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Abstract In this work two new concepts for a direct application of plasticity models within a frictional

contact description are developed. These concepts can be used in conjunction with all different kinds of

contact formulations and solution methods. Additionally, all types of plasticity models can be projected

onto the contact surface. The advantage of these concepts is shown exemplary in the modeling process of

soil-structure interactions where the projected plasticity models are able to describe the soil behavior at

the contact surface. The numerical implementation of the new frictional relations is based on the Mortar

method. A new type of mixed formulation is also introduced combining the augmented Lagrangian

method to enforce the normal contact constraint with the penalty regularization written in Hellinger-

Reissner form to implement the tangential contact behavior. This reformulation leads to a reduction of

the CPU time compared to the standard penalty regularization, if the Mortar method is used. Finally, the

numerical investigation of a direct shear test shows the accurate reproduction of the typical stress-strain

relation of the soil at the contact surface.

Keywords Contact Mechanics · Finite element method · Mortar method · Friction laws · Projection

strategies · Soil mechanics · Soil-structure interactions

1 Introduction

When investigating simulations of sliding contacts, Coulomb’s law is mostly preferred to model the

frictional behavior. Even within the highly complex modeling process of soil-structure interactions

Coulomb’s law is applied [1],[2], although the simulation of a pile penetration process shows a large

difference between numerical and experimental results (figure 1,[3]). As a consequence new frictional

models where developed in [3] improving the slip behavior. Unfortunately, a large number of additional

material parameters was introduced there which have to be determined for each individual contact pair.
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Figure 1: Comparison of experimental and numerical results of a pile penetration test [3]

Within geotechnical installation processes for piles, anchors or sheet pile walls, mostly the surface

of the structure has to be viewed as rough. Experimental measurements of a direct shear test between

soil and concrete show that for a rough surface of the structure the response behavior is almost equal

to the same test case between two soil specimens [4],[5],[6]. This causes the assumption that for these

soil-structure interactions the real contact zone lies completely within the soil (figure 2). Since many soil

contact zone

rough surface

Figure 2: Development of the contact zone in a direct shear test between a soil and a concrete specimen

with a rough surface

models are able to represent the 3-dimensional geomechanical behavior exactly, the description of the

mechanics at the contact layer can be improved by the use of such models. Until now either interface

elements [7], [8], or special joint elements [9], [10] are used to model the contact interface by use of soil

models. Additionally, some inteface models exists where the rough surface structure is taken into account

[11], [12]. These models are limited to small sliding and only an incorporation into contact formulations

makes it possible to simulate more realistic situations where large relative movements occur, like pile

installation processes for instance. Hence within this work two different strategies are developed each able

to incorporate the plasticity models directly into a friction model. Another advantage of this projection

schemes is that no additional parameters are needed.

A big challenge of any projection method, especially for soil-structure interactions, is the correct

reproduction of the dilatant or contractant behavior at the contact surface. A direct integration of these

influences into a contact model would lead in the case of contractancy to a penetration of one body

into the other which is not allowed or in the case of dilatancy to a release of the contact during the
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sliding process which is not reasonable. Additionally, yield criteria are often formulated in terms of three

stress invariants whereas slip laws are mostly based on the norm of the tangential stress vector and on

the absolute value of the normal pressure. Hence a direct link between these invariants is not possible.

However in the literature some relation between contact and continuum are disclosed. For instance, the

3-dimensional Mohr-Coulomb yield criterion is the natural extension of the two dimensional Coulomb

slip rule [13]. Using the penalty regularization for the tangential contact a formulation analog to the

elasto-plastic theory can be exploited in the modeling process [14],[15],[16]. Both relations are providing

the basis for the developed projection methods.

If the surface of the structure can be assumed as perfectly smooth, contact takes place directly at

the interface of soil and structure and Coulomb’s law can be used, as can be seen in the outcomes of

experimental tests between steel and soil in [17] or [18]. Only a proper coefficient of friction has to be

determined.

For the numerical implementation of the new friction models first the boundary value problem has to

be described. The discretization of the leading equations within a finite element framework is displayed

in section 2 where the focus lies especially on the contact part. In this work the Mortar method [19]

is used exemplary for the discretization of the contact part leading to a robust solution algorithm [20].

A new type of mixed version is embedded in the Mortar framework which combines the augmented

Lagrangian method [21],[22] for the normal contact description with the penalty regularization given in

Hellinger-Reissner form for the tangential part delivering a stable solution technique for contact models.

A soil model based on the framework of the elasto-plastic theory which is able to include the porous

structure of the soil [23],[24] is stated in section 3. Additionally, two regularization schemes are mentioned

shortly at the end of this section which stabilize the back-projection within the return mapping algorithm

and avoid oscillations between the elastic and plastic state of a material point.

Section 4 and 5 describe the two developed projection methods in detail. The first one transforms

the plasticity equations properly into frictional formulations using the connection between Coulomb slip

rule and Mohr-Coulomb yield criterion. The second concept integrates the plasticity model directly

into the slip rule formulating a continuum stress dependent coefficient of friction and normal contact

force. The results of the new projection concepts are shown at the end of each section within numerical

investigations of a direct shear test. There the outcomes are compared with the results of a corresponding

3-dimensional setup using interface elements in between of the two contact specimens. The presented

work is closed with an evaluation of both projection schemes in section 6.

2 A mixed Mortar method

The new friction models can be solved with all kinds of contact formulations. In this work the new

contact equations are included into a solution method that is embedded in a Mortar framework. To have

a natural transformation from plasticity to friction and additionally a strong enforcement of the non

penetration condition a new type of mixed formulation is proposed. There the normal contact constraint

is solved using the augmented Lagrangian method and the tangential constraint is regularized with the

penalty method written in Hellinger-Reissner form.

2.1 Boundary value problem

In the following investigations only quasi-static cases will be considered that rely on constitutive models

for small strain applications. Additionally, the influence of the gravity force is neglected to concentrate
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on the pressure dependency of the numerical response behavior. The balance equation of momentum for

each contacting body simplifies then to the requirement that the divergence of each stress σi has to be

zero

divσi = 0 in Bi. (1)

Here index (i=1) stands for the body which surface will be denoted as slave surface and (i=2) denotes

the master surface. This distinction was introduced in [25]. The boundary of each body is subdivided

into the Neumann boundary where the applied traction t̄i is given and into the Dirichlet boundary where

the applied displacements ūi are prescribed

σini = t̄i on ∂σB
i

ui = ūi on ∂uB
i.

(2)

In the case of contact a third boundary part ∂cB has to be considered which denotes the contact area.

Hence the boundary of each body is uniquely subdivided in three different regions ∂σB
i∩∂uBi∩∂cB = ∅.

On the contact boundary the normal gap

gN =
(
x2 − x1

)
· n1 (3)

and the pressure λN determines the contact behavior in normal direction. For the computation of gN the

actual position vectors xi of the master and of the slave surface are used, see also [16]. Contact takes

place, if the normal penetration is equal to zero. In the case of non touching bodies the contact pressure

has to vanish leading to the set of inequalities which can also be written in the Karush-Kuhn-Tucker

form

gN ≥ 0, λN ≤ 0, gNλN = 0 ∂cB. (4)

Similarly, for the tangential contact two inequalities can be stated to define the stick or the slip state of

the surface point. Thereby friction takes place, if the slip rule f c is equal to zero introducing additionally

a slip rate (γ̇ > 0). In analogy to the elasto-plastic theory, an evolution equation for the tangential gap

gT is defined where the direction of sliding corresponds to the direction of the tangential contact stress

vector λT

γ̇ ≥ 0, f c (‖λT‖, λN) ≤ 0, γ̇f c = 0
on ∂cB

ġT = γ̇
λT

‖λT‖
.

(5)

A detailed derivation and explanation of the mentioned equations can be found for instance in standard

contact textbooks [16],[26].

2.2 Finite element discretization

For the solution of contact problems the finite element method is often employed. For this, first the

balance of momentum (1) of each body together with the normal (4) and tangential contact constraints

(5) has to be written in a weak form

2∑
i=1

Gi (u,η) +Gcu (u,η,λ) +Gcl (u,η, δλ) = 0. (6)

The formulation and discretization of the virtual work part of the two contacting bodies Gi (u,η) can

be found in standard finite element textbooks, like [27],[28] and will not be specified explicitly. For the
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proposed mixed formulation of the contact part the weak form is split into the contact virtual work

Gcu (u,η,λ) and into the formulation of the contact constraints Gcl (u,η, δλ). Like for the augmented

Lagrangian or pure Lagrange multiplier method, in this description the contact stress vector is introduced

as an additional unknown λ. Contrary to the formulations in [29],[30],[31] in the virtual contact work

part the Lagrange multiplier λ is subdivided into the normal λN and the tangential stress components

λTα

Gcu (u,η,λ) =

∫
∂Bc

δgN λN da+

∫
∂Bc

δgTα λTα da (7)

leading to a symmetric tangent in the case of stick. The weak form of the contact constraints Gcl (u,η, δλ)

is further subdivided into a normal and a tangential part. In the mixed method the augmented La-

grangian [21] or sometimes called primal dual method [22] is applied to fulfill the normal constraint.

Using a nonlinear complementarity function, like in [22], the weak normal contact constraint can be

reformulated as

GclN (u,η,λ) =

∫
∂Bc

δλN

1

cN

[
λN −min{λN + cNgN, 0}

]
da = 0. (8)

Contrary to [22] the equation is weighted with the inverse of the penalty parameter to be consistent

with the units. The minimum function is also used instead of the maximum function [22], since in this

work the contact pressure has a negative sign. Depending on the minimum function the weak form

either forces the normal penetration or the normal Lagrange multiplier to be equal to zero leading to

the distinction

active : λN + cNgN ≤ 0 → GclN =

∫
∂Bc

δλNgN da = 0

inactive : λN + cNgN > 0 → GclN =

∫
∂Bc

δλN

1

cN

λN da = 0.

(9)

Using the analogy to the elasto-plastic theory the penalty regularization is used to enforce the tangential

contact constraint. In the Mortar method due to a multiplication of two averaged quantities an inner

assembly loop evolves in this case [30] leading to an additional computational effort. Hence the tan-

gential contact weak form is written in a Hellinger-Reissner description introducing additional Lagrange

multipliers which increases the CPU time considerably to a lesser extend

GclT =

∫
∂Bc

δλTα
1

cT

[λTα − tTα] da = 0. (10)

The equation states that the Lagrange multiplier has to be equal to the tangential stress components

tTα. The solution algorithm for tTα will be presented in section 4 and 5.

For the discretization of the contact weak form the Mortar method is applied which can be viewed as

the most robust solution technique for contact applications at the moment. This method was originally

developed to couple finite with spectral elements [32],[33] and was extended to contact cases for instance

in [19],[34],[22]. In contrast to the node-to-segment formulation [16],[26] all quantities are discretized

and integrated numerically like in finite elements for the continuum. The key approach of the Mortar

method will be explained schematically for the normal contact constraint and will be applied later on

to other parts of the contact weak form. In computational contact mechanics the slave side is viewed as

the contact surface. Normally, the discretization procedure in finite elements would be to sum up over

all elements ns of this contact surface∫
∂Bc

δλNgN da =

ns∑
e=1

ne
gp∑

g=1

Ne
s∑

A=1

NAδλNA

Ne
s∑

B=1

NBgNB det jegWg. (11)
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The integration is done on a reference element using a specific number of integration points negp within

that element and Ne
s indicates the number of nodes of the surface element. In the Mortar method the

discretization process is reformulated into a summation over all slave nodes Ns instead of a summation

over all slave elements∫
∂Bc

δλNgN da =

Ns∑
A=1

δλNA

nA
s∑

e=1

ne
gp∑

g=1

NA

Ne
s∑

B=1

NBgNB det jegWg. (12)

Now at each node A the contributions of all adjacent elements nAs of that node has to be added up.

The term on the right side of the virtual normal Lagrange multiplier can be viewed as a nodal average

of the normal gap. This averaging procedure is similar to the computation of the nodal stress in the

post-processing of a finite element program. Finally the discretized weak form of the normal constraint

leads in the Mortar framework to∫
∂Bc

δλNgN da =

Ns∑
A=1

δλNAḡNA, ḡNA =

nA
s∑

e=1

ne
gp∑

g=1

NA

Ne
s∑

B=1

NBgNB det jegWg (13)

where the bar over the quantity indicates an averaged value. Subsuming the summation over adjacent

elements and integration points to a summation over the whole integration points in all adjacent elements

ngp the normal penetration and its variation can be written in more detail as

ḡNA =

ngp∑
g=1

NA
(
ξ1g n+1

) (
x2
n+1

(
ξ2g n+1

)
− x1

n+1

(
ξ1g n+1

))
· n1

n+1

(
ξ1g n+1

)
det jn+1Wg

δḡNA =

ngp∑
g=1

NA
(
ξ1g n+1

) (
η2
n+1

(
η2
g n+1

)
− η1

n+1

(
ξ1g n+1

))
· n1

n+1

(
ξ1g n+1

)
det jn+1Wg.

(14)

The position of each quantity at the integration point, like the position vectors at each surface, the

normal base vector or the normal Lagrange multiplier, can be obtained by using standard surface shape

functions

x1
n+1

(
ξ1g n+1

)
=

Ne
s∑

B=1

NB
(
ξ1g n+1

)
x1
B n+1, x2

n+1

(
ξ2g n+1

)
=

Ne
m∑

C=1

NC
(
ξ2g n+1

)
x2
C n+1

n1
n+1

(
ξ1g n+1

)
=

Ne
s∑

B=1

NB
(
ξ1g n+1

)
n1
B n+1, λNn+1

(
ξ1g n+1

)
=

Ne
s∑

B=1

NB
(
ξ1g n+1

)
λNB n+1.

(15)

For the averaged quantities the index n+1 is neglected to ease the notation, since all averaged quantities

are written with respect to the actual time step. If values at the previous time step occur, they will

be denoted further with the index n. Additionally, ξ1 and ξ2 corresponds to the coordinates of the

integration points at the slave and at the master surface, respectively. The averaging process for the

normal penetration is similar to [35], but different to the formulations in other Mortar formulations given

for instance in [34],[22] where only the gap is averaged and the penetration is computed by ḡNA = ḡA ·nA.

For the time integration of the evolution equation (5) the implicit backward Euler scheme is used. In

the discretization process of the Mortar method the components of the increment of the tangential gap
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have to be averaged 4tḡTαA = ḡTαA − ḡoTαA. This process follows accordingly to (14)

ḡTαA =

ngp∑
g=1

NA
(
ξ1g n+1

) (
x2
n+1

(
ξ2g n+1

)
− x1

n+1

(
ξ1g n+1

))
· t1αn+1

(
ξ1g n+1

)
det jn+1Wg

δḡTαA =

ngp∑
g=1

NA
(
ξ1g n+1

) (
η2
n+1

(
ξ2g n+1

)
− η1

n+1

(
ξ1g n+1

))
· t1αn+1

(
ξ1g n+1

)
det jn+1Wg

ḡoTαA =

ngp∑
g=1

NA
(
ξ1g n

) (
x2
n+1

(
ξ2g n

)
− x1

n+1

(
ξ1g n

))
· t1αn+1

(
ξ1g n

)
det jnWg.

(16)

Within the averaged old tangential gap ḡo
TαA only the integration points are specified at the previous

time step to guarantee an objective measure for the tangential movement, see also [36] for more details.

In the case of the weak form of the tangential contact constraints (10) and in the case of no contact (9)

the Lagrange multipliers have to be averaged as well

λ̄NA =

ngp∑
g=1

NA
(
ξg n+1

)
λNn+1

(
ξ1g n+1

)
det jn+1Wg

λ̄TαA =

ngp∑
g=1

NA
(
ξg n+1

)
λTαn+1

(
ξ1g n+1

)
det jn+1Wg.

(17)

To have uniquely defined base vectors at each slave node A, the nodal base vector contributions of each

adjacent element of that node ξ̄A are added up

a1αAn+1 =

nA
s∑

e=1

Ne
s∑

I=1

NI,α
(
ξ̄A
)
x1
I n+1

(18)

which is shown schematically for the 2D case in figure 3. Using normalized base vectors, like in [29],[31],

1
aA(1)

1aA

1aA(2)

Figure 3: Averaged base vector schematically for the 2D case

the tangential base vectors t1αA and the normal base vector n1
A at each contact node are given by

t1αAn+1 =
a1αAn+1

‖a1αAn+1‖
, n1

An+1 =
a11An+1 × a12An+1

‖a11An+1 × a12An+1‖
. (19)

Following the outcome in [37], to pass the patch test an exact integration of the integrals over the slave

surface in (7),(9),(10) or respectively within the averaged kinematical quantities (14),(16),(17) should

be preferred. To ensure this feature almost exactly Puso [34] developed a segment-to-segment algorithm

introducing an even reference plan akin to the standard finite element method. First, each slave element

is transformed into an even reference plane. Afterward all nodes of each master element are projected

onto this plane and a clipping algorithm, like [38] is used to compute the intersection points (figure 4).
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Figure 4: Clipping of one slave and one master element (left) and integration points within one pallet

(right)

The resulting overlap between one slave and one master element is called a segment and it is further

subdivided into triangular pallets (figure 4) locating the integration points on the reference plane. Finally,

these points are back projected onto each surface locating the integration points within the slave and

the corresponding master element. The Jacobian can then be defined for each pallet as the area of the

triangle

det jn+1 =
1

2
‖
(
x̄p2n+1 − x̄p1n+1

)
×
(
x̄p3n+1 − x̄p1n+1

)
‖ (20)

and Wg in (14),(16) and (17) corresponds to the weighting of that triangle. Now the summation over

all integration points in (14),(16) and (17) can be specified in detail as the summation over all elements

adjacent to that node nAs , over all segments within each element nseg, over all pallets npa and over all

integration points of the triangular pallet npagp

ngp∑
g=1

=

nA
s∑

a=1

nseg∑
s=1

npa∑
p=1

npa
gp∑
t=1

. (21)

Finally, using the averaged kinematical quantities (14) and (16) the weak form of the contact contribu-

tions in (7),(9) and (10) can be reformulated into a summation over all slave nodes. The weak form of

virtual contact work

Gcu =

ns∑
A=1

[
δḡNA λNAn+1 + δḡTαAλTαAn+1

]
(22)

and the weak form of the normal and of the tangential contact constraint for an active node λ̄NA+cNḡNA ≤
0 change to

Gcl =

ns∑
A=1

[
δλNAn+1 ḡNA + δλTαAn+1

1

cT

(
λ̄TαA − t̄TαA

) ]
= 0. (23)

In the case the slave node is not active λ̄NA + cNḡNA > 0 an additional constraint is introduced ensuring

that the averaged normal and tangential Lagrange multipliers are equal to zero

Gcl =

ns∑
A=1

[
δλNAn+1

1

cN
λ̄NA + δλTαAn+1

1

cT
λ̄TαA

]
= 0. (24)
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3 Soil model

The application of the developed projection schemes is the improvement of the simulation of soil-structure

interactions. Therefore a proper soil description is needed. Among many different models Ehlers [23],[24]

developed a generic elasto-plastic formulation able to take into account the pressure dependency of the

friction angle and the dependency of the admissible elastic domain on the Lode angle. The porosity of

the soil is considered by the factor cv given within the linear elastic stress strain relation

σ = λ tr εe cv + 2µεe (25)

where the factor cv [24] describes the influence of the solid volume ratio limited by its initial value ns0
and its upper bound nsmax

cv =
tr εc

( tr εc − tr εe)
, tr εc =

nsp
nsmax

− 1 =
ns0

nsmax (1 + tr εp)
− 1. (26)

The yield criterion bounding the admissible elastic domain is formulated in terms of the first invariant

of the stress tensor Iσ as well as of the second IIs and of the third invariant IIIs of the deviatoric stress s

f (σ) =

√(
1 + γ IIIs II

− 3
2

s

)m
IIs +

1

2
α I2σ + δ2 I4σ + β Iσ + ε I2σ − κ = 0. (27)

Seven parameters (α, β, γ, δ, ε, κ,m) have to be determined by proper material tests [23] where the friction

angle ϕ and the cohesion c are linked to the model via κ = c cosϕ and β = 1
3 sinϕ. To ensure a correct

dilatancy or contractancy behavior of the soil in this model a non associated description is used leading

to the potential g (σ)

g (σ) =

√
Ψ1IIs +

1

2
αI2σ + δ2I4σ + Ψ2βIσ + εI2σ (28)

where two additional parameters (Ψ1,Ψ2) are introduced into the model. The evolution equation of the

plastic strain is given by the derivative of the potential with respect to the stress tensor multiplied with

the plastic rate λ̇

ε̇p = λ̇
∂g (σ)

∂σ
=

1

2grt

[
Ψ1s +

(
αIσ + 4δ2I3σ

)
1
]

+ (Ψ2β + 2εIσ)1

grt =

√
Ψ1IIs +

1

2
αI2σ + δ2I4σ.

(29)

A measure able to determine the dilatant or contractant behavior of a material point is formulated by

the tangent of the dilatancy angle νp which corresponds to the quotient of the volumetric plastic strain

to the norm of its deviatoric part

tanνp =
ε̇p · 1
3‖ ėp ‖

. (30)

The tensor ėp = ε̇p − 1/3(ε̇p · 1)1 used in (30) indicates the deviatoric part of the rate of the plastic

strain. For the Ehlers soil model the tangent of the dilatancy angle can be written explicitly as

tanνp =
1

Ψ1

√
2IIs

[
αIσ + 4δ2I3σ + 2

√
Ψ1IIs +

1

2
αI2σ + δ2I4σ (Ψ2β + 2εIσ)

]
. (31)
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Since the soil has a highly nonlinear plastic behavior, an additional equation is needed to take into

account hardening and softening effects. In the Ehlers soil model an evolution equation of four parameters

h = [β, γ, δ, ε]T describes these effects

ḣ = λ̇ (hmax − h)
[
Cv
h tanνp + Cd

h

]
‖ ėp ‖ = 0 (32)

where hmax corresponds to the maximum values of the parameters. The actual stress is computed from

the constitutive equations (25) - (32) and the numerical solution is based on the implicit return mapping

algorithm [39]. A detailed implementation can be found in [20],[40]. Unfortunately, in the case of a plastic

response, due to the conical structure of the yield surface in stress space, the back-projection within the

return mapping algorithm onto the surface can fail, especially close the apex. This is especially true

when the trial stress and the trial hardening parameters are far away from the projection point (figure

5). Hence a projection to different solutions can occur which leads to a non convergence of the algorithm.

yield surface

trial yield surface

trial yield surface substepping

Figure 5: Difference between standard and substepping back-projection schemes

A possibility to improve the closest point projection algorithm is the use of a substepping scheme [41]

which is based on line search techniques. A numerical implementation within the implicit return mapping

algorithm can be found in [42]. Within the substepping algorithm at each integration point the trial

elastic strain is subdivided into a number of increments (steps) which ensures that the trial value remains

always closely to the projection point (figure 5). Within an additional loop k = 1, steps the actual stress

and the material tangent has to be solved at each step k together with the culminated strain and its

updated plastic part

q(k) =

k∑
i=1

s(k), ε
(k)
n+1 = q(k)εn+1, ε

p(k)
n+1 = s(k)εpn + γ

(k)
n+1

∂g

∂σ

∣∣∣(k)
n+1

+ ε
p(k−1)
n+1 . (33)

Another challenge is the oscillation between the elastic and the plastic state of the material point that

leads also to a non converging of the overall solution algorithm. Remedies to overcome such cases are

viscoplastic regularization. One formulation presented in [43] and numerical implemented in [44] is

applied to the Ehlers soil model

σn+1 = σ∗
n+1 +

η/4t
1 + η/4t

(
σtrn+1 − σ∗

n+1

)
. (34)

Within this formulation the elastic domain is extended temporarily between the trial elastic σtrn+1 and

the back-projected stress σ∗
n+1 by means of a damping parameter η.
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4 Projection based on the transition of plasticity to friction

The formulations and solution techniques related to the elasto-plastic theory and related to the frictional

contact behavior have a lot in common. The yield criterion bounding the elastic domain is similar to the

slip rule limiting the stick case. Furthermore the evolution equation for the plastic strain corresponds

to the evolution equation for the tangential movement. Despite all similarities, unfortunately, a direct

transition from plasticity to friction is not possible. The stress dependency within the yield criterion is

often expressed by means of three invariants whereas in the slip rule the norm of the tangential stress

and the normal pressure only influence the tangential behavior. Using a return mapping algorithm for

the solution of the frictional contact behavior a back-projection in the direction of the desired tangential

stress is only allowed which is equivalent to a dilatancy angle of zero degree. A positive dilatancy angle

would lead to a release of the contact, although the pressure between the bodies is non zero and a negative

dilatancy angle would lead to a normal penetration which is not allowed. Therefore, to incorporate the

dilatancy effects at the contact layer an additional contact stress component is introduced. The projection

scheme is explained here exemplary for the contact formulation given in section 2, but it can be applied

to all other types of contact discretization techniques.

4.1 Projection scheme

One of the oldest model describing especially granular materials is the Mohr-Coulomb yield criterion

which structure is similar to other plasticity formulations like Drucker-Prager, Tresca or von Mises.

The Mohr-Coulomb yield criterion fm suitable especially for the description of soil behavior is the

3-dimensional extension of the Coulomb slip rule f c, see [13] for a derivation

f c = ‖t̄TAn+1‖+ λ̄NAn+1 tanϕ = 0

fm =

√
IIsn+1cosΘn+1

cosϕ
+

[
1

3
Iσ n+1 −

√
IIs
3

sin (Θ)n+1

]
tanϕ = 0.

(35)

In this formulation the three continuum quantities Iσ n+1,
√

IIsn+1, Θn+1 can not be related directly to

the two contact invariants λ̄NAn+1, ‖t̄TAn+1‖. However, since the tangential contact motion is equivalent

to shearing with a load on top, the Lode angle

Θn+1 = −1

3
arcsin

√27

2

IIIsn+1

II
3
2
sn+1

 (36)

can be assumed to be zero Θn+1 = 0◦. Now the invariants of the frictional formulation and of the

plasticity model can be related directly and so called contact stress invariants can be defined

IIsAn+1 := ‖t̄TAn+1‖2cos2ϕ

IσAn+1 := 3 λ̄NAn+1, ΘAn+1 := 0◦.
(37)

Accordingly, the tangential contact stress depends on the second invariant of the deviatoric stress and

on the friction angle. The normal stress is only related to the first invariant of the stress itself. A

demonstrative explanation is illustrated in figure 6 showing that the slip criterion results from the yield
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-s2

O

deviatoric
tangential contact part

volumetric, 
normal contact part

r(q=0°)

Figure 6: Cut through the yield surface at a Lode angle of 0◦

surface by a cut through the surface at a Lode angle of 0◦ corrected by the slip angle. A split of the

back-projection of the trial stress onto the yield surface into a volumetric and a deviatoric part leads to

the corresponding formulations for the two invariants

Iσ n+1 = Itrσ n+1 − 9Kγn+1
∂g (Iσ n+1, IIsn+1)

∂Iσ n+1√
IIsn+1 =

√
IItrsn+1 − 2µγn+1

∂gn+1

∂IIsn+1

√
IIsn+1.

(38)

Due to the assumption of a zero Lode angle the plastic potential depends only on Iσ n+1, IIsn+1. Together

with the link between the continuum stress invariants and the contact quantities (37) the algorithms

computing the normal and tangential contact stress can be stated. Unfortunately, the back-projection

of the normal contact stress is physically not feasible. A dilatant behavior leads to a release of the

contact and contractancy to a penetration of one body into the other which is not allowed. Looking at

the graphical illustration in figure 7 the back-projected normal stress component can be interpreted as

||t ||T

tD

tN

trt

lN

np

np

slip criterion

Figure 7: Graphical illustration of the two constituents of the normal contact stress

the sum of the normal pressure together with an additional stress contribution tDAn+1. This additional

stress corresponds exactly to the back-projected norm of the tangential stress multiplied with the tangent

of the dilatancy angle

t̄DAn+1 = −tanνpAn+1‖t̄TAn+1‖. (39)

The minus sign has to be added, since normal stress contributions and not the pressure is considered.

Instead of the back-projection (38) the actual first invariant is computed alternatively as

Iσ n+1 = 3λ̄NAn+1 − 3 tanνpAn+1 ‖t̄TAn+1‖ (40)
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The numerical algorithm to compute the tangential contact stress follows directly from (38) using relation

(37) and the fact that the trial and the actual tangential stress is pointing towards the same direction,

see also [16]

t̄TAn+1 = t̄trTAn+1 + 2µγn+1
∂g (Iσ n+1, IIsn+1)

∂IIsn+1
t̄TAn+1 (41)

Within (41) to ease the computation the trial friction angle is assumed to be equal to the actual and to

the previous slip angle

ϕtrAn+1 = ϕAn+1 = ϕAn = arctan

(
‖t̄TAn‖
|̄tNAn|

)
. (42)

This assumption can be made, since in the simulation of the soil behavior the time intervals have normally

to be small and the change of the friction angle during one step is marginal. The tangential contact

stress of the trial state is computed analogous to standard contact formulations, see [16]

t̄trTAn+1 = − 2µ

δT aAn+1

[
ḡTAn+1 − ḡoTAn+1

]
+ t̄eTAn. (43)

where ḡTAn+1−ḡoTAn+1 is the increment of the tangential movement, see also equation (16). The penalty

parameter for the tangential part is linked here to the shear modulus by a parameter δT

cT =
2µ

δT
. (44)

To ensure stress values using the Mortar method the tangential gap has to be divided by its area

aAn+1 =

ngp∑
g=1

det jn+1Wg. (45)

4.2 Projection of Ehlers soil model

Due to the assumption of a Lode angle of zero degree the yield criterion of the soil model of Ehlers (27)

changes to

fn+1 =

√
IIsn+1 +

1

2
α
(
Iσ n+1

)2
+ δ2An+1

(
Iσ n+1

)4
+ βAn+1Iσ n+1 + εAn+1

(
Iσ n+1

)2
. (46)

The derivatives of the potential (28) with respect to the deviatoric stress remains equal to the continuum

case
∂g (Iσ n+1, IIsn+1)

∂IIsn+1
=

Ψ1

2
√

Ψ1IIsn+1 + 1
2αI2σ n+1 + δ2I4σ n+1

. (47)

and the evolution equation of the hardening parameters (32) remains also unchanged

hAn+1 = hAn + γn+1 (hmax − hAn+1)
[
Cv
htanνpAn+1 + Cd

h

] ∂gn+1

∂IIsn+1

√
2 IIsn+1 (48)

as well as the tangent of the dilatancy angle given in (31)

tanνpAn+1 =
1

Ψ1

√
2IIsn+1

[
αIσ n+1 + 4δ2An+1I3σ n+1

+ 2

√
Ψ1IIsn+1 +

1

2
αI2σ n+1 + δ2An+1I4σ n+1 (Ψ2βAn+1 + 2εIσ n+1)

]
.

(49)
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The starting value for the sip angle is assumed as

ϕA0 = arcsin (3βA0) (50)

The computation of the stick or slip case follows analogous to the standard frictional computation, see

for instance [16]

f(t̄trTAn+1, λ̄NAn+1,h
tr
An+1) < δ → stick, f(t̄trTAn+1, λ̄NAn+1,h

tr
An+1) ≥ δ → slip (51)

where δ is a parameter close to zero due to numerical reasons. In the stick case the actual stress

components and the hardening parameters correspond exactly to the trial ones

t̄TAn+1 = t̄trTAn+1, hA = htrA . (52)

In the slip case the residual equations for the tangential stress component, the evolution of the hardening

parameters, the tangent of the dilatancy angle and the slip criterion

RT =
δT
2µ

(
t̄Tn+1 − t̄trTn+1

)
+ γn+1

∂g (Iσ n+1, IIsn+1)

∂IIsn+1
t̄TAn+1 = 0

RH = hAn+1 − hAn − γn+1 (hmax − hn+1)
[
Cv
htanνpAn + Cd

h

] ∂gn+1

∂IIsn+1

√
2 IIsn+1 = 0

Rν = tanνpAn+1 −
1

Ψ1

√
2IIsn+1

[
αIσ n+1 + 4δ2An+1I3σ n+1

+ 2

√
Ψ1IIsn+1 +

1

2
αI2σ n+1 + δ2An+1I4σ n+1 (Ψ2βAn+1 + 2εIσ n+1)

]
= 0

Rγ = fn+1 = 0.

(53)

have to be equal to zero. Since the equations are nonlinear with respect to the contact invariants, the

Newton iteration is applied to determine the tangential stress, the hardening parameters and the tangent

of the dilatancy angle that fulfill the slip rule. The linearization of the tangential stress follows then

directly form the tangent together with the modified residual vector which is analogous to the case of

plasticity. A detailed explanation for that case can be found for instance in [28].

4.3 Numerical direct shear test

In soil mechanics two different tests are often conducted to determine the shear behavior of the material

under investigation. The triaxial shear test is a typical 3-dimensional test procedure whereas the direct

shear test characterizes the soil behavior over a relative movement of the contacting specimen. However

both tests have the same outcome. In the following numerical example the soil-structure interaction

of a block of steel (E = 210 · 103 MN/m2, ν = 0.2) with a soil specimen of dense GEBA fine sand is

investigated where the surface of the steel block is assumed to be rough. Due to the roughness the sand

is dominating the shear behavior and the direct shear test deliver the same response as the 3-dimensional

triaxial test which can be seen in experimental investigations [5]. For the description of the material

behavior of the GEBA fine sand the Ehlers soil model of section 3 is used. The associated material
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Figure 8: Side view and front view of the direct shear test with a rough surface

parameters are given in table 1. On top of the test apparatus a variable surface pressure is applied.

Furthermore, the soil specimen and the block of steel are fixed in the horizontal direction. In order to

avoid tension within the soil specimen on the side where the tangential displacement is applied a pressure

of p1 = 0.5 kN/m2 ensures positive stress values within the soil (figure 8). For each projection concept

a series of different vertical pressure loads is investigated. In order to compare the reproducibility of the

continuum behavior at the contact surface all the results are compared with the same direct shear test

where now one layer of continuum elements is located in between of the two plates as can be seen in

figure 9.

Figure 9: Finite element mesh of the contact case (left) and of the continuum case with one layer of

elements between the two bodies (right)

Comparing the force distribution along the sliding distance a different behavior is obvious (figure 10).

In the interface element during the phase when the pressure is imposed a plastic response behavior can be

observed already. In the contact model only stick occurs in the first loading situation. Hence the evolution

of the hardening behavior starts not before sliding and then in a more moderate fashion. The Lode angle

is not exactly zero in the case of dilatancy or contractancy and leads to a small under-prediction of the

stress in normal direction although dilatancy was included in the formulation. Additionally, it can be seen

from figure 10 that the change of the height of the interface element has not a strong influence on the final

result. Only the peak behavior is slightly different at the onset of sliding. Nevertheless the distribution

of the final friction angle as well as of the final tangential force over the normal pressure are qualitatively

in a good accordance as can be seen in figure 11. Beside the possibility of arbitrary large relative

movements between the soil and the structure another advantage of the projected contact formulation
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Figure 10: Comparison of tangential (left) and normal force (right) versus sliding distance at a constant

pressure of 100 = kN/m2

Figure 11: Comparison of tangential force (left) and friction angle (right) versus normal force

is the reduction of the CPU time with a factor of 10 compared to the corresponding computation of

the continuum model. As a final remark, all computations of the contact case are conducted with the

parameter δT = 0.01 m in (44).

Remark: Comparing the tangential force distribution of the projected contact formulation (figure 10)

with the outcome of a triaxial test (figure 12) the results are qualitatively pretty close. The accordance

can be explained with the similar evolution of the hardening parameters in both cases which is different

to the corresponding behavior in a direct shear test. Looking at the normal-tangential force distribution

of figure 11 the cap structure of the underlying yield criterion cannot be reproduced. The projected slip

rule (46) and the yield criterion (27) have four roots on the axis of the normal force and on the space

diagonal, respectively. However the domain is only defined between the inner two roots. Hence for values

beyond the inner roots a unique back-projection onto the slip line can not be guaranteed anymore. A

detailed explanation of these implications can be found in [20].

5 Projection based on a stress dependent coefficient of friction

Many frictional contact models are based directly on Coulomb’s law where the specific slip behavior is

included within the coefficient of friction leading to a function of µ that depends for instance on the

temperature, the pressure, the contact velocity or the surface roughness. A model based on a pressure

and velocity dependent coefficient of friction can be found in [45] and a model for µ designed for soil-

structure interactions is formulated in [3] which introduces many new material parameters. More detailed
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Figure 12: Finite element mesh of the triaxial test (left) and corresponding shear stress (right) during

loading in vertical direction with a cell pressure of 100 kN/m2

descriptions of different frictional formulations can be found in [16] and the references therein. Based on

this idea a new concept of projecting plasticity models onto the contact surface is developed so that the

coefficient of friction and the also the normal contact stress depend directly on the 3-dimensional stress

tensor. The formulations are set up exemplary using the Mortar method, as described in section 2, but

can also applied to all kinds of contact formulations and solution methods. Coulomb’s slip rule modifies

then to

f c = ‖t̄TAn+1‖+ µ (σAn+1) t̄N (σAn+1) = 0. (54)

5.1 Projection scheme

As mentioned in the previous section contact can also be considered as shearing with load on top (figure

13). Instead of relating the continuum stress invariants to the contact stress as described in section 4

tNgT

h

tN
gT

Figure 13: Equivalence of sliding and shear

the continuum kinematics are now expressed in terms of the contact quantities. In the case of a penalty

regularization the tangential stress

t̄TAn+1 = −cT
[
ḡTAn+1 − ḡp

TAn+1

]
(55)

is given by the difference of the actual and the plastic slip distance multiplied by a penalty parameter.

In standard contact algorithms the actual slip distance is computed by an integration of the slip velocity

over time. Mostly the finite difference method is applied and the actual slip distance follows as the sum

of the previous slip distance and the actual increment

ḡTAn+1 =

∫ tn+1

t0

˙̄gTdτ =
[
ḡTAn+1 − ḡoTAn+1

]
+ ḡTAn. (56)
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where ḡo
TAn+1 is the tangential distance of the previous integration point, see also equation (16). The

tangential penalty parameter can be chosen arbitrarily and hence it can also be assumed to depend on

twice the shear modulus µ divided by an intrinsic virtual height. If the height approaches zero the penalty

parameter approaches infinity which verifies the proposed approach. The actual tangential contact stress

can now be reformulated

t̄TAn+1 = −2µ
1

h

[
ḡTAn+1 − ḡp

TAn+1

]
, cT =

2µ

h
. (57)

The second term corresponds exactly to the negative shear strain of the contact layer, see also figure 13.

ε3αAn+1 =
1

h āAn+1

[(
ḡTαAn+1 − ḡoTαAn+1

)
+ ḡTαAn

]
(58)

Since the Mortar method is used the tangential sliding has also to be divided by the area (45) of the

slave node A. The negative sign of the tangential gap values in (57) can also explained by means of a

different direction of the difference vector in the case of contact compared to the shell theory, see [20] for

more details. At the contact layer the membrane strain is assumed to be zero which follows also directly

form the connection between contact and shell theory [20]

εαβAn+1 ≡ 0. (59)

As mentioned in section 4, the dilatancy effects can not be reproduced directly within a contact formu-

lation and an alternative form has to be used. However the normal stress resulting from the enforcement

of the non penetration condition which is here the Lagrange multiplier has to be equal to the normal

stress at the contact layer

σ33An+1 = λ̄NAn+1. (60)

Using a linear elastic stress strain relationship the elastic strain in the normal direction can be reformu-

lated in terms of the Lagrange multiplier and the elastic normal strains

εe33An+1 =
σ33An+1

λ+ 2µ
+

λ

λ+ 2µ

[
εe11An+1 + εe22An+1

]
(61)

where the elastic normal strains are exactly the negative of its plastic counterpart. The stress strain

relationship modifies in Voigt notation to

σ̃An+1 =


σ11An+1

σ22An+1

σ12An+1

σ23An+1

σ13An+1

 =


c11 c22 0 0 0

c22 c11 0 0 0

0 0 µ 0 0

0 0 0 µ 0

0 0 0 0 µ




εe11An+1

εe22An+1

2εe12An+1

2εe23An+1

2εe13An+1

+


1

1

0

0

0

 c33λ̄NAn+1. (62)

The new coefficients in (62) can be derived directly from equation (61)

c11 =
2λ2 + 4λµ+ 4µ2

λ+ 2µ
, c22 =

2λ2 + 2λµ

λ+ 2µ
, c33 =

λ

λ+ 2µ
(63)

Together with the nodal plastic strain at the previous time step all quantities are known and can be

used within a 3-dimensional plasticity routine delivering the actual continuum stress and the material

tangent at that contact node. Due to the known normal stress component the 3-dimensional material

routine has to be modified slightly, but the solution algorithm remains the same. The final step in the
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overall algorithm is the computation of the nodal coefficient of friction. Based on the analogy of the

Coulomb friction law and the Mohr-Coulomb yield criterion (35) the coefficient of friction

µAn+1 =

∣∣∣∣∣tan

arcsin

 √
IIsAn+1cosΘAn+1

1
3 IσAn+1 −

√
IIsAn+1

3 sinΘAn+1

∣∣∣∣∣ (64)

as well as the normal stress component follows directly from the invariants of the actual stress tensor

t̄NAn+1 =
1

3
IσAn+1 −

√
IIsAn+1

3
sinΘAn+1. (65)

In an elastic response of the underlying 3-dimensional soil model the coefficient of friction is assigned

as zero. Now the standard return mapping algorithm for Coulomb’s law can be applied, see [16] for

more details. Formulating the trial value analogous to (43) the actual tangential stress can be computed

directly in dependence of Coulomb’s slip rule together with the actual coefficient of friction

stick : t̄TAn+1 = t̄trTAn+1 if µAn+1 = 0

slip : t̄TAn+1 = µAn+1 |̄tNAn+1|
t̄tr
TAn+1

‖t̄tr
TAn+1‖

if µAn+1 6= 0.
(66)

As a remark, the computation of the 3-dimensional stress can also be used to compute the missing Lode

angle within the projection scheme of section 4.

5.2 Projection of Ehlers soil model

Since the normal stress component is already known within the computation of the virtual 3-dimensional

stress at the contact layer only the residuum of the stress vector has to be modified within the solution

algorithm of the pure continuum case

Rn+1 =


σ̃An+1 − D̃e

[
εtrAn+1 − γAn+1

∂gn+1

∂σ̃An+1

]
− c331̃λ̄NAn+1

hAn+1 − hAn − γAn+1g
h
An+1

f (σAn+1,hAn+1)

 = 0 (67)

where D̃e is the modified elastic tangent given in (62). For the computation of the hardening values

ghAn+1 = (hmax − hAn+1)
[
Cv
h tanνpAn+1 + Cd

h

]
‖ ∂gn+1

∂σAn+1
− 1

3
tr (

∂gn+1

∂σAn+1
)1‖ (68)

and for the yield surface the same relations as for the continuum case can be used. Only the stress

consists now of two parts σAn+1 = σ(σ̃An+1, λ̄NAn+1).

5.3 Numerical direct shear test

For the evaluation of the second projection scheme the same investigations using the same direct shear

test as in section 4.3 are conducted. The height of the contact layer is assumed to consist of 10 mm
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Figure 14: Comparison of tangential force (left) and friction angle (right) versus normal force

corresponding to 2-3 times the average grain diameter of GEBA fine sand. This height is imposed directly

within the continuum simulation using standard elements at the interface and considered intrinsically

within the projection scheme. Comparing the final tangential force and the final friction angle of different

normal load levels (figure 14) both distribution shows the same outcome. The tangential force of the

Figure 15: Comparison of tangential (left) and normal force 8right) versus sliding distance of the first 5

mm at a constant pressure of 100 = kN/m2 (right)

interface element and of the projected contact formulation end up both with the same force and shows

a hardening peak (15). Only the height of the peak and the time when it occurs are different. The

same holds for the normal force distribution (15). However replacing the upper specimen by a block

of steel and comparing the distributions of the tangential and normal force both outcomes are almost

equal (figure 16). The reason for the good accordance is the small normal strain in direction of sliding

(ε11 ≈ 10−6) due to the stiffer upper block which conforms to the assumption made in (59). In the

soil-structure example this normal strain is around ε11 ≈ 10−3 and can not be disregarded anymore. As

well as for the projection scheme in section 4 the CPU time of this projection method is also around

10 times less as for the pure continuum case with interface elements in between of the upper and lower

specimen.

6 Conclusion

In this work two different projection methods were developed each able to integrate plasticity models

into a contact formulation. The first concept exploits the natural relation between Coulomb slip rule and
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Figure 16: Comparison of tangential force (left) and normal force (right) versus sliding distance of the

first 3 mm and at a constant pressure of 100 = kN/m2 (right)

λ = 100 MN
m2 µ = 150 MN

m2 ns0 = 0.585 nsmax = 0.595

β0 = 0.105 βmax = 0.263 Cvβ = -58 Cdβ = 350

γ0 = 0.0 γmax = 1.6 Cvγ = -10 Cdγ = 35

δ0 = 0.01 m2

MN δmax = 0.005 m2

MN Cvδ = 90 Cdβ = -15.9

ε0 = 0.0805 m2

MN εmax = 0.008 m2

MN Cvε = -300 Cdε = 300

α = 0.01 κ = 0.0001 MN
m2 m = 0.5454 η = 0.005

Ψ1 = 0.97 Ψ2 = 0.48

Table 1: Material data for GEBA sand

Mohr-Coulomb yield criterion to establish a connection between the stress invariants of the continuum

and the contact quantities normal pressure and norm of the tangential stress. To model dilatancy effects

properly a new dilatancy stress component was introduced that is able to consider a normal back-

projection in the return mapping algorithm. Since the Lode angle is not zero in the case of dilatancy or

contractancy effects, the first projection scheme underpredicts the real stress at the contact surface. If

both bodies are sticking together the response behavior is only elastic. However in the continuum case a

plastic response is also possible if the relative movement of the two bodies is only small. Both phenomena

reason the slightly different outcome of the first projection concepts compared to the interface element.

The second projection concept has the advantage of a direct implementation of the plasticity model

into the friction equations and constitutes a very robust algorithm. On the other hand the introduced

height of the contact layer leads to an additional parameter which has to be determined. Since within

soil-structure interactions the height of the contact layer corresponds to the height of a forced localization,

a value of 2-3 times the average grain diameter is a reasonable approach. As shown in the results of the

direct shear test, if the two specimens in contact are stiff enough that only very small membrane strains
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occur, this projection scheme can reproduce the continuum behavior almost exact.

Additionally, as can be seen from the examples, the outcome of the triaxial test differs from the

corresponding distribution of the direct shear test using the Ehlers soil model. The back-projection

algorithm can also not deliver feasible results, if the normal pressure is too large or too small due to the

double roots at the limits of the slip line.

In this work both projection concepts were applied only to soil-structure interactions, but they can be

seen as a generic scheme able to describe all different kinds of contact phenomena. The modeling process

of contact cases where the temperature has to be considered, like the heat transfer or the frictional

heating, can be improved by this methods. Using a proper fluid description also lubrication effects

can be modeled by this schemes to name only a view possible applications. Another advantage of this

methods is that they can be used with all different kinds of contact formulations and solution methods.
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