of friction
µA(v) with the use of the global pressure and the relative contact area (cf. Le Gal
et al. (2005), Le Gal & Klüppel (2008) and Lorenz et al. (2015))

µA(v) =
τA(v)

p1

· Ar(v). (7.7)
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Modifying the parameters τ0, c, v0, the experimental response is approximated, see step
D) in figure 7.3. The adhesive response is expected to depend on the relative contact
area, because with a larger contact area the number of adhesive bonds increases, cf.
Le Gal & Klüppel (2008). Thus, the relative contact area enters the formulation in
step D). It has to be remarked that the numerically calculated contact area including
geometrical and material non-linearity may differ from the area calculated by analytical
approaches.
The last step of the framework determines the macroscopic coefficient of friction by
the addition of the hysteretic response µ2(v) of all scales underneath the macroscopic
scale and the adhesive contribution µA(v), step E) in figure 7.3.

µ∗(v) = µ2(v) + α · µA(v), α ∈ [0, 1] . (7.8)

Following section 7.2, the coefficient α is introduced to differentiate dry results with
α = 1 or further experimental results using different liquids, especially water, by setting
α between zero and one. Finally, the global coefficient of friction µ1 containing also
the hysteretic effects of the macroscopic scale is gained by time homogenization. By
the proposed incorporation of adhesive effects at the macroscopic scale a recalculation
of the lower scales is omitted, revealing another benefit with respect to time efficiency
of the multiscale framework.

7.4 Experimental Validation

In this section, the multiscale method for hysteretic and adhesive rubber friction of
chapter 6 and chapter 7 is validated with experimental results, see Wagner et al.
(2017). First, the validation setup with a rough surface is introduced and different
rubber compounds are calculated with the multiscale method.
The setup for the validation of adhesive friction combined with hysteresis is introduced:
three different rubber compounds are used for the validation in order to study different
adhesive contributions dependent on the individual rubber compound. The storage-
and loss-moduli for the three compounds are displayed in figure 7.4 and in table 7.1
the Mooney-Rivlin-parameters are listed. Furthermore, surface 3 is used for this
validation study, shown in figure 7.5. For the mulitscale setup four scales with ten
surface samples are applied, compare setup in subsection 6.5.1.
The global parameter range is defined by a global pressure of p = 0.2MPa and very low
sliding velocities between v = 10−5− 10−2m/s. The low velocity range is used because
it is important to exclude temperature effects in this study and this is ensured with

Table 7.1: Mooney-Rivlin parameters of compounds A, B and C.

Compound C10 (MPa) C01 (MPa) D1 (MPa)
A 0.382 0.300 0.029
B 0.113 0.581 0.029
C 0.374 0.266 0.031
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Figure 7.4: a) Storage modulus E‘ and b) loss modulus E“ for three different rubber compounds A,

B, and C in the relevant excited frequency range.

these values for the global velocity, compare the velocity threshold derived in Persson
(2006) for which temperature effects get important. The rough surface is used in a dry
experimental setup and also covered with a soap-water mixture, repeating the exper-
iment to exclude the adhesive contribution, see section 7.2 for detailed explanations.
The results of the friction experiment are used to calculate the difference between the
dry and soap-water coefficient of friction µdiff (v).

In a first step, the hysteretic multiscale setup is calculated following the description of
section 7.3 and stopping before the final macroscopic calculations are started. Then,
the effect of adhesion can be included in a final step. The whole procedure is performed
for the described three materials on surface 3. The resulting relative contact areas over
velocity calculated by equation (7.5) are displayed for all three compounds in the upper
part of figure 7.6.

In a next step, equation (7.7) is used to fit µdiff (v) with the use of the gained rela-

Figure 7.5: Surface 3: a) Macroscopic and microscopic surface measurements. b) Ten extracted

surface samples on each scale for the construction of four scales. c) Four-scale setup with rubber block

dimensions.



7.4. EXPERIMENTAL VALIDATION 95

Figure 7.6: Relative contact areas Ar calculated with the multiscale framework for all materials (top).

Fitted adhesive coefficients of friction with the experimental input µdiff (v) (bottom). Parameters

c = 0.18 and v0 = 0.02m/s for all materials.

tive contact area and the adhesion law for the shear stress (see equation (7.6)). The
parameters c, v0 and τ0 are adopted to reproduce the experimental difference between
the dry and soap-water measurement µdiff (v), see lower part of figure 7.6. Similar to
Lorenz et al. (2015), the parameter τ0 = 2.9/2.5/2.0MPa is assumed to be mate-
rial dependent and the values for c = 0.18 and v0 = 0.02m/s are fixed for all rubber
compounds, providing a good approximation of the experimental results including the

Figure 7.7: Experimental results (dashed lines) for dry and soap-water surface conditions. Numerical

results (solid lines) calculated with the multiscale finite element framework for three materials A, B

and C.
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contact area in this procedure.

In a next step, the fitted adhesive coefficient of friction is added to the hysteretic
coefficient of friction and two macroscopic setups are calculated, one with α set to zero
and another one with α set to one, resulting in the full adhesive contribution, see also
equation (7.8). The final results are displayed together with the experimental results
in figure 7.7.

Until now, in section 7.3 a pure hysteretic contribution for a surface covered with a
soap-water mixture is expected. However, this assumption may be incorrect, since
a gap between the experimental curve for a soap-water measurement and the pure
hysteretic simulation is detected. This gap is consequently not closed with the addition
of the adhesive coefficient of friction (comparing it now to the dry experimental result).
But, nevertheless the correct trend over velocity and the ranking of the materials can
be predicted with the method (except for the last velocity point). A contribution
of adhesion is already introduced for a surface covered with soap-water in the next
subsection in order to close the detected gap.

7.5 Modified Approach and Validation

The assumption of no adhesive interaction on a rough surface covered with a soap-
water mixture may be to some extent questionable. Soap-water may also be wiped
away from the top surface asperities like in the case of a rough surface covered with
water. This effect would result in partly dry surface asperities where consequently
bonding of rubber molecules to the rough surface could occur. Thus, for a water
covered surface, larger dry contact areas are expected, cf. experimental observations
of figure 7.2. This modified assumption is supported by the numerical results of the
last section 7.4.

All in all, a purely hysteretic multiscale simulation for low velocities v = 10−5−10−2m/s
reveals a discrepancy between the calculated response and a soap-water measurement,

Figure 7.8: a) Difference between simulated hysteretic response and dry experiment. b) Fitting of

µA(v) to µdiff (v). c) Exemplary simulation results by adoption of α = 0.3 for the soap-water result.
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Figure 7.9: Fitted adhesive coefficients of friction. Input µdiff (v) from dry experimental measurement

and pure hysteresis calculation. Parameters c = 0.12 and v0 = 0.11m/s determined for all materials.

see figure 7.8 a). This gap is attributed to an already present adhesive interaction
and therefore the calculation of the adhesive contribution compared to section 7.3 is
modified slightly, following Wagner et al. (2017).

The purely hysteretic multiscale framework is calculated as a first step and afterwards
the difference µdiff (v) between this result and the dry experiment is evaluated, see
figure 7.8 a). The fitting procedure is kept unchanged following the description provided
in section 7.3, see equations (7.6), (7.5) and (7.7) , using the relative contact area and
the shear stress law, see figure 7.8 b).

In the last step of the modified approach, two macroscopic simulations are executed.
Following the changed assumptions, the coefficient α is adopted between zero and one
achieving an approximation of the soap-water result, see figure 7.8 c) and equation
(7.8). Finally, the full adhesive contribution µA(v) is added to the hysteretic result by
simulations on the macroscopic scale with α = 1.

Similar to the last subsection, the same relative contact area is used based on a hys-
teretic calculation (see top of figure 7.6). The difference µdiff.(v) is now calculated by
an experimental and simulated input and the variation of τ0 is used to approximate
different compound responses. The parameters of the adhesion law are adopted reveal-
ing again the possibility to adjust the parameters c = 0.12 and v0 = 0.11m/s and to
change the parameter τ0 = 5/4/3MPa material dependent, see figure 7.9.

In a next step, the gained adhesive coefficient of friction µA(v) is added in contrast to
the last subsection with a variation of the parameter α to the purely hysteretic result in
order to reproduce the soap-water and dry measurement. The full adhesive contribution
is again assumed for the dry surface and hence α is set to one, see figure 7.10. The
dry experimental result is reproduced quantitatively and qualitatively better than in
the last subsection by the original procedure. Furthermore, the increasing trend over
velocity is reproduced and the ranking of the materials is correct for all velocity values.
The next macroscopic setup is calculated to approximate the soap-water measurement
by setting the parameter α to a value between one and zero. By setting α to 0.3 for all
rubber compounds, the experimental results are approximated quite well, reproducing
the trend over velocity and the correct ranking of the materials. Following the new
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Figure 7.10: Experimental results (dashed lines) for dry and soap-water surface conditions. Numerical

results (solid lines) calculated with the multiscale finite element framework for three materials A, B

and C with adapted coefficient α for different surface conditions.

assumption, an adhesive share of 30% is assumed for this particular rough surface
covered with soap-water.
Nevertheless, it has to be mentioned that for example also different effects are used
in literature to close the gap between pure hysteretic calculations to the experimental
results on a surface covered with soap-water. For instance, in Lorenz et al. (2015)
the assumption of filler-road interaction is introduced, adding a constant coefficient
of friction to the hysteretic response. The measured velocity-dependency of the soap-
water response in this work would be captured less accurate with an added constant.
Furthermore, certain measured input parameters may influence the absolute level of
the coefficient of friction. For instance, the correct choice of fitted material parameters
may change the hysteretic response. The exclusion of surface polishing effects and
the use of an appropriate surface measurement may also influence the result if a lot
of friction experiments are performed on the same surface (see subsection 6.5.3). In
addition, a higher lateral measurement resolution for the microscopic surface could
introduce further microscopic surface details increasing the absolute level of the pure
hysteretic simulation. Consequently, also a combination of all effects could contribute
to the gap between soap-water measurement and hysteresis simulation. In this work
the introduced assumption of adhesive interactions being already present on soap-water
covered surfaces is checked, revealing a good possibility to close the detected gap.



Chapter 8

Thermomechanical Extension of the
Multiscale Approach

The chapter starts with an overview of numerical approaches dealing with temperature
effects of sliding rubber samples and thermomechanical interactions which are modelled
with multiscale approaches. In the second section, the flash temperature effect observed
for sliding rubber samples is described in detail, completing the descriptions of chapter
2. Based on this description, a new approach to include thermomechanical coupling
in the proposed multiscale setup is introduced in section 8.3. Afterwards, the most
important parameters, effecting the results achieved with this method, are analyzed
with numerical studies in section 8.4. In the last subsection the multiscale method and
single aspects of it are validated with experimental results.

8.1 Review of Numerical Approaches

A brief overview of numerical approaches addressing thermomechanical coupling for
rubber friction and multiscale approaches will be given in this section. In principle,
two categories of studies are available: single scale approaches and multiscale methods.
Important features of the numerical studies are summarized starting with single scale
approaches.

In Hofstetter et al. (2006b), a thermomechanical analysis is used for a macro-
scopic sliding rubber block with the coefficient of friction in the contact formulation,
leading to heating of the rubber block. In contrast to the introduced multiscale method
in this work, no rough surface profiles are modelled in Hofstetter et al. (2006b).
The analysis studies a different number of sipes (cuts) in a rubber block, the resulting
pressure under the rubber block, temperature distribution, and wear of the macro-
scopic rubber block. A pressure and velocity dependent macroscopic friction law with
six parameters is used for the study and a temperature dependency is additionally
introduced by a WLF-transformation. Moreover, an empirical law for the contact heat
transfer coefficient hc (compare section 4.4) with further parameters is applied and the
heat distribution parameter κ is assumed to be pressure dependent with two additional
fitting parameters. Summarizing, in Hofstetter et al. (2006b) a large set of fitting
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parameters is introduced that depends on the used rubber material, rough surface, and
further quantities. In contrast, in this work it is tried to use the minimal amount of
fitting parameters for the thermal interaction. Furthermore, hysteretic effects are mod-
elled directly and adhesion is added by a phenomological adhesion law, see chapters 6
and 7, providing already fewer parameters and a more direct modelling approach.
In Temizer & Wriggers (2010b), a complex multiscale setup based on contact ho-
mogenization techniques (see section 6.1) is proposed. The aim of the approach is
to provide an accurate procedure to identify the thermal contact heat conductance
(expressed by the parameter hc in this work) based on micromechanical properties of
the introduced rough surface. Similar to the multiscale approaches for sliding rubber
samples, macroscopic contact variables such as surfacial stretch, contact pressure and
heat flux are applied on a representative periodic microscopic RVE with rough surface
details in a thermomechanical analysis. A dissipation analysis leads to the prediction
of the macroscopic temperature and consequently to the heat conductance parame-
ter. Further studies exploring the response of microscopic random rough surfaces can
be found in Temizer (2011), and an extension to isogeometric contact algorithms is
explored in Temizer (2014). In Sadowski & Stupkiewicz (2010), an effective con-
tact heat conductance parameter is determined by homogenization of micromechanical
finite element setups with rough surfaces, describing the quantity for different real con-
tact area fractions. Moreover, in Temizer (2016) also a complex approach for the
determination of the distribution parameter κ for the dissipative frictional interaction
for two rough interfaces is developed.
The cited thermomechanical multiscale approaches are often limited to intensive
miromechanical studies providing interesting features with respect to macroscopic vari-
ables, for example the pressure dependency of the thermal contact conductance. Nev-
ertheless, a real coupling with communicating scales and simulations on all introduced
scales (like in Temizer & Wriggers (2008); Wagner et al. (2015, 2017)) is not
established so far. Therefore, this work concentrates on the proposal of a multiscale
framework for sliding rubber samples that is suitable to describe large sliding distances
and the most important thermomechanical effects. In order to achieve this goal, less
attention is paid to the identification of the parameters hc and κ in this work.

8.2 Flash Temperature Effect

During sliding of a rubber sample on a dry rough counter surface, a significant heating
is observed above a sliding velocity of v = 1mm/s, see Persson (2006) and Persson
(2014) for an analytical forecast of this velocity bound, and Linke et al. (2014) or
Fortunato et al. (2015) for experimental values. A decreasing global coefficient
of friction for high velocity values is predicted by analytical theories that incorporates
temperature effects, cf. Persson (2006). In contrast, theories neglecting temperature
effects overestimate the frictional response for high velocities. Therefore, thermal effects
are added to the already proposed numerical multiscale framework. Since the interface
temperature rises locally to a high level after very small sliding distances, thermal
effects for sliding rubber samples are in literature often named flash temperature effects,
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cf. Persson (2006). Being already present for very small sliding distances, the flash
temperature effect can be separated from a rise of the internal rubber temperature
(often called background temperature) due to very long sliding or rolling distances.
Mainly, two physical effects contribute to the frictional heating of sliding rubber sam-
ples. First of all, hysteresis induced by rough surface asperities and its associated
energy dissipation causes an internal heating of the rubber block, see section 2.2. The
second heat source is attributed to adhesion at the rubber road interface on a nanome-
ter length scale and is referred to as frictional heating. Combined, both effects induce
a significant temperature increase inside the rubber block and on the contact surface.
Consequently, the temperature dependent viscoelastic properties of the rubber mate-
rial change (see subsection 3.3.1), shifting the spectrum of the loss-modulus to higher
frequencies. This results in a more elastic and less viscous response for the considered
excitation frequencies of the rough surfaces. Consequently, this leads to the described
decrease of the global frictional response.
Furthermore, wear of the rubber sample may influence the whole thermal response since
energy is dissipated in a wear process and less heat build up of the contact surface due
to removed rubber material could change the thermal behaviour as well. Like in the
previous chapters, wear is not considered in this work and postponed to future studies.
Due to this fact, rubber samples after a run-in phase with a stationary profile and a
worn down leading edge are used for validation.

8.3 Extension of the Multiscale Framework

In this section, the general framework of the extended multiscale method is explained in
detail introducing a thermomechanically coupled calculation at the macroscopic length
scale. Before the general framework is outlined in subsection 8.3.2, some important
model assumptions are introduced in subsection 8.3.1. The descriptions are followed
by details regarding the evaluation procedure for the quantities which have to be trans-
ferred between the scales in subsection 8.3.3. Finally, a few implementation aspects
within the finite element software ABAQUS are given in subsection 8.3.4.

8.3.1 Model Assumptions

In order to solve the problem at hand in an acceptable calculation time, a simplification
is introduced. An important feature of hysteresis is that most of the energy dissipation
and generation of the hysteretic friction occurs close to the rubber contact surface
in micrometer range since small length scales contribute most to the whole response,
see Persson (2001) and cf. section 2.2. Thus, the hysteretic contribution is reduced
to a surface contribution for the later described coupling via the coefficient of friction
and added to the adhesive friction component. This treatment reveals some advantages
with respect to the proposed multiscale setup, since the hysteretic interaction is already
available by the homogenization steps in the shape of a coefficient of friction and
therefore directly usable in this way, compare chapter 6. In principle, an appropriate
coupling would be created by a transfer of the microscopically dissipated energy into
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the bulk of the macroscopic length scale predicting a correct temperature gradient
inside the rubber block. It has to be remarked that the highest temperature could be
reached a few micrometers inside the rubber block using such a coupling strategy, see
Fortunato et al. (2015) for instance. Such a coupling strategy would need a very
finely resolved thermomechanically coupled mesh on the macroscopic length scale. Due
to this fact, it would be rather difficult to solve such a problem in reasonable calculation
times with finite elements embedded in a multiscale framework.

Following section 8.1, a complex multiscale approach to determine the constitutive
contact parameters for the contact heat conductivity hc and the dissipation factor κ
is omitted, cf. section 4.4. Furthermore, no experimental values are provided in the
validation program to set these parameters. Hence, a simplified treatment is proposed
and the parameters are not used to fit experimental temperatures or friction forces,
see section 8.1. Since hysteresis and adhesion can be attributed to the rubber block,
the dissipation factor is set to κ = 1 distributing the heat in a first step directly to
the rubber block. Meanwhile, the contact heat conductivity hc is assumed to be very
large, ensuring almost the same surface temperature for both bodies in very short time
intervals. In the validation program the road and the rubber surface temperatures are
observed to be similar which supports the chosen conditions. A parametric study of the
contact heat conductivity hc using an analytical approach can be found in Persson
(2014). Some measurements of hc for normal contact of rubber with rough surfaces
can be found in Persson et al. (2010), listing for example air gap heat transfer
coefficients above hc = 1000W/m2K for pressures around p = 50kPa. The proposed
assumptions exclude both parameters as fitting values from the analysis providing
consistency to those experimental observations.

8.3.2 General Framework

The proposed multiscale method of chapter 6 is extended towards the incorporation
of thermomechanical effects providing the ability to predict a decreasing coefficient
of friction for large sliding velocities, cf. section 8.2. The extension focuses on the
most important aspect of the coupled thermomechanical problem at hand: the chang-
ing viscoelastic material properties due to an increased temperature inside the rubber
block near the contact surface causing the decrease of the coefficient of friction. The
relaxation times are modelled temperature dependent to achieve the shift in the fre-
quency range of the material (see subsection 3.3.1), influencing directly the dissipation
behaviour on all scales.

The main idea of the proposed extension of the multiscale method is to calculate the
macroscopic length scale with a full thermomechanical coupling. The hysteretic part
of the coefficient of friction is gained by the approach introduced in chapter 6 and a
constant adhesive part is added at the macroscopic scale, omitting the fitting procedure
of chapter 7. At the contact interface frictional energy is generated depending on
the applied friction coefficient. This frictional energy causes a heat build up at the
contact interface in this coupled calculation, following the assumptions of the previous
subsection 8.3.1. Consequently, this heat source generates a temperature gradient
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inside the rubber material and the relaxation times of the used viscoelastic material
model have to be changed accordingly. All lower scales below the macroscopic scale
are calculated with a pure mechanical setup, but with changed material properties
with respect to the macroscopic temperature gradient. This procedure generates a
different hysteretic coefficient of friction induced by the rough surface. Afterwards, this
changed frictional response is coupled back to the macroscopic calculation by inserting
the coefficient of friction in the contact formulation. In contrast to a temperature
independent multiscale setup, the whole procedure is repeated a few times during one
macroscopic sliding process. Consequently and in contrast to chapters 6 and 7, the
whole procedure is made time-dependent at the macroscopic scale. Furthermore, the
very fast changes of the flash temperature during the beginning of the sliding process
can be considered.

The extended method is displayed in figure 8.1, showing all details for two exemplary
scales, although the method is extendable to more scales and more surface samples, cf.
chapter 6. In detail, the multiscale setup starts with the described hysteretic mechani-
cal setup of section 6.3 for the global parameters p1 and v1, generating the homogenized
coefficient of friction for the used background temperature T0. This temperature is set
to 20◦C in most studies. The resulting coefficient of friction µ(T0) is then applied in
step A) shown in figure 8.1 and enters directly the contact formulation of the thermo-
mechanically coupled macroscopic simulation. It is used as a dissipative heat source
generating a high temperature at the contact interface distributed by heat conduction
inside the rubber block.

The mechanical weak form for the macroscopic scale of chapter 6 is completed by the
introduction of a thermal part and solved for both bodies i = 1, 2 using the contribution
for solid bodies Gb

θ (see equation (3.89)) and the thermomechanical contact part Gc
θ

(see equation (4.26)).

An adiabatic setup concentrating on the temperature effects at the contact interface is
introduced with external heat fluxes set to q̂ ·n̂ = 0. The start temperature is T0 in the
whole domain (for the rubber and road block B1

0 and B2
0) and the rubber temperature

is kept constant at T0 on top of the rubber block ∂tBt, cf. subsection 6.2.2.

On the macroscopic scale both bodies are modelled, in contrast to the mechanical
calculations of the last chapters, with two-dimensional thermomechanical finite ele-
ments, see chapter 5 for details. On the lower scales pure mechanical calculations
are performed and thus the road surface is modelled like in the previous chapter with
discrete linear line elements. The multiscale method including temperature effects,
all numerical studies and the experimental validation are calculated within ABAQUS.
The thermomechanically coupled elements of the macroscopic scale require additional
material parameters, i.e. heat capacities ci, heat conductivities ki and mass density
values ρi for both materials, rubber (1) and road material (2). Additionally, a temper-
ature dependent viscoelastic response can be included in the analysis. This effect can
be added by setting the parameters of the WLF-transformation, see subsection 3.3.1,
including a shift of the relaxation times. Furthermore, an internal dissipation Dint is
neglected in the introduced solution for the macroscopic scale, since the contribution
on this scale is in contrast to the microscopic contribution negligible. Thermal effects
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Figure 8.1: Extended multiscale framework with two exemplary scales. A) First thermomechanically

coupled macroscopic simulation. B) Evaluation of macroscopic temperature gradient. C) Application

of temperature gradient on microscopic length scale. D) Microscopic Homogenization. E) Application

of microscopic coefficient of friction at the macroscopic scale in the second time interval.

at the contact interface are included by activating the thermal contact parameters in
the analysis, see section 4.4. The parameters hc and κ for dissipation and heat con-
ductivity need to be defined for the two thermal interactions at the contact surface,
see subsection 8.3.1 for the choice of these parameters.

During a few sliding steps of the coupled macroscopic simulation, the surface tempera-
ture increases drastically and the simulation is stopped to start a new set of calculations
on the lower scales with adapted material properties, see step B) in figure 8.1. Thus, the
temperature distribution near the contact surface inside the rubber block is evaluated.
The temperature gradient changes along the sliding direction. In order to provide a
defined value for all microscopic scales, a spatial homogenization over the x-direction is
performed resulting in an averaged gradient T (z). This procedure is described in sub-
section 8.3.3 in detail. This representative temperature gradient for the macroscopic
sliding interval is used to modify the relaxation times of the rubber material over block
height on all lower scales by a WLF-transformation, see step C) in figure 8.1 and the
following subsection 8.3.3 for details.

The pure mechanical microscopic setups with adopted material properties result in a
reduced coefficient of friction that is evaluated by time homogenization in step D),
following subsection 6.2.2. This value is then applied to the frictional dissipation in
the next macroscopic time interval (step E)) until the simulation is stopped again,
because the temperature gradient increased. All steps are repeated until the final
sliding distance of the macroscopic rubber block is achieved. Since the temperature
gradient changes very fast at the beginning of the sliding distance, it is recommended
to use more time intervals at this state and less later on.
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Figure 8.2: a) Macroscopic thermomechanical calculation with three exemplary contact positions. b)

Exemplary temperature field at the contact interface. c) Contact pressure and contact temperature

distribution along the rubber surface.

8.3.3 Temperature Gradient

The spatial averaging and evaluation of a defined temperature gradient for the lower
scale simulations and the setup of mechanical calculations with changed material prop-
erties are explained in this subsection in detail.

First of all, the thermomechanically coupled macroscopic simulation provides a spatial
resolved temperature field θ for the rubber block. Since a high gradient of the tem-
perature is expected with very high local temperatures Tc(x) at the contact interface
caused by the frictional dissipation, the macroscopic finite element mesh is resolved
much finer in z-direction than in sliding direction, see figure 8.2 a)-b). Due to the
irregular appearance of the rough surface and locally different sliding conditions, dif-
ferent temperature distributions occur over the x-direction of the macroscopic rubber
block.

The macroscopic pressure distribution pc(x) is evaluated in order to determine the
positions of active contact nodes, cf. figure 8.2 c). In figure 8.2, three exemplary
contact positions with different surface temperatures are marked. In order to define
the temperature gradient for the lower scales, the temperature gradients for all active
contact nodes na are evaluated, see figure 8.3 a) for the gradients of the mentioned

Figure 8.3: a) Temperature gradients at three exemplary contact positions and averaged temperature

gradient for lower scales. b) Applied partitions with changed relaxation times. c) Visualization of the

material parameter adaption on two exemplary microscopic scales.
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three contact positions providing an example.
Accordingly to the evaluation of the macroscopic pressure values of section 6.3, it offers
an advantage in calculation time if the passed information to the lower scales is reduced.
Furthermore, the reduction of information becomes necessary for a setup with several
scales accomplished by a certain number of surface samples on each scale. Hence, the
evaluated temperature gradients are averaged over x-direction

T (z) =
1

na

na∑
k=1

T (xk, z). (8.1)

The spatially averaged and summarized value T (z) is applied to the lower scales, see
figure 8.3 b). Since the temperature gradients differ locally, also a standard deviation
is calculated and displayed providing bounds for the most frequent values.
In the finite element setup, linear shape functions are used to solve the temperature
field. For the smaller scales the stepwise linear macroscopic temperature gradient
is transferred to a stepwise constant representation of the temperature gradient. This
step simplifies the transformation of the obtained macroscopic information to the lower
scales, since a defined number i of a few partitions over height is introduced and the
material parameters just need to be adopted for every partition, see figure 8.3 b). The
microscopic scales are constructed with different material properties over the height of
the rubber block according to the calculated temperature values, using the resolution
provided by the macroscopic mesh in z-direction. The boundary values of each partition
are averaged to obtain a defined constant partition value.
In figure 8.3 c), two exemplary lower scales with the introduced partitions are displayed.
According to the partition temperature T (zi) the relaxation time of the viscoelastic ma-
terial is shifted with the WLF-transformation, cf. equation (3.37) and subscetion 3.3.1
for details. These modified material properties lead to a different hysteretic response
which results in a changed and here decreasing coefficient of friction, cf. section 8.2.
The influence of the chosen partitioning and the necessary resolution to approximate
the macroscopic temperature gradient sufficiently are studied in subsection 8.4.2.

8.3.4 Implementation

In order to achieve results without a very complex implementation and development of
various Python scripts in ABAQUS, a simple procedure is established in this work to
perform the homogenization steps. Furthermore, the work focuses on the achievement
of first results with the extended multiscale method, demonstrating the ability of the
method to reproduce the most important physical temperature effects.
The macroscopic simulation is stopped after each time interval ti and the simulations on
all lower scales are performed after the macroscopic temperature gradient is evaluated.
The gradient is used to define partitions with modified material properties for the
finite element models on all lower scales, see last subsection 8.3.3. This part offers
large potential for automation, because after every interruption of the macroscopic
calculation, a few scales and a certain number of surface samples are calculated on each
scale. After the first homogenization step (step 1 in upper right part of figure 8.4 b)),
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Figure 8.4: a) Exemplary macroscopic simulation with averaged temperature gradients at times t1

and t2. b) Possible procedures to implement the proposed multiscale method.

a second macroscopic calculation is started due to the fact that the first macroscopic
calculation was stopped after the first time interval. With this procedure, additional
computational effort is introduced by recalculating the first time interval until the
simulation is stopped again to evaluate the behaviour of all lower scales and so forth.
Nevertheless, the implementation is kept rather simple and the recalculation of the
macroscopic scale requires less effort than the homogenization procedure on all lower
scales. Therefore, the implementation displayed at the upper right part of figure 8.4
b) is used in this work.

In contrast to the approach for hysteretic and adhesive friction, the thermomechanically
coupled approach is not yet fully automated with Python scripts. Since the macro-
scopic calculation is interrupted a few times, a direct evaluation of the temperature
gradient (compare subsection 8.3.2) and automated down-passing to all lower scales
would provide an appropriate solution for the problem at hand. Also the up-scaling
part and the incorporation of the modified microscopic coefficient of friction offer a
lot of potential for a completely automated solution. Such a procedure would result
in a macroscopic calculation that is interrupted for the evaluation of all lower scales
and continued after the result is incorporated in the macroscopic contact formulation,
compare subsection 8.3.2. The possible procedure is displayed schematically in the
lower right part of figure 8.4 b).

8.4 Numerical Studies

Sensitive quantities exerting influence on the global results of the extended multiscale
method are identified in this section and studied in detail. The first quantity, the res-
olution of the macroscopic finite element mesh in z-direction, is analyzed in subsection
8.4.1. Afterwards, a microscopic example and the convergence of the frictional ho-
mogenization with respect to the level of partition refinement in z-direction is studied
in subsection 8.4.2. A very important quantity determining the solution of the whole
multiscale setup is the choice of points in time in a homogenization loop on all lower
scales. This quantity is studied in subsection 8.4.3.
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Figure 8.5: a) Applied coefficient of friction depending on surface temperature TS . b) Simulation

setup with interface details. Conditions: p = 0.3MPa, v = 1m/s, l = 20mm, h = 8mm, ∆x = 10mm,

hc = 10mW/mm2K, κ = 0.9, rubber compound m1, road material r1.

8.4.1 Macroscopic Mesh Study

At the contact interface, a high temperature gradient is expected for a thermomechan-
ically coupled simulation of rubber sliding on a rough surface. A macroscopic single
scale simulation is performed in this subsection to determine the convergence for local
mesh refinement at the interface. The setup for the study is displayed in figure 8.5.
In order to generate high temperatures at the interface, a high coefficient of friction
is applied within the contact formulation, µ = 1.28 at 20◦C surface temperature. In
addition, the coefficient of friction depends on the surface temperature TS, see figure
8.5 a). This dependency is introduced to imitate the expected macroscopic behaviour
described in section 8.3. The trend over temperature is extracted from the example in
8.5.3. To provide a high interface temperature, also a large global velocity of v = 1m/s
is used in this setup. All used parameters are listed in figure 8.5 and detailed thermo-
mechanical material parameters are provided in appendix C. The finite element meshes
of both bodies, rubber block and road surface, are refined equally in z-direction, see
figure 8.5 b), although the slave mesh (rubber side) is discretized finer in x-direction.

The introduced node distribution near the contact interface (0mm − 0.09mm) is dis-
played for three meshes nm in figure 8.6 a). In figure 8.6 b)-d) the results of three

Figure 8.6: a) Mesh resolution near the interface for three different meshes. b) Resulting temperature

gradient at rubber x = 8mm. c) Surface temperature after ∆x = 10mm, d) Coefficient of friction over

time.
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different resulting quantities are displayed: an exemplary temperature gradient, the
surface temperature for 17mm of the rubber block which are in contact for the last
time step and the resulting macroscopic coefficient of friction. The results reveal that
with the second discretization, converged results for all quantities are achieved, whereas
the first mesh predicts incorrect temperature gradients, surface temperatures and con-
sequently different coefficients of friction. Other global parameters, like higher sliding
velocities, may change the needed level of mesh refinement. But as described above,
particularly large values for µ and v were chosen in order to provide large heating
at the interface. The second mesh with the position of the first macroscopic node
at z = 0.01mm is used as a reference for later calculations in order to resolve high
temperature gradients.

8.4.2 Homogenization Study

The temperature gradient has to be resolved on the microscopic scales, similar to the
macroscopic level, with a sufficient accuracy by the introduced partitions with different
material properties. The effect of the partition refinement on the homogenization result
of an exemplary microscopic calculation on a rough surface sample is studied in this
subsection, see figure 8.7 a). Two arbitrary macroscopic temperature gradients are
introduced, see figure 8.7 b), and approximated by four different representations of
partitions, see figure 8.7 c). Since the gradients are averaged over the macroscopic block
length in a multiscale study, the surface temperatures are on a lower level compared
to the local values. The number of partitions np below z = 0.09mm is used as the
identifying number for the level of refinement. The material values for each partition
are determined for all four representations (shifted relaxation time) via a WLF-shift,
see subsection 8.3.3 for a description of the procedure and appendix C for the used
material parameters of compound m2.

The frictionless microscopic calculation is performed for both temperature gradients
and with all partition refinement levels leading to the coefficients of friction displayed in
figure 8.8 a). First of all and in correspondence to the described qualitative expectations

Figure 8.7: a) Microscopic setup with p = 1.5MPa, v = 0.5m/s, l = h = 0.3mm, µ = 0, rubber

compound m2, b) Applied temperature gradients. c) Used partition representations for the rubber

block
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Figure 8.8: a) Resulting coefficient of friction for both temperature gradients over time. b) Homoge-

nized coefficient of friction over number of partitions.

of sections 8.2 and 8.3, the gradient with higher temperature values (gradient 2) results
in a lower level of the gained coefficient of friction. Second, no large deviations for
different partition refinement levels are observed. This is displayed with the time
averaged values µavg. in figure 8.8 b). Consequently, also large temperature gradients
can be approached with a rather low number of rubber partitions for the microscopic
scales in a multiscale setup.

8.4.3 Choice of Multiscale Homogenization Points

Within the proposed thermomechanical multiscale method a free model parameter
is introduced: certain points in time have to be chosen for which the macroscopic
calculation is interrupted and a temperature gradient is passed down to the microscopic
length scales. For each interruption, a homogenization loop is applied on all lower
scales.

In order to study this parameter, a two-scale setup with a macroscopic and a mi-
croscopic scale is constructed, see figure 8.9 and appendix C for the used material
parameters. With the intention to examine the influence of the chosen homogenization
points, the macroscopic time interval ∆t = 0.02s is divided with an increasing num-
ber of divisions nd for which the temperature gradient is evaluated and passed to the
microscopic scale. The time interval ∆t is divided in nd = 1, 2, 4, 8 divisions and the

Figure 8.9: Setup with macroscopic values p1 = 0.3MPa, l1 = 20mm, h1 = 8mm, κ = 1, hc =

106mW/mm2K, road material r1. Microscopic values p2 = 2MPa, l2 = h2 = 0.3mm. Common

velocity v = 0.5m/s and rubber compound m2.



8.4. NUMERICAL STUDIES 111

Figure 8.10: a) Microscopic coefficient of friction over time for different divisions. b) Final microscopic

coefficient of friction for different division numbers nd.

two-scale simulation is performed for each division number, see figure 8.9.

The averaged temperature gradient T (t, z) of the macroscopic calculation is passed to
the microscopic scale after each division in time. Afterwards, the homogenized coef-
ficient of friction µmicro(t) from a frictionless calculation on the microscopic scale is
passed back to the macroscopic contact formulation, see subsection 8.3.2 for details.
It has to be remarked that the temperature gradient and the homogenized coefficient
of friction depend on the macroscopic time t, whereas the microscopic time depen-
dency is removed by homogenization. A constant part of µconst. = 0.6 is added on the
macroscopic scale to the homogenized microscopic coefficient of friction to imitate the
contributions of the neglected lower scales and to enforce higher temperatures at the
macroscopic scale. Further simulation parameters are listed in figure 8.9.

The results of the calculated microscopic coefficients of friction for all four applied
divisions of ∆t are displayed over the macroscopic time interval in figure 8.10 a). These
values are passed to the macroscopic length scale. First of all, the method is not able
to predict the real temporal evolution of the microscopic and macroscopic coefficient
of friction, since the time interval is divided in pieces and the frictional response is
approximated with piecewise constant values. Thus, a lot of time intervals would be
needed for an appropriate reproduction of the a priori unknown temporal evolution
of µ. The results of figure 8.10 a) support this statement. More divisions (nd = 8
for example) lead to smaller steps in the evaluation and with an increasing number of
divisions convergence of the temporal evolution is reachable.

Nevertheless, the introduced study focuses on statements regarding the relative predic-
tion quality that is achieved with different divisions nd of the macroscopic time interval
with respect to the resulting coefficient of friction after ∆t. Therefore, figure 8.10 b)
displays the last value at tend = 0.02s over the applied number of divisions nd. For an
increasing number of divisions, the considered value of the microscopic coefficient of
friction converges to a defined value.

By application of the high reference microscopic coefficient of friction (µ = 0.6 +µ(t =
0)) for a longer time interval with nd = 1, more frictional heating is induced at the
macroscopic scale than for higher division numbers nd. This leads at the end of ∆t
to a higher macroscopic temperature gradient, causing vice versa a lower resulting



112CHAPTER 8. THERMOMECHANICAL EXTENSION OF THE MULTISCALE APPROACH

coefficient of friction at tend, see nd = 1, 2 in figure 8.10 b).
For the introduced example, the absolute difference of the resulting coefficient of friction
with respect to the division number is rather low. This may change for different global
conditions and by consideration of all microscopic length scales. However, this study
shows that with an appropriate choice of divisions in time, a converged result can
be achieved. Especially at the beginning of the sliding process, large changes of the
surface temperature and the temperature gradient are expected, compare subsection
8.3.2. Thus, shorter time intervals should be used in this range in order to capture
these large changes properly with the method.

8.5 Experimental Validation

Beyond the global coefficient of friction, temperatures can be measured during friction
experiments. In order to verify the assumptions of chapter 8 single scale calculations are
performed to validate the method. Especially, macroscopic road surface temperatures
and rubber bulk temperatures measured by the Continental Reifen Deutschland GmbH
and the Institute of Dynamics and Vibration Research (IDS) in Hanover are evaluated,
see subsections 8.5.1 and 8.5.2. Although an exact experimental validation remains an
open point, a multiscale setup with rough surfaces is calculated in the last subsection
to demonstrate the global behaviour of the method with respect to the coefficient of
friction over velocity.

8.5.1 Surface Temperature

In this subsection, the surface temperature generated by a friction experiment is studied
and a thermomechanically coupled single scale simulation on the macroscopic length
scale is validated with the experimental results. It is in general possible to predict the
overall coefficient of friction of a sliding rubber block with the thermomechanical mul-
tiscale method of chapter 8, but the adequate introduction of a temperature dependent
adhesive contribution remains a challenging task. Therefore, every thermal multiscale
analysis would suffer from the unknown thermal adhesion properties, providing a large
range of possible fitting parameters for the overall coefficient of friction. In order to

Figure 8.11: a) Measured coefficient of friction over velocity for p = 0.3MPa, material m3. b) Simula-

tion setup with rubber block dimensions l = 20mm, h = 7mm and thermal contact parameters κ = 1,

hc = 106mW/mm2K, T0 = 20◦C, road material r1 (see appendix C).
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validate the prediction accuracy of surface temperatures occurring at the sliding inter-
face, the measured coefficient of friction is used as an input for the simulation, instead
of simulating it on the lower scales. Viscoelastic effects are already considered in the
provided frictional response. Thus, a thermo-hyperelastic material model is used for
the rubber block, neglecting the viscoelastic contribution.

In subsection 8.3.1, assumptions with respect to the coupled thermomechanical sim-
ulation at the macroscopic length scale were introduced. Especially, the assumptions
of a very high heat conductance parameter in the contact zone, the total assignment
of the frictional distribution parameter to the slave rubber surface, and the bound-
ary conditions of the simulation (see also subsection 8.3.2) are validated with surface
temperature measurements in this subsection.

The same temperature is observed at the sliding interface during the experiments
for both bodies, rubber and road surface, see also subsection 8.3.1. A direct access
to temperatures at the sliding interface is provided by a measurement of the rough
road surface temperature behind the sliding rubber sample, cf. Fortunato et al.
(2015). Two sets of temperature measurements are provided by experiments that
are carried out at the Institute of Dynamics and Vibration Research (IDS). The first
one evaluates the road temperature (TR exp.) with a thermo-camera. The other
measurement technique uses a pyrometer that measures the surface temperature of
the rubber block. This is the so-called contact temperature (TC exp). The second
measurement is performed directly after the friction experiment trough a hole in the
rough road surface.

The macroscopic simulation setup and its parameters are listed in figure 8.11 b). Since
hysteretic effects are not modelled directly in this setup, just the thermo-hyperelastic
rubber material m3 is used (see appendix C for the thermomechanical material param-
eters). Furthermore, the road surface is modelled with a linear elastic material with
the elastic and thermal parameters also according to appendix C. Following subsection
8.3.1, a very high thermal contact conductance hc = 106mW/mm2K and a dissipation
factor κ = 1 are used for the thermomechanical contact interface. The thermomechani-
cal setup of the calculation assuming a start temperature T0 = 20◦C, the full conversion
of friction into heat (see figure 8.11 a) for the values of µ, and adiabatic conditions at
all outer surfaces follow the detailed description provided in subsection 8.3.2.

An exemplary temperature distribution near the contact interface provided by the
simulation is displayed in figure 8.12 a), revealing that the flash temperature is concen-
trated at the interface. Another phenomenon observed in experiments is that the flash
temperature is already high after a very short sliding distance. Therefore, the road and
rubber temperatures of the simulation are evaluated after a very short sliding interval
of ∆x = 15mm. The maximal road temperature is evaluated at the top of the sur-
face asperity directly behind the rubber block with a short time delay of ∆t = 10−3s
for all velocities. The contact temperature is extracted a few time steps before the
rubber block leaves the surface asperity at the back of the rubber block, because the
contact temperature is maximal in this phase. Since already very large calculation
times are reached with the fine thermomechanically coupled finite element mesh, the
sliding interval of the simulation is limited to 25mm. Nevertheless, the temperatures
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Figure 8.12: a) Simulated temperature distribution for v = 1000mm/s, ∆x = 15mm. b) Experimental

and simulated values for road and contact temperature over velocity.

are approaching their final values very fast during the simulation and therefore the
gained values are compared directly to the experimental results, although these values
are measured after longer sliding distances up to 200mm.
In figure 8.12 b), the evaluated simulation results are compared to the experimental
values, revealing that the magnitude of the macroscopic temperatures is reached with
all introduced assumptions. Furthermore, the increasing temperature trends over ve-
locity at the contact interface TC and on the road track TR are captured correctly by
the simulation setup, revealing that the setup is in principle able to reproduce the
measured trend. Nevertheless, a gap between simulation and experiment is observed.
This is attributed to the different sliding distances for the evaluation of simulated and
experimental temperatures, since a longer sliding distance in experiments should cause
higher temperatures at the interface. Moreover, wear effects may also change the whole
thermomechanical balance at the interface being not represented by the current ap-
proach. However, the whole setup was used to validate the trend over velocity and the
magnitude of the temperature values, revealing that the presented setup of a simulation
on a rough surface is able to reproduce both.

8.5.2 Rubber Bulk Temperature

In this subsection, a setup for measuring rubber bulk temperatures during a friction
experiment is introduced and explained. Later on, a single macroscopic scale simula-
tion with thermomechanical coupling for long sliding distances is introduced and the
temperatures inside the rubber block are calculated and compared with the measured
values.
In order to be able to measure temperatures inside the rubber block, in addition to
the coefficient of friction, thermocouples are placed inside the rubber block before vul-
canization of the rubber specimens in a mold, see figure 8.13 a). Six thermocouples
are placed at different positions along the rubber block width and over height inside
the rubber block. Furthermore, the thermocouples are led through a hole in the upper
metal plate of the mold, ensuring that they are not cut during vulcanization and usable
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Figure 8.13: a)-b) Thermocouples inside the rubber block before vulcanization. c) Final rubber sample

with thermocouples after vulcanization. d)-e) Computer tomography images of rubber block providing

the positions of the thermocouples after vulcanization.

afterwards, see figure 8.13 b). In a next step, the positions of the thermocouples inside
the rubber block are checked by computer tomography providing the relative coordi-
nates over height zr of the thermocouple ends inside the rubber block measured from
top of the rubber block, see figure 8.13 d)-e). The larger zr the closer the thermocouple
is placed to the rubber surface coming in contact with the road. Furthermore, three
thermocouples are placed near the leading edge in sliding direction of the rubber block
(front) and three are adjusted to the backside of the rubber block (back).

These prepared rubber samples are used in a friction experiment with a sliding distance
of ∆x = 350mm. The friction experiment is repeated a couple of times in order to
generate a temperature increase inside the bulk material. All other global parameters
are listed in figure 8.14. In addition to the bulk temperatures, the temperature of

Figure 8.14: Global parameters p = 0.3MPa, v = 0.5m/s, T0 = 20◦C, rubber compound m2. a)

Measured coefficient of friction and averaged measured surface temperature over cumulative distance.

b) Averaged bulk temperature response of three thermocouples at different position zr and different

positions in sliding direction.
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the rubber block bottom is measured approximately five seconds after the sliding is
completed, cf. figure 2.2 c) for an exemplary measurement. The results of the coefficient
of friction are averaged over sliding time for each measurement and listed over the
cumulative sliding distance in figure 8.14 a). Additionally, the information provided
by the surface measurement, maximal and space averaged values, are listed in figure
8.14 a). In figure 8.14 b), the averaged bulk temperature over sliding time for different
positions of the thermocouples is displayed over cumulative sliding distance.

The bulk temperature changes just slightly over the sliding distance, the biggest in-
crease inside the bulk material is noticed during the preparation for the next run of
the friction experiment (duration ∆t = 30s − 40s), see lower part of figure 8.16. This
observation is illustrated by the plot of the bulk temperature over time for the first
three friction experiments.

A thermomechanical macroscopic calculation is chosen to simulate and compare the
temperatures inside the rubber bulk to the experimental values. The hysteretic effects
are not considered with a multiscale setup in this subsection following the explanations
of the last subsection. Thus, the whole setup is reduced to a single scale simulation
on a rough surface using the experimental coefficient of friction (see figure 8.14 a)) as
the input at the contact layer, causing frictional heating. Since the direct modelling of
hysteresis is neglected, a thermo-hyperelastic rubber material (m2) and thermo-elastic
road material (r1) are used, see appendix C for applied thermomechanical material
parameters. Following the last subsection and the descriptions of subsection 8.3.2, the
thermomechanical boundary conditions are set applying a start temperature, adiabatic
conditions at the free edges and the same choice for the thermal contact parameters.

The main challenge of the coupled simulation is to reproduce the experimental sliding
distance of ∆x = 350mm, avoiding one large simulation setup with a very long rough
surface, because such a setup is difficult to handle with respect to the calculation
time. More elements and an extended contact search increase the calculation time
drastically. Hence, a special procedure for the macroscopic simulation is introduced
calculating a macroscopic setup with a sliding distance of ∆x = 50mm seven times
after each other, see figure 8.15. In this way an appropriate calculation time for the
single calculations and the resulting whole setup is achieved. The single separate
calculations are connected by transferring the final temperature field of the rubber block
TR(x, z) from the last ABAQUS odb-file as a start condition to the next macroscopic
simulation resetting the temperature of the rough surface meanwhile. Consequently,
the temperature inside the rubber bulk increases after each single calculation until the

Figure 8.15: Simulation setup with global parameters p = 0.3MPa, v = 0.5m/s, T0 = 20◦C. Simulated

sliding distance ∆x = 50mm, rubber compound m2, road material r1, κ = 1, hc = 106mW/mm2K.
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Figure 8.16: Measured coefficient of friction over sliding time (top). Measured bulk temperature over

time with added simulation results (bottom). Time delay ∆t represents preparation time for next

experiment.

sliding distance of the experimental setup is reached.

Two experimental runs are simulated with the described setup by fourteen macroscopic
simulations and the temperatures over height at the back of the rubber block can be
compared to the experimental values after the first and second run. Following the
conditions of the friction experiment, also a time delay of ∆t = 35s after a sliding
distance of ∆x = 50mm is introduced in the simulation setup. In accordance to the
steps at the experimental setup, the rubber block is lifted at this step and only heat
conduction inside the rubber block is calculated.

In figure 8.16, the simulated values, including the time delay, are displayed revealing
that these values fit quite well to the starting values of the next friction experiment
measured with the thermocouples for two positions. To sum up, the time delay after
the experiment causes the generated heat at the contact interface that is distributed
inside the rubber block. Furthermore, this effect and the resulting temperatures are
reproduced with the introduced simulation setup. In addition to the last subsection,
the simulation reveals that the assumed boundary conditions for the thermomechanical
setup and especially the assumptions for the interface are able to capture the internal
thermal effects for sliding rubber samples in an adequate way. Nevertheless, longer
sliding distances beyond the analyzed 700mm total sliding length are not examined
in this work. Such long sliding distances introduce a stronger change of the rubber
background temperature in the bulk, whereas flash temperature effects happen on
much smaller length and time scales, cf. subsection 8.5.1.

8.5.3 Global Coefficient of Friction

In this subsection, a reduced multiscale setup based on the approach of section 8.3 is
evaluated. The example is used to demonstrate the behaviour of the global coefficient of
friction for a thermomechanically coupled multiscale simulation and a multiscale setup
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Figure 8.17: a) Surface profiles of four scale setup, thermomechanical parameters for macroscopic

scale: κ = 0.8, hc = 1.6mW/mm2K. b) Hot layer model for microscopic length scales. c) Overall

microscopic coefficient of friction (with and without hot layer) after homogenization for p = 0.3MPa,

v = 1m/s, T0 = 20◦C, rubber compound m1, road material r1 (see appendix C).

without temperature effects over velocity. At this stage, no experimental validation
of the approach is possible and therefore just a qualitative prediction is conducted
and compared to analytical theories. Nevertheless, it is listed within the experimental
validation section since measured input data was used: rough surface profiles and
viscoelastic rubber properties.

The used multiscale setup is displayed in figure 8.17, simplifying the simulation proce-
dure of section 8.3. However, the approach is still able to reproduce the main thermal
effect with respect to the coefficient of friction. Similar to section 6.5 four scales are
used, see figure 8.17 a), but only one surface sample is introduced on each scale for this
qualitative study, reducing the computational effort.

The concentration on the qualitative global behaviour motivates the introduction of
another simplification: the macroscopic temperature gradient is not passed from the
macroscopic simulation downwards as proposed in section 8.3. Instead, the calculation
of the hysteretic microscopic coefficient of friction is performed decoupled from the
macroscopic calculation, revealing the opportunity to calculate the whole microscopic
response before the thermomechanically coupled macroscopic simulation. Therefore,
the assumption of a hot layer with the height of five micrometer is introduced at the
lowest length scale, figure 8.17 b). This layer is also introduced at the second and third
scale and the layer temperature is considered as the macroscopic surface temperature
TS, whereas the rubber background temperature is T0. In order to ensure a smoother
transition of the changed material properties for very high surface temperatures, a
second partition on the first twenty micrometers is introduced with an averaged tem-
perature T1 between the very high surface temperature and background temperature,
cf. temperature profile in figure 8.17 b).

Following subsection 8.3.3, according to the surface temperature TS, different mechan-
ical properties are set for the microscopic layers and the temperature T1 by the WLF-
transformation and the coefficient of friction is gained by homogenization. The calcu-
lated microscopic friction law for different surface temperatures is displayed in figure
8.17 c) for v = 1m/s and attributed to flash temperature effects Tfl.. Furthermore, in
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Figure 8.18: a) Calculated coefficient of friction by analytical approach with and without flash tem-

perature effects, extracted from Persson (2006). b) Simulated coefficient of friction by multiscale

approach with and without flash temperature effects.

the same figure also the reference microscopic coefficient of friction for Tref. = 20◦C is
displayed.

The absolute level of the coefficient of friction is rather high, this may change if more
surface samples would be added, compare results of subsection 6.5.2. For example
the lowest scale is calculated on a very rough surface sample ensuring that after all
scales the absolute level of the coefficient of friction approaches the values of a dry
measurement. This leads to the right order of magnitude of the resulting temperatures
in the thermomechanically coupled macroscopic simulation. By the proposed choice
of a very high hysteretic contribution, the adhesive interaction is excluded from the
current analysis.

In the last step of the setup, a mechanical macroscopic simulation with the micro-
scopic coefficient of friction without temperature effects (Tref.) is performed for two
macroscopic velocities, v = 0.1m/s and v = 1m/s. The same two simulations are per-
formed with a thermomechancially coupled simulation using the velocity-dependent
microscopic coefficient of friction including the surface temperature dependency (Tfl.)
as the input for frictional heating, see figure 8.17 c). Depending on the macroscopic
surface temperature, the coefficient of friction is adopted during the thermomechanical
calculation without downpassing the macroscopic temperature gradient in this simpli-
fied setup. This procedure leads to a decreasing coefficient of friction over time. All
other boundary conditions are set as described in subsections 8.5.1 and 8.5.2.

In figure 8.18 b), the final results of the multiscale setup are displayed, applying time
homogenization after a stationary coefficient of friction was reached in the macroscopic
simulation. The most important effect for the considered velocity range is reproduced
with the proposed setup: an increasing coefficient of friction over velocity without
thermal effects is converted to a decreasing trend if thermal effects are included in
the multiscale setup. This global behaviour corresponds qualitatively to an analytical
solution over a wide velocity range, cf. figure 8.18 a). See Persson (2006) for details
regarding the setup and boundary conditions of the analytical approach. Nevertheless,
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a full experimental validation of the thermomechanical multiscale approach with the
full coupling of the temperature gradient is postponed to future studies.



Chapter 9

Summary, Conclusion and Outlook

In this work, a novel multiscale FEM approach for hysteretic friction representing an
important friction mechanism for sliding rubber samples is developed. A viscoelastic
material model is used to model the energy dissipation inside the rubber bulk material.
The direct inclusion of the rough surface without any transformations, that may lead to
an incorrect representation of the surface characteristics, is a key feature of the method.
The potential of this approach to cover surface anisotropy and interlocking effects
is demonstrated with examples. Furthermore, the multiscale method is based on a
continuous decomposition of the rough surface into certain length scales via filtering and
the scales are coupled with the coefficient of friction gained by time homogenization.
For separated length scales, the generation of a pressure and velocity-dependent friction
law is proposed and its ability to reproduce a solution obtained with a unseparated
model simulation is demonstrated.
Nevertheless, the length scales of a real rough road surface cannot be separated in
orders of magnitude, since all surface details contribute to the hysteretic excitation
of the viscoelastic rubber material. Therefore, an extended version of the multiscale
approach is introduced using also a homogenization of the pressure values for the
lower scales, applying the relevant slip velocity for one macroscopic evaluation point.
Moreover, several length scales are introduced for real rough surfaces to include as-
perity details in acceptable calculation times and every scale is enhanced by the use
of a certain number of rough surface profiles. By the evaluation of micromechanical
studies it is demonstrated that at least ten surface samples should be introduced in a
two-dimensional multiscale setup, because the statistical properties of the surface are
approximated in this way with the desired accuracy. The whole framework with its
various communications between the length scales is automated within the software
package ABAQUS.
The prediction quality of the hysteretic multiscale approach is evaluated with exper-
imental results on wet surfaces, revealing that large global changes of velocity and
pressure values are not fully reproducible with the method since not all possibly rele-
vant physical effects are coupled at this stage of the method. However, the multiscale
approach is used to study different rubber compounds and various surface characteris-
tics with respect to their hysteretic response, demonstrating that fundamental changes
can be predicted with the method. Especially, the effects on the global coefficient of
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friction by changing the glass transition temperature of the rubber compounds and
the rubber hardness are captured with the method. The insufficient prediction of the
response for rubber compounds with different filler levels in two of three cases is at-
tributed to the viscoelastic material model and the measured data that is used for it.
The expansion of the test procedure to different strain and frequency levels, the inclu-
sion of the Payne-effect, and a modification to a finite viscoelastic model instead of a
finite linear one are some exemplary promising ways to improve the prediction qual-
ity in future studies. In contrast and additional to experiments, the dynamic contact
area can be calculated with the method as well as further quantities. For example,
the dissipated energy on a local level or the distribution of chosen quantities over sur-
face samples or length scales can be studied with the multiscale method, enabling an
interesting analysis of these quantities.

Adhesion is added to the proposed multiscale method on the macroscopic length scale
by the introduction of a physically motivated phenomenological law for the shear stress
coupled to the calculated contact area of all length scales. Details regarding the as-
sumed mechanism of rubber molecule chains undergoing bonding-debonding cycles are
given. Moreover, the experimental separation of hysteresis and adhesion by the intro-
duction of a soap-water film in contrast to a dry surface is explained.

The multiscale method enhanced with the adhesive law reveals the ability to capture
the global trend of the coefficient of friction over velocity for low sliding speeds, ex-
cluding temperature effects for this parameter range. The correct ranking of different
rubber compounds is predicted for dry and wet (soap-water mixture on the surface)
measurements by adopting the three fitting parameters of the formulation. Further-
more, an absolute gap between hysteretic simulation and wet measurement is closed
by a modification of the approach, assuming that dry friction occurs locally even on a
surface covered with soap-water. The proposed procedure requires results of a macro-
scopic friction experiment as an input at the moment. Additionally, no connection of
the introduced fitting parameters to physical properties is established in this work and
thus providing a topic for future studies. Moreover, further validation studies could
be performed with the approach and the temperature dependence of adhesion should
be added in order to be able to apply the approach to larger velocities. Direct micro-
scopic modelling of adhesion with separate experimental input remains a challenging
task since the link of the introduced parameters to experiments is quite difficult.

In a last step, the multiscale method is extended towards flash temperature effects by
introducing a thermomechanically coupled macroscopic simulation using the complete
microscopic coefficient of friction (hysteretic and adhesive part) for frictional heating.
The generated temperature gradient inside the rubber bulk is used to modify the vis-
coelastic material properties of the microscopic length scales via a WLF-transformation.
In contrast to the approach for hysteresis and adhesion, a homogenization loop over
all lower length scales is introduced after certain macroscopic time intervals, because a
high temperature increase at the interface is observed. Therefore, the microscopic re-
sponse changes very fast over time and this behaviour is reproduced with the extended
multiscale setup. The behaviour of critical model parameters is checked in numeri-
cal studies, revealing converging properties for the macroscopic mesh resolution, the
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introduced resolution of the shifted material parameters at the lower scales and the
refinement of introduced time intervals.
The simple choice of the thermal contact parameters without direct measurements of
the heat conductivity is validated with single scale macroscopic simulations compar-
ing surface and bulk temperature measurements with the calculated values. Finally, a
four scale multiscale setup is used to demonstrate the global decreasing trend of the
coefficient of friction if temperature effects are activated. Instead, a pure mechani-
cal response predicts an increasing hysteretic response with increasing velocity above
0.1m/s. In a next step, a validation of the setup with experimental results would be
advantageous after a thermomechanical description and estimation of adhesive friction
is added to the approach.
In general, the separation of the physical effects in experiments is difficult, but could
provide better validation options for the simulation. Thus, further experimental inves-
tigations remain an open topic. In contrast to the separation of effects in experiments,
the combination of all physical effects in the simulation setup, adding e.g. wear ef-
fects or water interaction, reveals many possibilities for future studies. Furthermore,
the assumption of smooth rubber surfaces can be revised and the simulation could
be enhanced by taking the rubber roughness into account. The transformation of the
two-dimensional setup to a fully three-dimensional multiscale calculation remains a
challenging topic for rough surfaces and could be studied in future. Another topic is
to include advanced kinematics (e.g. rolling) into the multiscale approach, making the
results comparable to tire test results.
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Appendix A

Material Models

The invariants in terms of principal stretches are given as

IC = trC = tr b = λ2
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2 + λ2
3, (A.1)
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3. (A.3)

The derivatives of the invariants with respect to the right Cauchy-Green tensor
(identical derivation for the left Cauchy-Green tensor) are expressed by

∂IC
∂C

= 1,
∂IIC
∂C

= IC · 1−C, (A.4)
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2
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The Lamé constants µ, λ and the bulk modulus K can be expressed by the material
parameters Young’s modulus E and Poisson’s ratio ν. The parameters used for the
Mooney-Rivlin-model in ABAQUS (see SIMULIA (2014a)) are linked to the Lamé
constants. Furthermore, the connection to the Blatz-Ko model is established via a
non-linearity factor f (see Blatz & Ko (1962); Horgan (1996)).

µ =
E

2 (1 + ν)
, λ =

Eν

(1 + ν) (1− 2ν)
, K =

E

3(1− 2ν)
, (A.7)

µ = 2 (C10 + C01) , K =
2

D1

, (A.8)

C10 =
µ

2
f, C01 =

µ

2
(1− f) . (A.9)
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A strain energy function without a volumetric-deviatoric split is listed for a Neo-
Hookean material with the material constants µ and λ. Furthemore, the correspond-
ing equilibrium and non-equilibrium stresses are given:

ΨNH
EQ (J, IC) =

µ

2
(IC − 3− 2 ln J) +

λ

4

(
J2 − 1− 2 ln J

)
, (A.10)
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Appendix B

Mechanical Contact Linearization

The linearization of the mechanical contact weak form G is derived introducing the
matrices D̄c

Aαβ and L̄cAα. The matrices are distinguished for the stick case c = st and
for the slip case c = sl. The solution vector ds is defined afterwards, introducing the
mechanical tangent matrices for the contact elementKs

uu andKs
uu r. The linearizations

of the base vectors are neglected and not further considered, see Weißenfels (2013)
and Dobberstein (2014) for details. The reader is also referred to these works for
a detailed description of the complex linearization procedure leading to matrices like
Gs
δg or Gr

∆g(o) .

DGch
uA = ∆δḡ · (nAcN ḡA · nA + tAαt̄TαA)

+ δḡ · (∆nAcN ḡA · nA + nAcN∆ḡA · nA + nAcN ḡA ·∆nA
+ ∆tAαt̄TαA + tAαD̄

c
Aαβ [(∆ḡA −∆ḡoA) · tαβ + (ḡA − ḡoA) ·∆tαβ]

+ tAαL̄
c
Aα [∆ḡA · nA + ḡA ·∆nA]) ,

(B.1)

D̄st
Aαβ = −cT1αβ, L̄stAα = 0α, (B.2)

D̄sl
Aαβ = −µ|t̄NA|
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−
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r
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(B.6)

If a velocity and pressure dependent coefficient of friction µ∗(‖vA‖, p̄NA) is used in the
frictional macroscopic contact formulation, additional linearization terms have to be
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derived, C̄c∗
TAαβ and C̄c∗

NAα, whereas the coefficient of friction is inserted in the already
derived matrices D̄c∗

Aαβ and L̄c∗Aα, cf. Wagner et al. (2015) for further details.

∆t̄c∗TαA =
(
D̄c∗
Aαβ + C̄c∗

TAαβ

)
(∆ḡA −∆ḡoA) · tAβ +

(
L̄c∗Aα + C̄c∗

NAα

)
∆ḡA · nA, (B.7)
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Appendix C

Material Parameters

Table C.1: Mechanical and thermal material parameters of the used road surface material r1.

E (MPa) ν (-) ρ (t/mm3) c (mJ/tK) k (mW/mmK)
40.000 0.15 2.19 · 10−9 0.92 · 109 0.7

Table C.2: Mooney-Rivlin parameters of rubber compounds m1, m2 and m3.

Compound C10 (MPa) C01 (MPa) D1 (MPa)
m1 0.174 0.300 0.0208
m2 0.174 0.309 0.0417
m3 0.347 0.810 0.0174

Figure C.1: a) Storage- and b) loss-moduli for rubber compound m1 (same for compound m2) in the

relevant exited frequency range.
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Table C.3: Thermal material parameters of rubber compounds m1, m2 and m3.

Compound ρ (t/mm3) c (mJ/tK) k (mW/mmK) Tref (◦C) c1 (-) c2(−)
m1 1.208 · 10−9 1.67 · 109 0.2553 20 7,95 109,32
m2 1.208 · 10−9 1.4 · 109 0.2553 20 7,95 109,32
m3 1.208 · 10−9 1.4 · 109 0.2553 - - -
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