
A Multiscale/Multiphysics Model for Concrete

Promovieren (IKM 2014)

Der Fakultät für Maschinenbau

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieurin

vorgelegte

Dissertation

von

M.Sc. Tao Wu

geboren am 31.07.1984 in Guixi



To whom it may concern.



i

Zusammenfassung

In dieser Arbeit wird ein multiskalen-multiphysikalisches Modell zur Analyse von Mate-
rialversagen in Beton vorgestellt, das durch Alkali-Kieselsäure-Reaktion (AKR ) sowie
durch schwache Eigenschaften der Übergangszone (ITZ) hervorgerufen werden. Die
Mesostruktur des Betons besteht aus Zuschlägen, die statistisch verteilt und in ho-
mogenisierten Zementstein eingebettet sind, sowie Grenzflächenelemente mit der Stärke
Null, die die Übergangszone zwischen Zuschlägen und Zementstein repräsentieren.
Eine Skala tiefer wird die Mikroskala von Beton durch die Mikrostruktur von Ze-
mentstein dargestellt, welche durch dreidimensionale CT-Aufnahmen gewonnen wurde.
Sie beinhaltet Bestandteile von Hydratisationsprodukten, unhydratisierten Klinkern
und Mikroporen.
Ein dreidimensionales, diffusions-thermisch-chemisch-mechanisches Modell wird für die
Mesoskala von Beton entwickelt, welches die durch AKR herforgerufende Schädigung
in der Mikroskala beschreibt. Die Auswertung der durch AKR hervorgerufenen Schädi-
gung als Funktion des Ausmaß der chemischen Reaktion wird auf die Mikroskala im
Zementstein initialisiert. Die Temperatur und die relative Feuchtigkeit beeinflussen
das chemische Ausmaß. Eine Korrelation zwischen der effektiven Schädigung durch
AKR und dem chemischen Ausmaß wird durch Homogenisierung erreicht. Somit wird
eine Beziehung zwischen der Schädigung in der Mikroskala und dem Versagen in der
Makroskala hergestellt.
Thermische Homogenisierung und Diffusionshomogenisierung mit statistischen Tests
werden auf Zementstein angewendet, um die effektive Wärmeleitfähigkeit als Funktion
der relativen Luftfeuchtigkeit und der effektiven Diffusivität in Abhängigkeit der Tem-
peratur zu erhalten. Die sich ergebenden effektiven Eigenschaften können in die näch-
ste Größenskala hochskaliert werden. Die Möglichkeit, derartige Effektre abzubilden,
ist von maßgebender Bedeutung bei der Modellierung von chemischen Reaktionen in
Beton die durch Temperatur und Luftfeuchtigkeit beeinflusst werden, wie AKR.
Risse innerhalb der Übergangszone zwischen Zuschlägen und Zementstein werden,
basierend auf einem kohäsiven Modell, mittels eines diskreten Rissansatzes abge-
bildet. Ausserdem wird ein Zugkraft-Separationsgesetz für die kohäsiven Zone entwick-
elt, welches eine mikromechanisch begründetem Wärmefluss-Separationsbeziehung und
eine Diffusionsfluss-Separationsbeziehung kombiniert. Damit kann der Temperatur-
sprung und der Feuchtigkeitssprung im kohäsiven Riss beschrieben werden.
Schließlich werden numerische Beispiele vorgestellt, bei denen die Kombination aus
induzierter Schädigung durch AKR, die nichtlineare effektive Wärmeleitfähigkeit als
Funktion der relativen Luftfeuchtigkeit und die effektive Diffusivität als Funktion der
Temperatur, sowie ein diffusions-thermisch-chemisch-mechanisches kohäsives Modell in
der Übergangszone zwischen Zuschlägen und Zementstein berücksichtigt wird.

Schlagworte: Multiskale, Multiphysics, Beton, Alkali-Kieselsäure-Reaktion, Über-
gangszone



Abstract

This thesis presents a reliable multiscale multiphysics model to analyze failure induced
by alkali-silica reaction (ASR) as well as by weak properties of interfacial transition
zone (ITZ) in the concrete. The mesostructure of concrete consists of aggregates with
a random distribution embedded in a homogenized hardened cement paste (HCP)
as well as the interface elements with zero-thickness as a representation of the ITZ.
One scale lower, the microscale of concrete is represented by the microstructure of
HCP obtained from three-dimensional computer-tomography (CT) scans, including
hydration products, unhydrated residual clinker and micropores.
A three-dimensional diffusion-thermal-chemical-mechanical model is developed at the
mesoscale of concrete, which reflects the deterioration induced by ASR at the mi-
croscale. The analysis of the ASR induced deterioration as a function of the extent
of the chemical reaction is initialized at the microscale of HCP. The temperature and
relative humidity determine the chemical extent. A correlation between the effective
damage due to ASR and chemical extent is obtained through computational homog-
enization, enabling to build the bridge between microscale damage and macroscale
failure.
Computational thermal homogenization and diffusion homogenization with statistical
tests are applied to HCP for obtaining the effective thermal conductivity as a function
of relative humidity and effective diffusivity affected by temperature. The resulting
effective properties of HCP can be upscaled to the next length-scale and the ability to
capture such effects is of significant importance in modeling temperature and humidity
mediated chemical reaction in concrete, such as ASR.
The cohesive zone model (CZM) is used to model the debonding at the ITZ between
HCP and aggregates. Furthermore, the traction-separation law in CZM combined
with micromechanically motivated thermal flux-separation relation and diffusion flux-
separation relation is developed, thus enabling to describe the temperature jump and
humidity jump across the cohesive crack.
At the end numerical examples are illustrated combining the ASR induced damage,
effective thermal conductivity and effective diffusivity of HCP affected by humidity
and temperature respectively, as well as the mechanical-thermal-diffusion analysis at
the ITZ between aggregates and HCP.

Keywords: Multiscale, Multiphysics, Concrete, Alkali-Silica Reaction, Interfacial
Transition Zone
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Chapter 1

Introduction

1.1 Motivation

The many fields of applicability of concrete stem from its wide spectrum of material
properties and stable characteristics. The durability issue of concrete structures is of
great concern, as they are subjected to various environmental attacks, such as alkali-
silica reaction (ASR) (Ulm et al. (2000)), thermal loading (Toumi & Resheidat

(2010)), severe mechanical overloading (Denarié et al. (2006)) or frost (Hain &

Wriggers (2008a)).

(a) (b)

Figure 1.1: (a) ASR-induced cracks viewed on the end face of a 20-year-old reinforced

concrete bridge beam from GRACE company in the U.S. and (b) cracks at

interfacial transition zone (ITZ) between cement paste and aggregates during

freezing and thawing cycles (Sicat et al. (2014)).

Figure 1.1(a) illustrates ASR-induced cracks viewed on the end face of a 20-year-old
reinforced (Portland cement only) concrete bridge beam from GRACE company in the

1



2 CHAPTER 1. INTRODUCTION

U.S., where reactive aggregates were obtained from river gravels. Figure 1.1(b) displays
the existence of cracks at the ITZ between aggregates and cement paste during freezing
and thawing cycles, which could be explained by the weak property of the ITZ due to
higher porosity. The variation of the underlying microstructure of concrete leads to
the macroscale failure, which justifies the need of a deeper insight at the material level.
However, the difficulty and high cost of conventional experiments to be conducted
at the material level of concrete suggests an alternative approach. The increase of
computational capability motivates the development of a multiscale modeling approach
to investigate the correlation between the macroscale failure and the variation of the
microstructure. The multiscale model established in this work is applied to describe
failures induced by ASR and weak properties of the ITZ.

1.2 Background and state of the art

Homogenization is an efficient approach to link micro- and macroscale. Rough bounds
of effective elastic material properties were introduced by Voigt (1889) and Reuss

(1929), and other tight bounds can be found in Zohdi & Wriggers (2005). The lim-
itation that analytical estimates are only valid for simple microstructural geometries,
justifies the need of developing computational homogenization approaches, providing
arbitrarily refinable bounds. For linear elasticity, computational homogenization is
well-established, see Torquato (2002), Zohdi & Wriggers (2005) and references
therein. In the nonlinear elastic regime, the existing problems of the non-uniqueness of
the solution at finite deformations and the non-invertibility of the stress-strain relation
lead to the need of more efforts on the investigations, e.g. isotropic damage with finite
deformation (Löhnert (2004)), anisotropic finite elastoplasticity (Miehe & Schotte

(2007)) and crystal plasticity (Lehmann (2013)). Clearly, the computational cost of
homogenization for nonlinear problem is high. Computational homogenization was also
applied to the thermal problem. Contributions on first-order thermal homogenization
to determine the effective thermal conductivity can be found e.g. in Asakuma et al.

(2004), Laschet et al. (2009), Zhang et al. (2011a) and references therein. Ad-
ditionally, a second-order thermal homogenization framework with higher-order fluxes
was proposed by Temizer & Wriggers (2010b) to capture absolute size effects when
the size of the representative volume element (RVE) is not sufficiently small compared
to a representative macrostructural length scale. Applying diffusion homogenization to
estimate the effective diffusivity is also of significant concern, see Rim et al. (2007),
Krabbenhøft et al. (2008) and Nilenius et al. (In press). Furthermore, Tem-

izer & Wriggers (2011) developed a homogenization framework for the finite ther-
moelasticity analysis of heterogeneous media, based on the appropriate identifications
of the macroscopic density, internal energy, entropy and thermal dissipation.

During the last decade, a considerable amount of work has been developed to de-
scribe the ASR induced failure at different length scales of the concrete in a numerical
manner. Huang & Pietruszczak (1996) established the simple correlation between
the expansion strain due to ASR and mechanical degradation at the macroscale of
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concrete. Ulm et al. (2000), Bangert et al. (2004) and Comi et al. (2012)
analyzed ASR at the macroscale of concrete in the framework of Biot’s theory, tak-
ing into account the influences of temperature and relative humidity on the extent of
reaction. Various analytical models based on empirical equations were also developed
to explain ASR at the mesoscale of concrete, see Bažant & Steffens (2000) and
Multon et al. (2009). Later on, Comby-Peyrot et al. (2009) introduced a three-
dimensional mesoscopic model, where the damage in the cement matrix was caused by
the ASR induced isotropic dilatation of reactive aggregates. Dunant & Scrivener

(2010) and Dunant (2009) proposed a two-dimensional finite element/extended fi-
nite element framework to qualitatively depict the ASR induced deterioration at the
mesoscale of concrete. Alnaggar et al. (2013) adopted the framework of Lattice
Discrete Particle Model (LDPM) to capture the ASR induced crack patterns at the
mesoscale of concrete, where the expansion of the gel occurred at the level of each
individual aggregate particle.
The ITZ plays a significant role in the behavior of concrete. The microstructure of the
ITZ with high porosity was investigated through experiments, see Monteiro et al.

(1985) and Maso (1996). Later on, its significant role was considered numerically. For
instance, in order to obtain the better estimation of the elastic modulus of concrete, not
only the cement paste and aggregates, but also the ITZ have already been considered
in the numerical simulations, see Ramesh et al. (1996) and Nadeau (2003) and
Lee & Park (2008). Cohesive zone model (CZM) was widely utilized to describe the
debonding at the ITZ as well as the resulting influences on the macroscale behavior of
concrete, see Carol et al. (2001), Häfner et al. (2006), Eckardt & Könke

(2008), Snozzi et al. (2011) and Snozzi et al. (2012), in terms of various types
of load, e.g. static tension and compression as well as dynamic tension and compres-
sion. Apart from the mechanical problem, the thermal conduction across the ITZ also
gains attention. Willam et al. (2004) employed a traction-separation law in CZM
combined with a thermal flux-separation relation to model the thermal resistance at
the crack interface, where the thermal interface damage was defined as a function of
separation. As compared to a few contributions on the thermal problem for the ITZ,
more investigations concerning the influence of cracking or debonding on the diffusivity
of concrete were conducted through not only analytical but also numerical approaches.
Gérard & Marchand (2000) and Lundgren (2002) addressed analytical models to
describe how cracks affect the diffusion properties of concrete based on the assumption
of the simple size distribution and geometry of the crack. Numerical work can be found
e.g. in Kamali-Bernard & Bernard (2009), Bentz et al. (2013) and references
therein.

1.3 Structure

The aim of this thesis is to develop a reliable multiscale multiphysics model to analyze
failures induced by ASR as well as by weak properties of the ITZ between hardened
cement paste (HCP) and aggregates, see Figure 1.2 for the framework, which can be
split into three blocks.
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Macroscale Mesoscale Microscale

ASR

Debonding
ITZ

Thermal flux Diffusion flux

∂B
+
t

∂B
−

t
t
+

t
−

θ+

θ−

s+

s−

Figure 1.2: Framework of multiscale multiphysics modeling of concrete.

• At the mesoscale, the transient temperature and relative humidity in the HCP
determine the ASR chemical extent at the material point. The resulting chemi-
cal extent is utilized to calculate the damage induced by ASR at the microscale
through the correlation between the effective damage of HCP and chemical ex-
tent. A staggered method is employed at the mesoscale of concrete to solve the
coupled problems, yet the chemical damage quantity is upscaled from the mi-
croscale during the process.

• Debonding at the ITZ between HCP and aggregates is modeled by CZM, which
subsequently leads to the temperature jump and the humidity jump across the
interface crack.

• By using computational thermal homogenization and diffusion homogenization,
the effective thermal conductivity of HCP as a function of humidity and effective
diffusivity of HCP affected by temperature are obtained. Such effects could be
incorporated into the modeling of ASR.



1.3. STRUCTURE 5

Chapter 2 provides an introduction to the fundamentals of continuum mechanics and
constitutive laws for the bulk phase, e.g. damage and visco-plasticity, and for the in-
terface phase, e.g. CZM as well as thermal conduction and humidity diffusion across
the cohesive interface. Also, the weak forms of the mechanical, thermal and diffusion
problems are addressed, including the components related to interface and bulk phases.

Chapter 3 explains the theory of the Finite Element Method (FEM) and the discretized
weak forms of the mechanical, thermal and diffusion problems.

One of important aims of this thesis is to model the ASR-induced failure. Chapter 4
illustrates the chemical mechanism of ASR as well as the analytical expression of chemi-
cal extent as functions of temperature and relative humidity, thus establishing the basis
of diffusion-thermal-chemical-mechanical coupling.

Constructing the geometry representation at the material level of concrete determines
the accuracy and reliability of multiscale numerical simulations. The approaches fol-
lowed for generating the mesostructure of concrete, the zero-thickness interface ele-
ments representing the ITZ as well as the microstructure of HCP are explained in
Chapter 5.

Chapter 6 focuses on the introduction to computational mechanical, thermal and dif-
fusion homogenization. Moreover, two-step homogenization is utilized to obtain the
microscale expansion coefficient of the gel as a reaction product of ASR. This chapter
is concluded with one example to explain the effective damage of HCP induced by ASR
as a function of the chemical extent.

In Chapter 7, CZM is employed to model the debonding at the ITZ and various param-
eters are tested to investigate their influences on the macroscale behavior of concrete.
These parameters are tensile strength, fracture energy, specimen size as well as ran-
dom distribution of aggregates. Additionally, a mechanical-thermal-diffusion cohesive
model is established based on a staggered method to depict the evolution of thermal
conduction and humidity diffusion, as the cracks occur.

Numerical examples are illustrated in Chapter 8, combining ASR induced damage,
effective thermal conductivity and diffusivity of HCP affected by humidity and tem-
perature respectively, as well as failure at the ITZ.

The conclusions of this thesis and an outlook on future work are addressed in Chapter 9.
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Chapter 2

Continuum mechanics

This chapter outlines the fundamentals of continuum mechanics for the material body.
Here, the basic equations of kinematics, balance equations, constitutive equations as
well as variational principles are presented. More details about continuum mechanics
can be found, e.g. in Truesdell & Noll (1965),Mase & Mase (1999),Holzapfel

(2000), Haupt (2002), Reddy (2008), Gurtin et al. (2010) and references therein.

2.1 Kinematics

Kinematics deals with the description of the motion and deformation of a body B in
time, see Figure 2.1. This section provides the introduction to motion, deformation, as
well as strain tensor.

ϕ

E0

X
x

p
dX

B0

Bt

p
dxu

Figure 2.1: Initial configuration B0 and current configuration Bt.
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2.1.1 Deformation

In the context of continuum theory, a material body B is assumed to be a set of
continuously distributed material points p in Euclidean space R

3. According to the
assumption of the coherence of material points during the deformation, the kinematic
process can be described by a continuous and one-to-one mapping of each material
point p from the material body B to a region B through a bijective function χ

χ := B 7−→ B . (2.1.1)

The position vector of an arbitrary material point p at time t0 = 0 is defined by

X = χ0(p) , X ∈ B0 , (2.1.2)

where B0 is referred to as the initial configuration. At an arbitrary time t > t0, the
position vector of a material point p is

x = χt(p) , x ∈ Bt , (2.1.3)

where Bt referred to as the current configuration deforms due to either internal or
external load. The mapping between x and X is unique

X = χ0(χ
−1
t (x)) := ϕ−1(x) , x = χt(χ

−1
0 (X)) := ϕ(X) . (2.1.4)

As displayed in Figure 2.1, the displacement vector u describes the motion of the point
p from the initial to the current configuration

u = x−X . (2.1.5)

The deformation gradient F characterizes a mapping of an infinitesimal line element
in the initial configuration dX to the current configuration dx

dx = F · dX , (2.1.6)

with the definition

F =
∂x

∂X
= 1+

∂u

∂X
= 1+H , (2.1.7)

where H is the displacement gradient and the deformation gradient F is an unsym-
metric two-point tensor

F = Fijei ⊗Ej , (2.1.8)

where Fij are the components of F . Ej and ei are base vectors in the initial and
current configuration respectively. Thus, F is able to transform tensors between the
initial and current configuration. The determinant of the deformation gradient F

J = det(F ) > 0 , (2.1.9)

is named the Jacobian J . Following Equation (2.1.6), Nanson’s formula is adopted
to transform an infinitesimal surface element from the initial to current configuration

n da = JF−T ·N dA , (2.1.10)
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where dA and da are infinitesimal surface elements in the initial and current config-
uration respectively. In addition, N and n are the outward unit normal vectors to
the surface element in the initial and current configuration. With the aid of the Ja-

cobian J , the transformation of an infinitesimal volume element between the initial
configuration dV and the current configuration dv is given by

dv = J dV . (2.1.11)

2.1.2 Strains

The limitation that the deformation gradient F can only describe the deformation of an
infinitesimal volume element as well as rigid body rotations, enforces the development
of alternatives, such as Green-Lagrange strain tensor E in the initial configuration
and Euler-Almansi strain tensor e in the current configuration, which are described
by interpreting strains as infinitesimal length changes

‖ dx ‖22 − ‖ dX‖22 = dx · dx− dX · dX
= dX · F T · F · dX − dX · dX
= dX · (F T · F − 1) · dX
= dX · 2E · dX .

(2.1.12)

‖ dx‖22 − ‖ dX‖22 = dx · dx− dX · dX
= dx · dx− dx · F−T · F−1 · dx
= dx · (1− F−T · F−1) · dx
= dx · 2e · dx .

(2.1.13)

The Green-Lagrange strain tensor E is expressed as a function of displacement
gradient H by

E =
1

2
(H +HT +HT ·H) . (2.1.14)

For small deformation, it can also be written as

E ≈
1

2
(H +HT ) . (2.1.15)

Analogously, the symmetric strain tensor ǫ for small deformation in the current con-
figuration is given by

ǫ =
1

2
(gradu+ gradTu) . (2.1.16)

In order to depict the irrelevant deformation like viscosity or plasticity, the material
velocity gradient is defined by

Ḟ =
∂ẋ

∂X
. (2.1.17)

The spatial strain velocity d

d =
1

2

(

Ḟ · F−1 + F−T · Ḟ
T
)

, (2.1.18)

is also required.



10 CHAPTER 2. CONTINUUM MECHANICS

2.2 Stresses

Let the body B deform under an external load, such that it occupies the space Bt in
the current configuration, and then assume that it is cut by a plane surface, see Figure
2.2. The traction t is defined as surface force f s per unit area ds, i.e. df s = tds.
The tractions on the corresponding surface elements in the counterpart of the body
cut by a plane are of the same magnitude, yet with opposite directions, following the
Newton’s third law, see, t(x,−n) = −t(x,n). According to the Cauchy’s stress

Bt

t

t

n

n

Figure 2.2: Surface traction vectors on surfaces resulting from a cut through a body.

theorem, the surface traction t can be defined by

t = σ · n , (2.2.1)

where σ is the Cauchy’s stress tensor with the symmetric property σ = σT resulting
from the balance law of angular momentum in non-polar media.

2.3 Balance equations

The balance equations of continuum mechanics, developed from physical observations,
are valid independent of the material body under consideration. This section outlines
the balance of mass, balance of linear and angular momentum, balance of energy as
well as the second fundamental theorem of thermodynamics.

2.3.1 Balance of mass

The mass m as a physical parameter exists in each material body B. In a closed
system, the mass change of the body in time is assumed to be preserved, independent
of the motion and deformation

d

dt
m = 0 . (2.3.1)
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Evaluating the volume integral of the mass density ρ over the domain in the initial or
current configuration yields the mass of the body with the aid of Equation (2.1.11)

m =

∫

Bt

ρ dv =

∫

B0

Jρ dV =

∫

B0

ρ0 dV , (2.3.2)

where V and v denote the volume elements in the initial and current configuration
respectively. The relationship of the initial mass density ρ0 and the current mass
density ρ is given by

ρ0 = Jρ . (2.3.3)

Inserting Equation (2.3.3) into (2.3.1) yields the integral form of mass balance

d

dt
m =

∫

B0

d

dt
(Jρ) dV =

∫

B0

(ρ̇ + ρ div ẋ)J dV =

∫

Bt

(ρ̇ + ρ div ẋ) dv = 0. (2.3.4)

As Equation (2.3.4) has to hold for any arbitrary volume, the local form is written as

ρ̇ + ρ div ẋ = 0 . (2.3.5)

2.3.2 Balance of linear and angular momentum

The linear momentum I of the body is defined by

I =

∫

Bt

ρ ẋ dv . (2.3.6)

The time derivative of linear momentum I equals the sum of all external and internal
forces

d

dt
I =

∫

Bt

ρb dv +

∫

∂Bt

t da , (2.3.7)

where f = ρb is the volume force vector. Employing the combination of the Cauchy’s
stress theorem, the balance of mass in Equation (2.3.4) as well as the change of linear
momentum in Equation (2.3.7), yields the change of linear momentum in integral form

∫

Bt

(div σ + f) dv = 0 . (2.3.8)

Thus, the local form of the balance of linear momentum is given by

div σ + f = 0 . (2.3.9)

The angular momentum L of a body is defined by

L =

∫

Bt

ρ (x− x0)× ẋ dv . (2.3.10)

Here, the time derivative of angular momentum L equals the sum of all momentums
of forces acting on the body in the current configuration

d

dt
L =

∫

Bt

ρ ((x− x0)× b) dv +

∫

∂Bt

((x− x0)× t) da . (2.3.11)
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2.3.3 Balance of energy

In a closed system, the energy W of a body is preserved in the context of the first law
of thermodynamics. W is the sum of the internal energy U and the kinetic energy K

W = U +K . (2.3.12)

The internal energy U is written as

U =

∫

Bt

ρu dv , (2.3.13)

where u is the specific internal energy. The kinetic energy K is defined by

K =
1

2

∫

Bt

ρ ẋ · ẋ dv . (2.3.14)

The change of the energy W in time is determined by the sum of the external power
input P and the thermal power supply Q

Ẇ = P +Q . (2.3.15)

The body forces ρb and the surface tractions t contribute to the external power input
P

P =

∫

Bt

ρb · ẋ dv +

∫

∂Bt

t · ẋ da . (2.3.16)

The thermal power supply Q is given by

Q =

∫

Bt

ρr dv −

∫

∂Bt

q · n da , (2.3.17)

which is contributed by a distributed internal heat source of strength r and heat flux q

through the surface of the body. With the combinations of Equations (2.3.13), (2.3.14),
(2.3.15), (2.3.16) and (2.3.17), the balance of energy in integral form is given by

d

dt

∫

Bt

ρ
(

u+
1

2
ẋ · ẋ

)

dv =

∫

∂Bt

ρ (r + b · ẋ) dv +

∫

∂Bt

(t · ẋ− q · n) da . (2.3.18)

According to the symmetric part of the velocity gradient in Equation (2.1.18), the local
balance of linear momentum in Equation (2.3.9) and the Cauchy’s stress theorem, the
integral form of the balance of energy can also be written as

∫

Bt

ρu̇ dv =

∫

Bt

(σ : d+ ρr − divq) dv , (2.3.19)

leading to the local form of the balance of energy in the current configuration

ρu̇− σ : d+ divq − ρr = 0 . (2.3.20)
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2.3.4 Second fundamental theorem of thermodynamics

In a closed system, the theorem of the balance of energy indicates that no energy can be
created. The second fundamental theorem of thermodynamics addresses the direction
of a thermomechanical process with the aid of entropy L, which is formulated by

L =

∫

Bt

ρl dv , (2.3.21)

where l is a specific density of entropy. According to the second fundamental theorem
of thermodynamics, the change of entropy of a body in time is not less than the entropy
input due to internal heat source ρr and the entropy input due to heat flux q through
the surface of the body

d

dt

∫

Bt

ρl dv >

∫

Bt

ρ
r

θ
dv −

∫

∂Bt

q · n

θ
da . (2.3.22)

Using the divergence theorem, the global form of the fundamental theorem can be
written as ∫

Bt

ρ l̇ dv >

∫

Bt

(

ρ
r

θ
−

(θdivq − q · gradθ)

θ2

)

dv , (2.3.23)

leading to the local form

ρθl̇ > ρr − divq +
q

θ
· gradθ . (2.3.24)

Considering Equation (2.3.20), it yields

0 6 ρ
d

dt

[

θl − u
]

− ρ θ̇l + σ : d−
q

θ
· gradθ . (2.3.25)

The term in brackets is denoted as free energy ψ or Helmholtz free energy

ρψ := u− θl . (2.3.26)

The time total differentiation of ψ = ψ(θ, gradθ, ǫ) leads to

ψ̇ =
∂ψ

∂θ
θ̇ +

∂ψ

∂gradθ
· ˙gradθ +

∂ψ

∂ǫ
: ǫ̇ . (2.3.27)

Incorporating Equation (2.3.25), it yields

0 6

(

σ − ρ
∂ψ

∂ǫ

)

: ǫ̇− ρ θ̇
(∂ψ

∂θ
+ l
)

− ρ
∂ψ

∂gradθ
· ˙gradθ −

q

θ
· gradθ , (2.3.28)

where ǫ̇ and d are equal in the small deformation. As standard arguments of continuum
mechanics state for arbitrary rates of each term, the stress σ and entropy l are given
by

σ := ρ
∂ψ

∂ǫ
, l := −

∂ψ

∂θ
. (2.3.29)
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Hence, the Helmholtz free energy has to be independent of the temperature gradient

∂ψ

∂gradθ
= 0 , (2.3.30)

leading to
ψ = ψ(θ, ǫ) . (2.3.31)

Simplifying Equation (2.3.25) yields the Clausius-Duhem inequality

0 6 σ : ǫ̇− ρ (ψ̇ + lθ̇)−
q

θ
· gradθ , (2.3.32)

with the dissipation D := σ : ǫ̇− ρ (ψ̇ + lθ̇).

2.4 Constitutive equations of bulk phase

Apart from the kinetics and balance equations mentioned above, the so-called con-
stitutive law describing the physical behavior is also required to solve the boundary
value problem (BVP). In order to avoid developing a non-physical constitutive law, the
following principles should be fulfilled, e.g. principles of causality, determinism, objec-
tivity, material symmetry, local action and among others. For getting the thorough
review of each principle, the reader is referred e.g. to Noll (1955), Ciarlet (1994)
and Truesdell & Noll (2004).
Even though concrete exhibits heterogeneity at different length-scales, it could be gen-
erally classified into bulk phase and interface phase. This section concentrates on the
constitutive equations for the bulk phase, e.g. damage and visco-plasticity.

2.4.1 Continuum damage model

Continuum damage mechanics is a prevailing approach to describe the deterioration of
the material. In the context of continuum damage mechanics, the damage variable is
employed to phenomenologically predict the initiation and propagation of microcracks,
as well as the ultimately induced macroscale failure of the material, relying on the
assumption that the material is continuum, as explained in Zhang & Cai (2010). The
significance of continuum damage mechanics is underlined due to its intrinsic simplicity,
consistency within the framework of the thermodynamics of irreversible processes, as
well as low computational cost from the numerical point of view.
Over the past 30 years, a large number of continuum damage models were devel-
oped for concrete, which can be generally classified into two categories: isotropic
and anisotropic. The isotropic damage model assumes the orientation of microcracks
with uniform distributions in all directions, see e.g. Mazars (1986), Mazars &

Pijaudier-Cabot (1989), Karihaloo & Fu (1990) and Comi & Perego (2001).
However, in the concept of anisotropic damage model, opening microcracks are pre-
dominantly oriented, orthogonal to the direction of the maximum tensile stress, thereby
leading to the existence of the anisotropy, see e.g. Halm & Dragon (1998), Fichant
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et al. (1999), Badel et al. (2007) and Kim & Al-Rub (2011).

In this work, the isotropic Mazars damage model is defined for HCP, see Mazars

& Pijaudier-Cabot (1989) for more details. Incorporating the isotropic mechanical
damage Du, the relationship of strain-stress for the elastodamaging material is given
by

σ = (1−Du)C0 ǫ , (2.4.1)

where C0 is the elastic material tensor. The mechanical damage variable Du(0 6 Du 6

1) indicates 0 for the virgin material and states 1 for the completely damaged material.
The free energy or elastic energy per unit mass of the material is expressed by

ρψ =
1

2
(1−Du)ǫC0 ǫ . (2.4.2)

The damage energy release rate Y is written as

Y = −ρ
∂ψ

∂Du
=

1

2
ǫC0 ǫ , (2.4.3)

with the rate of the dissipated energy φ̇

φ̇ = −ρ
∂ψ

∂Du
Ḋu . (2.4.4)

Here, the equivalent strain ǫ̃ is expressed by

ǫ̃(ǫ) =

√
√
√
√

3∑

i=1

(〈ǫi〉+)2 , (2.4.5)

where ǫi are principal strains and 〈•〉+ is theMacauley bracket. The loading function
of the mechanical damage is given by

fm(ǫ̃, κb) = ǫ̃− κb , (2.4.6)

where κb is the threshold of damage growth, determined by the maximum value of
the equivalent strain during the loading history, yet it is initialized with κ0 =

ft
E
, as a

function of the peak stress ft and Young’s modulus E under uniaxial tensile load.

Mehta & Monteiro (2001) indicated that the concrete exhibits high compressive
strength, yet relatively lower tensile strength, such that it behaves distinctively in
tension and compression. For this reason, the mechanical damage is split into two
parts

Du = Du

t +Du

c , (2.4.7)

where Du

t and Du

c are mechanical damage variables induced by tensile and compressive
loads respectively. The weighting coefficients αt and αc are determined by

αt =
3∑

i=1

(〈ǫti〉〈ǫi〉

ǫ̃2

)

, αc =
3∑

i=1

(〈ǫci〉〈ǫi〉

ǫ̃2

)

. (2.4.8)
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In uniaxial tension αt = 1 and αc = 0. In uniaxial compression αt = 0 and αc = 1.
Principal strains ǫt and ǫc are defined as functions of positive stress σt and negative
stress σc by

ǫt = (1−Du)C−1
0 σt , ǫc = (1−Du)C−1

0 σc . (2.4.9)

The evolution equations of mechanical damage variables in tension and compression
are written as

Du

t = 1−
κ0(1−At)

κ
−

At
exp[Bt(κb − κ0)]

Du

c = 1−
κ0(1−Ac)

κ
−

Ac
exp[Bc(κb − κ0)]

,

(2.4.10)

which are defined in the strain space as a function of κb. Moreover, At, Ac, Bt, Bc and
κ0 are material parameters to be determined. Thus, the mechanical damage can also
be defined as a function of κb by

Du = Du

t +Du

c = g(κb) , (2.4.11)

representing the failure surface function Su. Loading function fm controls whether the
damage is increased or not

If fm(ǫ̃, κb) and ḟ(ǫ̃, κb) = 0, then . (2.4.12)

{
Du = g(κb)
κb = ǫ̃

with Ḋu > 0, else

{
Ḋu = 0
κ̇b = 0

. (2.4.13)

2.4.2 Visco-plasticity

Continuum mechanics model is able to predict the stiffness reduction of the material,
yet fails to describe the irreversible deformations. Therefore, in the present work, a
visco-plastic model of the classical Perzyna-type combined with isotropic Mazars

damage is defined for the HCP based onHain (2007) andHain & Wriggers (2008b).
Neglecting the thermal strain and the expansion strain due to ASR, the energy dissi-
pation D can be written as

D : σ : ǫ̇pl + Y Ḋu > 0 , (2.4.14)

where Y = −ρ ∂ψ

∂Du = 1
2
ǫel : C0 : ǫel is an elastic energy rate as functions of an elastic

material tensor C0 and the elastic strain ǫel. According to the Drucker’s postulate
and the Penalty-Lagrange approach, an unconstrained optimization is given by

P : −σ : ǫ̇pl − Y Ḋu +
1

η
φ(fy) + χ̇Su → stationary , (2.4.15)

where 1
η
denotes the penalty-parameter of the viscosity, ǫpl is the plastic strain, φ(fy)

is the penalty function and χ states the Lagrange multiplier. In addition, the yield
surface fy 6 0 is defined in the stress space and the failure surface Su 6 0 is defined
in the strain space. Assuming that the elastic energy rate Y , the rate of mechanical
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damage Ḋu and the failure surface Su are independent of the stress, the partial dif-
ferentiation of P with respect to σ yields the evolution equation of the plastic strain
ǫpl

∂P

∂σ
!
= 0 → −ǫ̇pl −

∂Y

∂σ
Ḋu − Y

∂Ḋu

∂σ
+

1

η

∂φ(fy)

∂fy

∂fy
∂σ

+ χ̇
∂Su

∂σ
= 0

ǫ̇pl =
1

η
φ+ fy
∂σ

,

(2.4.16)

where φ+ is the derivative of the penalty function φ(fy)

φ+ :=
∂φ(fy)

∂fy
→ φ(fy) =

{
0 ; fy < 0

1
m+1

fm+1
y ; fy > 0

(2.4.17)

where m is assumed to be 1. Here, the Von-Mises-type yield surface is chosen

fy := ||devσ|| −

√

2

3
kf < 0 , (2.4.18)

where devσ is the deviatoric part of the stress tensor and kf is the material property
of the model.
The evolution equation of the damageDu is obtained through the partial differentiation
of P with respect to the elastic energy rate Y

∂P

∂Y
!
= 0 → 0 = −Ḋu −

1

η

∂φ(fy)

∂fy

∂fy
∂Y

+ χ̇
∂Su

∂Y

Ḋu = χ̇
∂Su

∂Y
.

(2.4.19)

which is independent from the strain since the penalty function φ(fy) is defined in the
stress space. In terms of the failure surface Su, one can refer to Equation (2.4.11).
Applying the implicit time integration of Backward-Euler to Equations (2.4.16)
and (2.4.19) yields the evolution equations for inelastic strain and damage

ǫ
pl
n+1 = ǫpln +

∆t

η
φ+∂fy

∂σ
. (2.4.20)

Du

n+1 = Du

n +∆χ
∂Su

∂Y
. (2.4.21)

2.5 Constitutive equations of interface phase

As illustrated in Figure 2.3, an interface layer exists in the body Bt subjected to vari-
ous boundary conditions, e.g. displacement ū, traction t̄, temperature θ̄, thermal flux
q̄n, humidity s̄ and diffusion flux j̄n. The external force could result in the cracking or
debonding at the interface layer, such that the body is split into two parts: B+

t and B−
t .

Later on, it poses the problem how the interface crack affects the thermal conduction
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and the humidity diffusion.

The aim of this section is to address the constitutive equations for the interface phase
of concrete, namely for the ITZ between the HCP and aggregates. With an intention
of modeling the debonding at the interface phase, CZM is used, which is character-
ized by a phenomenological traction-separation law. Also, the investigations of the
influence of the interface crack on the thermal conduction as well as the humidity dif-
fusion are conducted. The established traction-separation law of CZM is combined
with micromechanically motivated thermal flux-separation relation and diffusion flux-
separation relation, thereby enabling to account for the evolving thermal conduction
and humidity diffusion.

∂B+
t

∂B−

t

ū

t̄

j̄n
s̄

θ̄

q̄n

∂B+
t

∂B−

t

B+
t

B−

t

u
+

θ+
s+

θ−u
− s−

66
?

?

��
�	

j−n

j+n

q−n

q+n

t
−

t
+

Figure 2.3: An interface exists in a body subjected to various boundary conditions lead-

ing to: displacement jump, temperature jump and humidity jump across the

interface crack.

2.5.1 Introduction to cohesive zone model (CZM)

The CZM first developed by Dugdale (1960) has already been widely applied to
adequately predict the failure in various materials, e.g. concrete (Elices et al.

(2009)), ceramics (Chandra et al. (2002)) and composites (Li et al. (2005)),
which successes in circumventing the problems existing in linear elastic fracture me-
chanics (LFEM), like stress singularity. Theoretically, CZM describes the failure of
the material by means of a phenomenological model rather than an exact physical
characterization of the fracture process zone with distributed microcracks, see Figure
2.4(a), where a0 and ad indicate the length of the real crack and the fictitious crack
respectively, as well as wd states the width of the real crack. Furthermore, the real
crack is not capable of bearing stress transmission, however, the assumed “fictitious
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.

(a) (b)

Real crack
Fictitious crack

Real crack Fictitious

a0 ad

a0 ad

Wd

[1] [2]

[3] [4]

λ λ

λ λ

σc σc

σc σc

Figure 2.4: (a) Sketch of cohesive zone as the representation of an extended crack tip and

(b) various forms of traction-separation law of CZM ([1] Bilinear [2] Trapezoidal

[3] Polynomial [4] Exponential).

crack” applied in the cohesive zone exhibits an active field of interactive stress, where
the phenomenological traction-separation law is motivated. Thus, the cohesive zone is
considered as the representation of an extended crack tip.

As introduced in Park & Paulino (2011), the constitutive law of CZM can be de-
veloped based on either nonpotential -based or potential -based model. By using simple
formulations, the nonpotential-based cohesive model is established, yet the consistency
for arbitrary mixed-mode condition can not be ensured, dependent of separation paths.
With regard to potential-based model, the CZM law is obtained from a potential func-
tion associated with the non-negative work for closed processes, hence, not only the
consistency is fulfilled but also it is independent of path.

Form Sketch Application References

Bilinear Figure
2.4(b)[1]

pull-out or
impact

Geubelle & Baylor (1998), Chandra

et al. (2002), Song et al. (2006)

Trapezoidal Figure
2.4(b)[2]

crack
growth

Tvergaard & Hutchinson (1992), Al-

fano et al. (2009)

Polynomial Figure
2.4(b)[3]

particle-
matrix
decohesion

Needleman (1987), Freed & Banks-

Sills (2008)

Exponential Figure
2.4(b)[4]

void nucle-
ation

Needleman (1990), Xu & Needleman

(1993), Alfano et al. (2009), Távara

et al. (2013)

Table 2.1: Summary of widely used traction-separation laws consisting of forms, applica-

tions and references.
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Widely adopted traction-separation laws are displayed in Figure 2.4(b), e.g. bilinear,
trapezoidal, polynomial and exponential. Among various forms of traction-separation
law, the common feature is clearly concluded that initially the magnitude of the traction
is increased as the separation of cohesive surfaces rises, and after reaching a critical peak
value, the traction drops towards zero following various softening curves. For instance,
Geubelle & Baylor (1998) adopted the bilinear form to simulate the spontaneous
initiation and propagation of transverse matrix cracks and delamination fronts in thin
composite plates subjected to low-velocity impact. The trapezoidal form was used
in Tvergaard & Hutchinson (1992) to calculate the crack growth initiation and
the subsequent resistance in an elastic-plastic solid. Needleman (1987) employed
the exponential form to simulate the particle debonding in the metal matrices. In
application to the pre-cracked bonded double cantilever beam specimen with mode I
fracture, Alfano et al. (2009) assessed whether or not the forms of the traction-
separation law may have influences on numerical results, e.g. exponential, bilinear and
trapezoidal. A short summary is displayed in Table 2.1, in which a limited number
of applications as well as references of various forms of traction-separation law are
outlined, see Chandra et al. (2002) and Park & Paulino (2011) for thorough
reviews. Here, some additional features of CZM are as follows:

• CZM is capable of modeling not only a single crack tip, but also crack propaga-
tion,

• CZM allows additional constitutive relationships to be incorporated into its frame-
work, such that it is able to account for other phenomena like contact and fric-
tional sliding along fracture surface.

For a comprehensive insight into the CZM, its limitations are also underlined:

• No item defined for the interaction of constitutive laws between the bulk phase
and the interface phase raises the difficulty in determining parameters of CZM
through parameter identification compared with the experiment,

• CZM has problems solving not only too small-scale problem, such as nanoscale,
but also mixed-mode fracture.

For getting more details of limitations of the CZM, the reader is referred e.g to Park

& Paulino (2011), Li et al. (2012) and references therein.

2.5.2 Adopted CZM in this work

The goal of the present subsection is to focus on the employed CZM in the present
work originating from Tvergaard (2003) in order to describe the debonding between
aggregates and HCP in concrete. Prior to the introduction of the nonlinear traction-
separation law, an equivalent interface opening λ is defined as a function of the normal
displacement jump [|u|]n and tangential displacement jump [|u|]ti

λ =

√
√
√
√〈[|u|]n〉

2
+ +

2∑

i=1

([|u|]ti)2 , (2.5.1)
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where 〈•〉+ indicates that only the positive displacement jump is considered. The
equivalent traction σc across the cohesive crack is given by

σc(λ) =

{

Kpλ ;λ < λ0
ftexp

−ft(λ−λ0)
Gf

; otherwise
, (2.5.2)

where ft is the tensile strength, Gf is the fracture energy, Kp is the penalty stiffness
and λ0 =

ft
Kp

denotes the elastic limit. The potential Φ is expressed by

Φ =

∫

Bt

σc(λ)dλ . (2.5.3)

The traction across the cohesive crack satisfies the continuity condition

t+c = −t−c , (2.5.4)

where the superscripts (•)+ and (•)− indicate the separate parts ∂B+
t and ∂B−

t respec-
tively, as shown in Figure 2.3. The traction tc consists of the normal traction tcn and
the tangential traction tcti

tc =





tcn
tct1
tct2



 , (2.5.5)

which are obtained through partial derivatives of the potential Φ with respect to the
normal displacement jump [|u|]n and the tangential displacement jump [|u|]ti

tcn =
∂Φ

∂[|u|]n
= σc(λ)

[|u|]n
λ

, tcti =
∂Φ

∂[|u|]ti
= σc(λ)

[|u|]ti
λ

, (2.5.6)

where λ is assumed to be the maximum value of the equivalent strain during the loading
history. In order to implement it in the FEM, the mechanical tangent material matrix
Cu

c is obtained by partial differentiations of the resulting traction with respect to the
displacement jump

C
u

c =











∂tcn

∂[|u|]n

∂tcn

∂[|u|]t1

∂tcn

∂[|u|]t2
∂tct1

∂[|u|]n

∂tct1

∂[|u|]t1

∂tct1

∂[|u|]t2
∂tct2

∂[|u|]n

∂tct2

∂[|u|]t1

∂tct2

∂[|u|]t2











. (2.5.7)

By using the chain rule, the components of the mechanical tangent stiffness matrix C
u

c

are given by
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∂tcn

∂[|u|]n
=
[∂σc

∂λ
−

σc

λ

] ∂λ

∂[|u|]n

[|u|]n
λ

+
σc

λ

∂tcn

∂[|u|]ti
=
[∂σc

∂λ
−

σc

λ

] ∂λ

∂[|u|]ti

[|u|]n
λ

∂tcti

∂[|u|]n
=
[∂σc

∂λ
−

σc

λ

] ∂λ

∂[|u|]n

[|u|]ti
λ

∂tcti

∂[|u|]tj
=
[∂σc

∂λ
−

σc

λ

] ∂λ

∂[|u|]tj

[|u|]n
λ

+ δij
σc

λ
,

(2.5.8)

where δij is the Kronecker delta symbol. The derivative of the equivalent interface
traction σc with respect to the equivalent interface opening λ is expressed by

∂σc

∂λ
=

{

Kp ;< λ0

−
f2t
Gf
exp−ft(λ−λ0)

Gf
; otherwise ,

(2.5.9)

Moreover, derivatives of the equivalent interface opening λ with respect to the displace-
ment jump are given by

∂λ

∂[|u|]n
=

[|u|]n

λ
,

∂λ

∂[|u|]cti
=

[|u|]cti

λ
. (2.5.10)

Note that the formulations mentioned above are applied to the case of the tension, with
a positive interface opening in the normal direction. If the interface is subjected to the
compressive load, by means of the penalty method in the context of contact mechanics,
the normal interface compression pressure is formulated by

tcn = Kp[|u|]n , (2.5.11)

where Kp is a penalty parameter, which can be interpreted as a spring stiffness. The
penalty method allows for a small penetration of the crack faces, depending on the
penalty parameter Kp. Clearly, a high penalty parameter yields a small penetration,
but it also results in the ill-conditioned problem.

In compression, the mechanical tangent material matrix C
u

c is given by

C
u

c =









Kp 0 0

0
∂tct1

∂[|u|]t1

∂tct1

∂[|u|]t2

0
∂tct2

∂[|u|]t1

∂tct2

∂[|u|]t2









, (2.5.12)

where the components can be found in Equation (2.5.8).

Figure 2.5 illustrates the normal traction-opening and the tangential traction-opening,
from which the physical meanings of ft and Gf are indicated, e.g. ft is the peak value
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Figure 2.5: Traction-separation law including the irreversible damage in loading-unloading

(a) normal traction-opening and (b) tangential traction-opening.

of the traction-separation law and Gf represents the area beneath the curve. Clearly,
the magnitude of the traction rises as λ is increased initially, and if λ reaches a char-
acteristic value λ0, the traction starts decreasing towards zero. For a reliable CZM,
the irreversible behavior in unloading has to be also taken into account, such that
the standard CZM is extended with the description of damage, plasticity or combined
damage-plasticity. In the present work, the extension of CZM with damage description
is based on a single history parameter λm, representing the maximum equivalent inter-
face opening during the loading history, as displayed in Figure 2.5. In this case, if the
body is in loading, λ = λm and λ̇ > 0, and if it is in unloading, λ 6 λm. More advanced
and well-established interface damage models can be found e.g. in Ortiz & Pandolfi

(1999), Alfano & Sacco (2006) and Kolluri et al. (2014). Additionally, CZM
is extended with combined damage-plasticity model, thereby depicting the influence of
both crack tip damage and plasticity on fracture properties, see Biel & Stigh (2010)
and Kolluri et al. (2014).

As indicated before, ft and Gf are crucial parameters of CZM, hence, Figure 2.6 is con-
cerned with the influence of tensile strength ft and fracture energy Gf on the traction-
separation law respectively. Clearly, as displayed in Figure 2.6, the larger ft yields the
higher peak cohesive stress, and the smaller Gf renders the steeper slope of the post-
peak curve. Being aware of the influence of ft and Gf on the traction-separation law in
the analytical mode not only enhances the understanding on the theory of CZM, but
also supports the implementation of the parameter identification in the computational
analysis.

Figure 2.7 illustrates the normal traction and the tangential traction with functions of
normal displacement jump and tangential displacement jump.
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Figure 2.7: Traction-separation law (a) normal traction and (b) tangential traction, with

functions of normal displacement jump and tangential displacement jump.

2.5.3 Thermal conduction across the interface

Ideally, when two dissimilar materials are assumed to be perfectly bonded, there is
no temperature jump and no thermal flux jump cross the interface, namely thermally
perfect interface, see Daher & Maugin (1986). However, realistically the perfectly
bonded interface does not exist, explained by either pre-existing microcracks at the
interface or the debonding induced by the external load. Therefore, it motivates the
investigation to the thermal conduction across the imperfect interface. According to
the thermal property of the interface, the classification is concluded as follows:

• Thermally perfect interface: both the temperature and the heat flux across the
interface are continuous.

• Thermally imperfect interface: either the temperature or the heat flux (or both)



2.5. CONSTITUTIVE EQUATIONS OF INTERFACE PHASE 25

across the interface are discontinuous.

(I) Highly-conducting interface (HC): the temperature cross the interface is
continuous, yet the jump of the normal heat flux exists, induced by the presence
of the heat conduction along the interface. It can be identified as a very thin
interface with high conductivity between two dissimilar bulk materials.

(II) Lowly-conducting interface (LC): it allows for the jump of the tempera-
ture across the interface, rather than the thermal flux, based on the Kapitza’s
assumption of the thermal resistance.

(III) General interface: both the temperature and the normal heat flux across
the interface are discontinuous. The governing equations of the general imperfect
interface model are determined not only by material parameters characterizing
the interface but also by parameters associated with the surrounding phases.
However, derivations of constitutive laws in the HC model and the LC model are
assumed to be independent of the material properties of the surrounding material
phases.

Type Temperature
Jump

Flux
Jump

References

Perfect no no Daher & Maugin (1986)

HC imperfect no yes Lipton (1997), Yvonnet et al. (2008),
Le-Quang et al. (2010), Javili et al.

(2013)

LC imperfect yes no Yvonnet et al. (2011), Javili et al.

(2012), Sapora & Paggi (2014)

General imperfect yes yes Hashin (2001), Benveniste (2006),
Özdemir et al. (2010), Javili et al.

(2014)

Table 2.2: Summary of thermal conduction across the interface: perfect and imperfect.

A short summary to characterize the continuity or discontinuity of the temperature
and the thermal flux among various thermal interface models can be found in Table
2.2. For more details of each thermal interface model, the reader is referred e.g. to
Le-Quang et al. (2010), Javili (2012), Javili et al. (2014) and references therein.

Constitutive equation of thermal conduction across the interface

If the interface crack is induced, as illustrated in Figure 2.3, the temperature jump of
two separated faces ∂B+

t and ∂B−
t is given by

[|θ|] = θ+ − θ− . (2.5.13)

Multiplying the thermal flux qc across the interface crack with an outward unit normal
n yields the normal component qc

qc := qc · n . (2.5.14)
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The continuity condition of the normal thermal flux qc across the interface crack

q+c = −q−c . (2.5.15)

has to be fulfilled. In the present work, the LC imperfect interface model listed in
Table 2.2 is chosen. Therefore, the tangential components of the thermal flux along the
interface crack are not taken into account. The constitutive law of thermal conduction
across the interface crack is formulated by

qc := −(1−Dθ
c )kc[|θ|] . (2.5.16)

Here, kc is the thermal conductivity of the interface. Theoretically, the thermally
perfect interface is supposed to have infinitely large kc, however, a sufficiently large
value is chosen instead during the numerical simulation, see Section 3.3.3 for more
details. Dθ

c (0 6 Dθ
c 6 1.0) is a thermal interface damage for illustrating the progressive

thermal resistance due to interface crack, see the details in the following subsection.
The thermal conduction across the interface crack relies on the contributions not only
of the solid phase but also of the air, thus leading to

qc := −
(

(1−Dθ)kc + ka

)

[|θ|] , (2.5.17)

where ka is the thermal conductivity of the air. Note that the contribution of the air
could be neglected when the temperature of the surrounding bulk phase is less than
400 ◦C.

Thermal interface damage

Over the past years, some previous work has already been conducted concerning the
thermal resistance of the interface. For instance, Willam et al. (2004) addressed
the nonlinear relationship between the convective heat transfer coefficient of the inter-
face and the separation. Özdemir et al. (2010) defined a thermal damage variable
with the ratio of the maximum equivalent interface opening and the crack equivalent
interface opening. Sapora & Paggi (2014) adopted the Kapitza’s constant resis-
tance model to formulate the relationship between the thermal flux and the normal
gap across the cohesive interface.
In this work, an irreversible thermal interface damage variable Dθ

c based on Özdemir

et al. (2010) is expressed by

Dθ
c =

λm
λcr

. (2.5.18)

Here, the maximum equivalent interface opening λm was introduced in Subsection 2.5.2
and the crack equivalent interface opening λcr is given by

λcr =

√
√
√
√[|u|]2n cr +

2∑

i=1

[|u|]2ti cr , (2.5.19)
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where [|u|]n cr and [|u|]ti cr are the normal interface opening and the tangential interface
opening of the complete crack, where traction values are quite small, e.g. 0.1ft in
the post-peak regime of the traction-separation curve in Figure 2.5. By using Dθ

c , it
establishes the fundamentals of mechanical-thermal cohesive coupling.

2.5.4 Humidity diffusion across the interface

Several studies have already been conducted to analyze the influence of cracks on the
diffusivity of cement-based materials, e.g. Samaha & Hover (1992), Locoge et al.

(1992), Wong et al. (2009) and Vasconcelos et al. (2011).

Constitutive equation of diffusion across the interface

As displayed in Figure 2.3, the jump of the humidity [|s|] across two separate parts ∂B+
t

and ∂B−
t is expressed by

[|s|] = s+ − s− . (2.5.20)

Multiplying the diffusion flux jc across the interface crack with an outward unit normal
n leads to the normal component jc

jc := jc · n . (2.5.21)

The continuity condition of the normal diffusion flux jc has to be ensured

j+c = −j−c . (2.5.22)

The constitutive law of the humidity diffusion cross the interface crack is formulated
by

jc := −(1 +M)dc[|s|] , (2.5.23)

where dc is the diffusivity of the interface. In analogous to the thermal problem, the
perfectly diffusion interface should have infinitely large dc, yet a sufficiently large value
is used during the numerical simulation. A scalarM is defined in order to comply with
the experimental observation (Jang et al. (2011)) that the diffusivity of concrete
rises as the crack width is increased.

Influence of the crack on diffusivity

Jang et al. (2011) adopted the steady-state migration test to measure the diffusivity
of concrete as a function of crack width, see Figure 2.8(a) for the experimental data.
It was also found that the diffusivity does not increase until the crack width is above
the threshold value, around 55-80µm. Then the experimental data in Figure 2.8(a) is
simply replaced by a curve of M as a function of crack width, as seen in Figure 2.8(b).
Above the threshold value, M starts to linearly increase with the crack width. Thus,
the experimental observation mentioned above can be modeled by Equation (2.5.23)
with the aid of M .
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Figure 2.8: (a) Measured relationship between diffusivity and crack width (Jang et al.

(2011)) and (b) artificially defined M as a function of crack width.

2.6 Weak forms of balance equations

The strong form of balance equations mentioned before, i.e. the balance of linear mo-
mentum in Equation (2.3.9), can not be solved analytically with arbitrary boundary
conditions. For this reason, the weak form of the balance of linear momentum is formu-
lated. The present section outlines the weak forms of balance equations in the context
of mechanical, thermal and diffusion problems, including the components related to
bulk and interface phases.

2.6.1 Weak form of balance of linear momentum

In the current configuration, a body Bt is separated by a interface crack into two
parts: B+

t and B−, see Figure 2.3. The weighted residual of the mechanical equilibrium
in the bulk phase is obtained through multiplying the balance of linear momentum
in Equation (2.3.9) with the continuously differentiable virtual displacement field δu,
also known as a mechanical test function ηu, integrating over the entire domain Bt and
applying the divergence theorem as well as partial integration

∫

Bt

σ : gradηu dv −

∫

Bt

f · ηu dv −

∫

∂Bt

t̄ · ηu da = 0 . (2.6.1)

Incorporating the contribution of the interface phase yields

Gu(u,ηu) =

∫

Bt

σ : gradηu dv −

∫

Bt

f · ηu dv −

∫

∂Bt

t̄ · ηu da

︸ ︷︷ ︸

Gu

b

+

∫

∂B+
t

t+c · ηu+ da+

∫

∂B−

t

t−c · ηu− da

︸ ︷︷ ︸
Gu

c

= 0 , (2.6.2)
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consisting of the term of the bulk phase Gu

b and the term of the interface phase Gu

c . If
Equation (2.5.4) is also taken into account, it leads to

Gu(u,ηu) =

∫

Bt

σ : gradηu dv −

∫

Bt

f · ηu dv −

∫

∂Bt

t̄ · ηu da

︸ ︷︷ ︸
Gu

b

+

∫

∂B+
t

t+c · (ηu+ − ηu−) da

︸ ︷︷ ︸

Gu
c

= 0 . (2.6.3)

The mechanical boundary conditions are given by

u = ū on ∂Btu , t = t̄ on ∂Btσ , (2.6.4)

where ∂Btu is the Dirichlet boundary with prescribed displacements ū and ∂Btσ is
the Neumann boundary with prescribed tractions t̄ with ∂Btu ∩ ∂Btσ = ⊘. Also, as
mentioned above, ηu has to fulfill ηu = 0 on ∂Btu.
Considering Equation (2.4.1), the weak form in Equation (2.6.3) can be written as

Gu(u,ηu) =

∫

Bt

(1−Du)δuǫ : C0 : ǫ
el dv −

∫

Bt

f · ηu dv −

∫

∂Bt

t̄ · ηu da

︸ ︷︷ ︸
Gu

b

+

∫

∂B+
t

t+ · (ηu+ − ηu−) da

︸ ︷︷ ︸

Gu
c

= 0 . (2.6.5)

with δuǫ :=sym gradηu =
1

2
(gradηu + gradηuT ).

2.6.2 Weak form of balance of energy

The interface crack leads to the existence of the temperature jump [|θ|] across the inter-
face, as seen in Figure 2.3. Prior to the analysis on the interface crack, the instationary
thermal balance equation is utilized to describe the thermal conduction in the bulk
phase, indicating that the temperature change in time equals the heat flux qb through
the surface of the body and the heat sources Q in the bulk phase of the body

∫

Bt

ρc θ̇ dv = −

∫

∂Bt

qb da+

∫

Bt

Q dv , (2.6.6)

where ρ is the density, c is the heat capacity. Multiplying the thermal flux qb in the
bulk phase with an outward unit normal vector n leads to the thermal flux qb normal
to the boundary

qb := qb · n , (2.6.7)
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where qb is obtained through the Fourier’s equation

qb := −kb gradθ, (2.6.8)

indicating that the rate of flow of heat energy across the surface is proportional to
the negative temperature gradient. As the balance equation is assumed to hold for any
arbitrary balance domain, applying Equation (2.6.6) and the divergence theorem yields
the local form in the bulk phase

ρc θ̇ = div(kbgradθ) , (2.6.9)

without consideration of the heat sources Q.
Multiplying the local form of energy balance in Equation (2.6.9) with a thermal test
function ηθ (or virtual temperature field δθ) and then using the divergence theorem
and the Fourier’s equation yields the weak form of energy balance of the whole body

Gθ(θ, ηθ) =

∫

Bt

ρc θ̇ηθ dv +

∫

∂Bt

qbη
θ da +

∫

Bt

kbgradθ · gradη
θ dv

︸ ︷︷ ︸

Gθ
b

+

∫

∂B+
t

q+c η
θ+ da +

∫

∂B−

t

q−c η
θ− da

︸ ︷︷ ︸

Gθ
c

= 0 , (2.6.10)

where Gθ
b is the term of the bulk phase and Gθ

c is the term of the interface phase. The
thermal boundary conditions are written as

θ = θ̄ on ∂Btθ , q = q̄ on ∂Btq , (2.6.11)

where ∂Btθ is the Dirichlet boundary with prescribed temperature θ̄ and ∂Btq is the
Neumann boundary with prescribed thermal flux q̄ with ∂Btθ∩∂Btq = ⊘. In addition,
ηθ has to fulfill ηθ = 0, on ∂Btθ . Applying Equation (2.5.15) to (2.6.10) leads to

Gθ(θ, ηθ) =

∫

Bt

ρc θ̇ηθ dv +

∫

∂Bt

qbη
θ da +

∫

Bt

kbgradθ · gradη
θ dv

︸ ︷︷ ︸

Gθ
b

+

∫

∂B+
t

q+c (η
θ+ − ηθ−) da

︸ ︷︷ ︸

Gθ
c

= 0 . (2.6.12)

2.6.3 Weak form of balance of mass

Analogous to thermal problem, in order to solve the problem of humidity diffusion in
the bulk phase, the instationary diffusion balance equation is employed, which states
that the humidity s change in time is equal to the diffusion flux jb across the surface
in the bulk phase
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∫

Bt

ṡ dv = −

∫

∂Bt

jb da . (2.6.13)

The diffusion flux jb in the bulk phase normal to the boundary is obtained by multi-
plying jb with an outward unit normal vector n

jb := jb · n . (2.6.14)

The diffusion flux jb in the bulk phase is obtained by using Fick’s law

jb := −dbgrads , (2.6.15)

where db is the diffusivity of the bulk phase.
The balance equation is assumed to be valid for every domain, such that the diffusion
local form in the bulk phase is obtained by using Equation (2.6.13) and the divergence
theorem

ṡ = div(dbgrads) . (2.6.16)

The weak form of balance mass of the whole body consisting of the bulk phase part Gs
b

and the interface phase part Gs
c is

Gs(s, ηs) =

∫

Bt

ṡ dv +

∫

∂Bt

jbη
s da+

∫

Bt

db grads · gradη
s dv

︸ ︷︷ ︸
Gs

b

+

∫

∂B+
t

j+c η
s+ da +

∫

∂B−

t

j−c η
s− da

︸ ︷︷ ︸

Gs
c

= 0 , (2.6.17)

where Gs
b is obtained by multiplying the diffusion local form in Equation (2.6.16) with

a diffusion test function ηs (or virtual humidity field δs) and then using the divergence
theorem and the Fick’s equation. Applying Equation (2.5.22) yields

Gs(s, ηs) =

∫

Bt

ṡ dv +

∫

∂Bt

jbη
s da+

∫

Bt

db grads · gradη
s dv

︸ ︷︷ ︸
Gs

b

+

∫

∂B+
t

j+c (η
s+ − ηs−) da

︸ ︷︷ ︸

Gs
c

= 0 . (2.6.18)

The diffusion boundary conditions with ∂Bts ∩ ∂Btj = ⊘ is satisfied

s = s̄ on ∂Bts , jb = j̄ on ∂Btj , (2.6.19)

where ∂Bts is the Dirichlet boundary with prescribed humidity s̄ and ∂Btj is the
Neumann boundary j̄ with prescribed diffusion flux. In addition, ηs has to fulfill
ηs = 0, on ∂Bts.
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Chapter 3

Fundamentals of computational
aspect

The physical process can be described by formulating partial differential equations
(PDEs). However, analytical solutions can not be resolved for complex geometries or
arbitrary boundary conditions, therefore, the Finite Element Method (FEM) as
being a robust and flexible approach, was developed in order to solve PDEs numerically.
The following sections address the approach of solving three-dimensional mechanical,
thermal, diffusion problems by using the FEM. For a comprehensive insight into the
FEM, the reader is referred e.g. to Belytschko et al. (2000), Zienkiewicz &

Taylor (2005), Wriggers (2008) and Hughes (2010).

3.1 Finite elements

∂B

B

Ωe

Figure 3.1: Approximation of the geometry by finite elements.

As displayed in Figure 3.1, the real geometry of the body B is approximated by finite
elements through

B ≈ B
h =

ne⋃

e=1

Ωe , m (3.1.1)

33



34 CHAPTER 3. FUNDAMENTALS OF COMPUTATIONAL ASPECT

with e is the element number, ne is the total number of finite elements to approximate
the body and Ωe is the volume of the element e.

3.1.1 Isoparametric concept

In the context of the FEM, the unknown functions, e.g. the displacement vector,
temperature and humidity, can be expressed by using the nodal values of that element
and proper shape functions. Taking the displacement vector as an example, the actual
displacement u and the virtual displacement δu at point x within an element are
approximated by the nodal displacement û and iso-parametric shape functions NI(ξ)

u ≈

np∑

I=1

NI(ξ)ûI , δu ≈

np∑

I=1

NI(ξ)δûI , (3.1.2)

where np is the number of element nodes and shape functions NI(ξ) are piecewise-
smooth polynomials, see Wriggers (2008).
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Figure 3.2: Isoparametric reference elements (a) three-dimensional brick element and (b)

three-dimensional tetrahedral element.

For the three-dimensional brick element with eight nodes shown in Figure 3.2, trilinear
shape functions are given by

NI(ξ) =
1

8
(1 + ξIξ)(1 + ηIη)(1 + ζIζ), (I = 1, ..., 8), (−1 6 ξ, η, ζ 6 +1) ,

(3.1.3)
where ξI , ηI , and ζI are the nodal coordinates of the reference element. In terms of the
three-dimensional tetrahedral element with four nodes, the shape functions are written
as

N1 = 1− ξ − η − ζ, N2 = ξ, N3 = η, N4 = ζ (−1 6 ξ, η, ζ 6 +1) . (3.1.4)

The isoparametric framework is established to connect the reference element Ω�, to an
arbitrarily shaped element in the initial configuration Ω0 or the current configuration
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Ωt, see Figure 3.3. Approximating the geometry of an element with the same shape
functions as the unknown functions is the fundamentals of the isoparametric approach

X =

np∑

I=1

NI(ξ)XI , x ≈

np∑

I=1

NI(ξ)xI . (3.1.5)

for the initial and current configuration respectively.

F =
∂x

∂X

J = ∂X
∂ξ

j = ∂x
∂ξ

Ω0 Ωt

Ω�

ξ

η

ξ
η

ξ
η

Figure 3.3: Isoparametric mapping applied to a rectangular element.

As displayed in Figure 3.3, the mapping between elements in the reference, initial and
current configurations Ω0, Ωt and Ω� respectively, is written as

J =
∂X

∂ξ
=

np∑

I=1

XI ⊗
∂NI

∂ξ
, j =

∂x

∂ξ
=

np∑

I=1

xI ⊗
∂NI

∂ξ
. (3.1.6)

Here, J and j denote the Jacobi matrix in the initial and current configuration.

3.1.2 Solution strategies

Due to nonlinear behavior of the weak forms mentioned in Section 2.6, the Newton-

Raphson approach is applied to solve the nonlinearity, see Wriggers (2008). How-
ever, if the approximation to the solution is far from the radius of convergence, the
Newton-Raphson approach fails. Hence, the Line-search and the Arc-length

approaches are developed for solving some special problems. For getting more details
of solution strategies in the FEM, the reader is referred e.g. to Crisfield (1992),
Zienkiewicz & Taylor (2000), Wriggers (2008) and references therein.

Newton-Raphson approach

The Newton-Raphson approach is an efficient and reliable approach to solve non-
linear equations. For mechanical problem, the linearized form of Equation (2.6.5) can
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be written as
Gu

n+1(
mu) = Gu

n(
mu) + DmGu∆u

0
!
= Gu

n(
mu) + DmGu∆u ,

(3.1.7)

such that

Gu

n(
mu) = −DmGu∆u , (3.1.8)

in which m(•) represents the current iteration and (•)n indicates the time step which
is updated using a discrete time increment ∆t

tn+1 := tn +∆t . (3.1.9)

The linearization DmGu∆u refers to the Gateaux derivative at mu in direction ∆u

DmGu∆u :=
∂Gn(

mu)

∂mu
·∆u , (3.1.10)

As long as |Gu

n(
mu)|6 TOL, the displacement vector is updated.

m+1u =mu+∆u . (3.1.11)

The aforementioned Newton-Raphson approach can also be applicable to thermal
and diffusion problems in a straightforward manner. The advantage of the Newton-

Raphson iteration is its quadratic convergence rate. However, the tangent matrix has
to be computed at each iteration step, making the computation very costly. In order to
surmount this weakness, the quasi-Newton method is developed, where the tangent
matrix is computed approximately from the known deformation states of the previous
iterations, see Wriggers (2008) for more details.

Line-search approach

The Line Search approach was developed by Crisfield (Crisfield (1992)) in con-
junction with theNewton-Raphson approach to solve highly nonlinear finite element
equations. Within this approach, an optimum line search parameter a (0 6 a 6 1) scal-
ing the correction of the displacement vector u in Equation (3.1.11) in each iteration
step is defined by

m+1u =mu+ a∆u . (3.1.12)

If a is equal to 1, it is recovered by the Newton-Raphson approach. Two main
approaches which are based on the total potential and on the residuals determine the
line search parameter a, see Bathe (1995) and Nocedal & Wright (2006) for more
details.

Arc-length approach

Figure 3.4 illustrates two load-displacement relationships involving limit point: snap-
through and snap-back. For instance, the bucking of shallow arches could result in
the snap-through, and the snap-back could be induced in the debonding example of
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Figure 3.4: (a) snap-through and (b) snap-back.

the unit cell with a large sphere, see Subsection 5.2.2. If the structure is under load
control, an unstable dynamic response is observed at the limit point, which follows a
path from A to B, namely the snap-through, as seen in Figure 3.4(a). However, the
response is stable under displacement control. For snap-back, an unstable dynamic
response occurs under either load or displacement control, see Figure 3.4(b).

Limit points can not be passed through the Newton-Raphson iteration. Therefore,
the arc-length approach was developed by Riks (1975) to enable solutions to pass
through the limit points. Within this approach, both the load and displacement are un-
knowns and solved simultaneously. The incremental load is determined by a constraint
equation as a function of the nodal displacement and the load factor. Furthermore, the
Newton-Raphson equilibrium iterations converge along an “arc”, thus preventing
divergence when the slope of the load-displacement becomes zero or negative. Note
that the constraint equation has to be ensured at each iteration step. More details
about the Arc-length approach can be found in e.g. Crisfield et al. (1997),
Wriggers (2008) and Hughes (2010).

3.1.3 Numerical integration

Analytical approaches are not able to integrate the discretized weak forms, which will
be introduced in the following sections. Here, an efficient so-called Gauss integration
scheme is used. An arbitrary function fr, which is continuous, differentiable and suf-
ficiently smooth in the domain ωt, is first mapped onto a reference domain Ω� with
the aid of the Jacobian. The resulting integration approximated by a sum over all
quadrature points ngp with fr evaluated at these points and then multiplied with a
weighting function ωgp yields

∫

Ωt

fr dv =

∫

Ω�

fr detj dv� ≈

ngp∑

gp=1

fr(ξnp)ωgpdetjgp . (3.1.13)
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3.1.4 Coupling

As mentioned before, the concrete is generally split into bulk phase and interface phase.
For each phase, the coupling framework has to be established and solved by using the
FEM, where the tangent element stiffness matrix and the element residual vector in the
context of mechanical, thermal and diffusion problems are derived. In order to solve
the coupled problem, a staggered approach is adopted, see Zohdi (2004) and Erbts

& Düster (2012). Staggering usually has the disadvantage of being a small time
step restriction in view of its explicit nature. However, it has a significantly simpler
algorithmic structure compared to implicit scheme due to sequential solution of the
coupled system of field equations.

As long as the local tangent element stiffness matrix and the local element residual
vector are determined, it is crucial to assemble them to form the global tangent stiffness
matrix and the global residual vector. The approach of managing local and global
equations numbers within a finite element problem can be found e.g. in Wriggers

(2008), Hughes (2010) and references therein.

3.2 Discretized weak forms of balance equations of

bulk phase

The section is concerned with the approach of discretizing weak forms of balance equa-
tions of bulk phase, in the context of mechanical, thermal and diffusion problems
respectively. Inserting discretized field variables, e.g. ηu, ηθ and ηs (δu, δθ and δs),
into weak forms of balance equations and applying the isoparametric mapping given in
Equation (3.1.6) yields discretized weak forms of balance equations.

3.2.1 Mechanical problem

TheNewton-Raphson approach is applied for solving the nonlinear mechanical prob-
lem. From the numerical point of view, the mechanical tangent element stiffness Ku

be

and the mechanical element residual ru

be have to be constructed, where Ku

be is obtained
by using a consistent linearization of Gu

b with respect to u while the material tangent
moduli is evaluated. For elasticity, the mechanical material tensor of the bulk phase
Cu

bn+1 is given by

C
u

bn+1 :=
∂σn+1

∂ǫeln+1

, (3.2.1)

without any internal variables. In terms of inelastic problem, as the elastic strain ǫeln+1

may be unknown, a tangent moduli Cu

bn+1 is formulated with the aid of ǫn+1 by

C
u

bn+1 :=
∂σn+1

∂ǫn+1

. (3.2.2)
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As described before, a visco-plastic model combined with an isotropic damage is defined
for HCP, thus, a trial strain ǫtrial

ǫtrial := ǫn+1 − ǫpln , (3.2.3)

enables the tangent moduli Cu

bn+1 to be also written as

C
u

b n+1 :=
∂σn+1

∂ǫtrial
:
∂ǫtrial

∂ǫn+1
. (3.2.4)

The consistent linearization DmGu∆u of Gu

b in Equation (2.6.2) with respect to u

results in

DmGu∆u =

np∑

I=1

np∑

J=1

η̂uTI

∫

Ωt

BuT
bI C

u

bB
u

bJ dv∆ûJ . (3.2.5)

Then the mechanical element stiffness matrix Ku

be is defined by

Ku

be =

np∑

I=1

np∑

J=1

∫

Ωt

BuT
bI C

u

bB
u

bJ dv . (3.2.6)

Here, Bu

bI in the three-dimensional case with the formulation of

Bu

bI :=











NI,x 0 0
0 NI,y 0
0 0 NI,z

NI,y NI,x 0
NI,z 0 NI,x

0 NI,z NI,y











, (3.2.7)

interpolates the gradient of the mechanical displacement u and the mechanical test
function ηu

ǫ ≈

np∑

I=1

Bu

bIûI , δuǫ ≈

np∑

I=1

Bu

bI η̂
u

I . (3.2.8)

Applying the discretization of Gu

b yields the mechanical element residual ru

be

ru

be =

∫

Ωt

δuǫ : σ dv ≈

np∑

I=1

np∑

J=1

∫

Bt

BuT
bI σ dv . (3.2.9)

More details about the consistent linearization can be found in Hain (2007).

Visco-plasticity combined with damage

A visco-plastic model of the classical Perzyna-type combined with an isotropic dam-
age defined in the HCP was introduced in Subsection 2.4.2, which needs a radial return
mapping approach to evaluate the evolution of the plastic strain in Equation (2.4.20)
and the damage in Equation (2.4.21). The overall strain can be split into

ǫ := ǫel + ǫpl , (3.2.10)
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without consideration of the thermal strain ǫθ and the ASR-induced expansion strain
ǫs. Applying Equations (3.2.10), (2.4.20) and (2.4.21), it addresses

σn+1= (1−Du

n+1)[κ trǫeln+1 + 2µdevǫeln+1]
= (1−Du

n+1)[κ tr(ǫn+1 − ǫeln+1)1+ 2µdev(ǫn+1 − ǫeln+1 − ǫθn+1)]

= (1−Du

n+1)[κ trǫn+11− κ trǫpln+11+ 2µdevǫn+1 − 2µdevǫpln+1],

(3.2.11)

with ∆λ := ∆t
η
φ+. Then trial strain ǫtrial and the trial stress σtrial are given by

ǫtrial := ǫn+1 − ǫpln

σtrial := (1−Du

n )[κ trǫtrial1+ 2µdevǫtrial] .
(3.2.12)

Here, the stress can be split into

σn+1 := σtrial + σadd , (3.2.13)

where the additional stress σadd is defined by

σadd := −(1−Du

n )2µ∆λn−∆χ
∂Su

∂Y

[

κ trǫtrial1+ 2µdevǫtrial − 2µ∆λn
]

, (3.2.14)

with a generalized normal n

n :=
∂f

∂σ
, n =

devσ

||devσ||
. (3.2.15)

By using the increment ∆λ or ∆χ, the trial strain ǫtrial and the trial stress σtrial can
be evaluated within the radial return mapping prodecure

η

∆t
∆λ− φ+ !

= 0

η

∆t
∆λ− (f trial + f add)k = 0 ,

(3.2.16)

in which the additional yield surface f add is defined by

f add = ||devσadd||

= −(1−Du

n )2µ∆λ−∆χ
∂Su

∂Y
2µ||devǫtrial||+∆χ

∂Su

∂Y
2µ∆λ .

(3.2.17)

Applying Equation (3.2.16) and a quadratic penalty function φ(f) with k = 1 lead to

∆λ =
f trial − 2µ

∂Su

∂Y
||devǫtrial||∆χ

η

∆t
+ (1−Du

n )2µ−∆χ
∂Su

∂Y
2µ

. (3.2.18)
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If Su 6 0 the increment vanishes ∆χ = 0, otherwise

Su

n+1
!
= 0
= g(κb)−Du

n+1

= g(κb)−Du

n −∆χ
∂Su

∂Y

= Strial −∆χ
∂Su

∂Y
.

(3.2.19)

Employing Equations (2.4.7), (2.4.8), (2.4.20) and (2.4.21) yields the evolution of dam-
age

Du

n+1 = Du

n +∆χ
∂Su

∂Y
= Du

n + Strial

Du

n+1 = g(κb)αtD
t + αcD

c .
(3.2.20)

which finally yields the increment ∆λ

∆λ =
f trial − 2µStrial||devǫtrial||
η

∆t
+ (1−Du

n )2µ− 2µStrial
, (3.2.21)

evaluating
ǫ
pl
n+1 = ǫpln +∆λn . (3.2.22)

Using Equation (3.2.11), the stress is given by

σn+1 = (1−Du

n+1)
[

κ trǫtrial1+ 2µdevǫtrial − 2µ∆λn
]

, (3.2.23)

The mechanical consistent tangent moduli Cu

b is obtained based on Equation (3.2.4)
within the Newton-Raphson algorithm

C
u

b :=
∂σn+1

∂ǫtrial
∂ǫtrial

∂ǫ

C
u

b =
∂σtrial

∂ǫtrial
+
∂σadd

∂ǫtrial
,

(3.2.24)

which results in

∂σtrial

∂ǫtrial
= (1−Du

n )
[

κ1⊗ 1+ 2µP
]

∂σtrial

∂ǫtrial
= −2µ(1−Du

n )A− κStrial1⊗ 1− 2µStrial
P+ 2µStrialA ,

(3.2.25)

with the aid of Equations (3.2.12) and (3.2.13). Here, P is defined as a fourth order
projection tensor P := 1− 1

3
1⊗ 1 and A denotes the abbreviation

A :=
∂

∂ǫtrial

[

dev(∆λ)
]

A =
∆λ

||devσtrial||

∂devσtrial

∂ǫtrial
+∆λdevσtrial ⊗

∂||devǫtrial||−1

∂ǫtrial
+ n⊗

∂∆λ

∂ǫtrial
,

(3.2.26)
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The tangent moduli of the effective constitutive equation is given by

C
u

b = (1−Du

n )
[

κ1⊗ 1 + 2µP
]

− κStrial1⊗ 1− 2µStrial
P

−2µ(1−Du

n − Strial)
[ ∆λ

||devσtrial||

]

2µ(1−Du

n )P

−∆λdevσtrial ⊗
2µ(1−Du

n )

||devσtrial||2
n+ n⊗

1
η

∆t
+ (1−Du

n )2µ− 2µStrial

(

2µ(1−Du

n )
devǫtrial

||devǫtrial||
− 2µStrial devǫtrial

||devǫtrial||

)]

.

(3.2.27)

3.2.2 Thermal problem

For a numerical realization of the Newton-Raphson procedure for thermal problem,
the thermal tangent element stiffness matrix Kθ

be and the thermal element residual rθbe
are required, where Kθ

be is obtained by partial differentiation of Gθ
b in Equation (2.6.10)

with respect to θ. First of all, by using an implicit Backward Euler approach, the
time derivative •̇ is approximated as discretized time •n

•̇ ≈
•n+1 − •n

∆t
. (3.2.28)

The linearization DmGθ∆θ of Gθ
b in Equation (2.6.10) with respect to θ is formulated

by

DmGθ∆θ ≈

np∑

I=1

np∑

J=1

η̂θI

[ ∫

Ωt

ρc

∆t
NINJ dv +

∫

Ωt

kBθ
bJB

θT
bI dv

]

∆θ̂J . (3.2.29)

Hain (2007) provides more details of the linearization. The thermal tangent element
stiffness matrix Kθ

be is given by

Kθ
be =

np∑

I=1

np∑

J=1

(∫

Ωt

ρc

∆t
NINJ dv +

∫

Ωt

kbB
θ
bJB

θT
bI dv

)

. (3.2.30)

where Bθ
b interpolates the gradient of the temperature θ and the gradient of test func-

tion ηθ

gradθ ≈

np∑

I=1

Bθ
bI θ̂I , gradηθ ≈

np∑

I=1

Bθ
bI η̂

θ
I , (3.2.31)

with the form of
Bθ
bI :=

[
NI,x NI,y NI,z

]T
. (3.2.32)

Based on the discretization of Gθ
b , the thermal element residual is obtained through

rθbe =

np∑

I=1

np∑

J=1

∫

Ωt

ρc

∆t
NJ(θ̂

J
n+1 − θ̂Jn)NI dv +

np∑

I=1

np∑

J=1

∫

Ωt

kbB
θ
bJ θ̂

J
nB

θT
bI dv . (3.2.33)
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including the instationary part given by the first term and the stationary part stated
by the second term.

3.2.3 Diffusion problem

The implementation of the diffusion tangent element stiffness matrix Ks
be and the

diffusion element residual rsbe in the Newton-Raphson framework is analogous to
the themral field. The linearization DmGs∆s of Gs

b in Equation (2.6.17) with respect
to s is given by

DmGs∆s ≈

np∑

I=1

np∑

J=1

η̂sI

[ ∫

Ωt

1

∆t
NINJ dv +

∫

Ωt

dbB
s
bJB

sT
bI dv

]

∆ŝJ . (3.2.34)

Based on above, the diffusion tangent element stiffness matrix Ks
be can be written as

Ks
be =

np∑

I=1

np∑

J=1

(∫

Ωt

NINJ

∆t
dv +

∫

Ωt

dbB
s
bJB

sT
bI dv

)

. (3.2.35)

where Bs
b interpolates the gradient of the humidity s and the gradient of the test

function ηs through

grads ≈

np∑

I=1

Bs
bI ŝI , gradηs ≈

np∑

I=1

Bs
bI η̂

s
I (3.2.36)

and is defined in the three-dimensional case by

Bs
bI :=

[
NI,x NI,y NI,z

]T
. (3.2.37)

The discretization of Gs
b results in the diffusion element residual

rsbe =

np∑

I=1

np∑

J=1

∫

Ωt

1

∆t
NJ(ŝ

J
n+1 − ŝJn)NI dv +

np∑

I=1

np∑

J=1

∫

Ωt

dbB
s
bJ ŝ

J
nB

sT
eI dv . (3.2.38)

with the instationary part denoted by the first term and the stationary part stated by
the second term.

3.3 Discretized weak forms of balance equations of

interface phase

The present section is concerned with Discretized weak forms of balance equations of
interface phase for mechanical, thermal and diffusion problems respectively.
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3.3.1 Review of numerical fracture mechanics for concrete

Over the past 40 years, a considerable amount of contributions were made to inves-
tigate the fracture mechanics in a numerical manner, with particular applications to
concrete. Thorough reviews on analytical fracture mechanics can be found e.g. in
Janssen et al. (2004) and Kundu (2008). However, the restriction that the an-
alytical fracture mechanics is only motivated by simple microstructural geometries,
enforces the development of the numerical fracture mechanics. Linear elastic fracture
mechanics (LEFM) was employed to account for the failure in concrete, see Shah &

Ouyang (1992). If the nonlinear zone ahead of the crack tip is large compared to
specimen dimension, the nonlinear fracture mechanics approach (NLFEM) has to be
considered, see Murthy et al. (2009). However, both approaches lead to the singu-
larity problem near the crack tip which can be circumvented by a cohesive zone model
(CZM) characterizing the failure by means of a phenomenological model rather than
an exact physical description of the fracture process zone. Hence, it was widely ap-
plied to model the crack at the macroscale as well as at the mesoscale of concrete, see
Eckardt (2009), Elices et al. (2009), Idiart et al. (2011) and Snozzi et al.

(2012). Later, the eXtended Finite Element Method (XFEM) was applied to model
the crack propagation process in concrete, see Golewski et al. (2012) and Zhang

et al. (2013). XFEM was inspired by the partition of unity method (PUM) combined
with the level-set method (LSM), avoiding the remeshing issue in crack applications.
The combination of CZM with XFEM is able to predict the crack initiation and prop-
agation along arbitrary paths, since the crack propagation is not tied to the element
boundaries in a mesh, see Unger et al. (2007). Moreover, the strong discontinuity
approach (SDA) with enhanced assumed strains (EAS) are alternatives to simulate the
crack propagation, see Reese (2007), where discontinuities in the displacement field
can be traced realistically, allowing a non-geometrical representation of crack disconti-
nuities. The discrete lattice model is a popular approach to analyze the crack model,
taking into account the mesostructure of concrete, where the continuum is replaced
by a system of discrete particles, see e.g. Schlangen & Mier (1992), Grassl &

Jirásek (2010), Snozzi et al. (2011) and Snozzi et al. (2012).

In addition to numerical fracture mechanics approaches mentioned above with applica-
tions to concrete, there are still other alternatives, such as Boundary Element Method
(BEM), element-free Galerkin method, Partition of Unity Method (PUM), particle
methods, Arbitrary Lagrangian-Eulerian Methods as well as phase field, which are not
explained in this work. For comprehensive knowledge of various approaches, e.g. funda-
mentals, advantages, limitations as well as the interactions among various approaches,
the reader is referred e.g. to Aliabadi & Rooke (1991), Müller-Hoeppe et al.

(2009), Rabczuk (2012) and references therein.

3.3.2 Numerical implementation of CZM

The aim of the present subsection is to illustrate the implementation of CZM in the
FEM framework. A six-node single cohesive element is constituted by two triangular



3.3. DISCRETIZED WEAK FORMS OF BALANCE EQUATIONS OF INTERFACE

PHASE 45

surfaces connecting the faces of tetrahedrons, see Figure 3.5 for illustrations. Note that
the two triangular surfaces of the cohesive element lie together in the initial configura-
tion, hence, the interface element has zero-thickness. Later it separates as the adjacent
solid elements deform. The approach of yielding the zero-thickness interface elements
between HCP and aggregates as the representation of the ITZ, will be explained in
Subsection 5.2.1.
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Figure 3.5: Single cohesive element (a) initial configuration with zero-thickness and (b)

current configuration with the reference middle surface.

The nodal displacement vector ûc of one single cohesive element with six nodes in the
global coordinate system are given by

ûc = (û1
x û1

y û1
z, ..., û

6
x û6

y û6
z)
T . (3.3.1)

The surface behavior of the CZM is formulated with respect to the reference middle
surface, as displayed in Figure 3.5. Thus, the shape functions of the triangle reference
element are introduced

N1 = 1− ξ − η, N2 = ξ, N3 = η, (−1 6 ξ, η 6 +1) . (3.3.2)

The displacement jump vector [|u|] across the cohesive interface in the global coordinate
is formulated by

[|u|] = Bu

c ûc (3.3.3)

where Bu

c is a 3× 18 matrix

Bu

c =





N1 0 0 ... N3 0 0 −N1 0 0 ... −N3 0 0
0 N1 0 ... 0 N3 0 0 −N1 0 ... 0 −N3 0
0 0 N1 ... 0 0 N3 0 0 −N1 ... 0 0 −N3





(3.3.4)
Here, a 3 × 3 rotation matrix R transfers vectors from the global to the current local
coordinate system

R =





n̂

t̂1
t̂2



 (3.3.5)
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with three perpendicular components vectors n̂, t̂1 and t̂2

n̂ =
1

‖∂x
∂ξ

× ∂x
∂η
‖

(∂x

∂ξ
×
∂x

∂η

)

, t̂1 =
1

‖∂x
∂ξ
‖

∂x

∂ξ
, t̂2 = n̂× t̂1, , (3.3.6)

as displayed in Figure 3.5. The vector n̂ is normal to the surface and t̂1 and t̂2
are tangential to the surface. Since the local coordinate system is established, the
mechanical stiffness matrix of the cohesive element Ku

ce is defined by

Ku

ce =

np∑

I=1

np∑

J=1

∫

Ωt

BuT
cI R

T
C

u

cRBu

cJ dv , (3.3.7)

where Cu

c can be found in Equation (2.5.7) for the case of tension and in Equation
(2.5.12) if compression is applied. The mechanical element residual ru

ce of the cohesive
element is given by

ru

ce =

np∑

I=1

np∑

J=1

∫

Ωt

BuT
cI R

T tc dv . (3.3.8)

Patch test of CZM
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Figure 3.6: Geometry of patch test of CZM.

The following aim is to use a patch test for analyzing the behaviour of the CZM, see
Figure 3.6 for illustration of the geometry with dimensions, which is constituted by
two prisms comprised of three tetrahedral elements as well as a interface element with
zero-thickness. Two prisms are assumed to behave elastically with identical Young’s
modulus and zero-thickness interface element is driven by CZM. The material proper-
ties of three components in the patch test are listed in Table 3.1.
Prescribing the tensile displacement boundary condition on the top surface in z direc-
tion and fixing the bottom surface in x, y and z directions. This is called mode I, and
the displacement in z direction and σzz of the patch test are displayed in Figure 3.7(a),
from which the strong displacement jump across the interface and the uniform stress
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Component Property Value

Prism 1 E 20000 (N/mm2)

Prism 1 ν 0.0 (-)

Prism 2 E 20000 (N/mm2)

Prism 2 ν 0.0 (-)

Interface ft 10.0 (N/mm2)

Interface Gf 0.1 (N/mm)

Interface Kp 500 (N/mm3)

Table 3.1: Mechanical parameters of the CZM patch test.
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Figure 3.7: (a) Displacement in z direction and σzz of patch test in mode I and (b) com-

parison of analytical and numerical results in mode I.

in the two prisms are observed. The numerical force-displacement relationship on the
upper surface coincides with the analytical traction-separation relationships of CZM
as the displacement is increased, as can be seen in Figure 3.7(b).

Numerical example of delamination

Delamination between composite layers, is one of the most common types of the failure
in various materials, e.g. semiconductor (Goroll & Pufall (2012)), carbon-fibre
composites (Koissin et al. (2013)). Figure 3.8 displays three different opening types
according to the deformation of a crack. Mode I is the most important case for prac-
tical applications, which corresponds to a symmetric crack opening orthogonal to the
local fracture surface. In mode II, the crack surfaces slide relatively to each other in
the plane of the crack, thereby resulting in shear stresses in the concerining direction.
In terms of mode III, the crack surfaces separate in the plane of the crack, parallel to
the crack front.

The geometry of the delamination example is displayed in Figure 3.9, where interface
elements with zero-thickness are inserted between two beams. In this example, two
beams are assumed to behave elastically with the identical Young’s modulus. CZM
motivates the interface elements, such that only the interface behavior is devoted to
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Component Property Value

Upper beam E 1000 (N/mm2)

Upper beam ν 0.0 (-)

Lower beam E 1000 (N/mm2)

Lower beam ν 0.0 (-)

Interface ft 3.0 (N/mm2)

Interface Gf 0.5 (N/mm)

Interface Kp 3000 (N/mm3)

Table 3.2: Mechanical parameters of components for delamination example.

the failure of the beam structure, see Table 3.2 for the mechanical parameters of all
components. Figure 3.10 present the Von-Mises stresses of the beam structure un-
der boundary conditions of mode I, II and III respectively, as shown in Figure 3.8.
Additionally, the macroscale displacement-force relationships of the beam structure
under boundary conditions of mode I, II and III respectively are displayed in Figure
3.11. In Figure 3.11(a), the oscillation after the peak load is observed exists. Clearly,
mesh refinement can alleviate the problem, see Turon et al. (2007) and Nguyen

& Nguyen-Xuan (2013), however, the improvement is limited for some forms of
traction-separation laws of CZM like bilinear. On the other hand, Schellekens &

Borst (1993) used Newton-Cotes integration scheme instead of Gauss quadra-
ture for integrating the tangent stiffness matrix and the internal forces vector of the
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x y

Figure 3.8: Different modes of fracture (a) mode I and (b) mode II and (c) mode III.
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Figure 3.9: Geometric illustration of beam structure for delamination sample.
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cohesive element if large stress gradients are present in the cohesive element, thus over-
coming the problems of spurious oscillations. Moreover, as described in Samimi et al.

(2011), the self-adaptive cohesive zone formulation is an efficient approach, enriching
the displacement approximation along all four edges of quadrilateral interface elements
located in the fracture process zone by adding bi-linear functions with mobile peaks
as well as considering the process-driven positions of these peaks as additional degrees
of freedom. Alternatively, the use of Nubrs and T-spline approaches were proven in
Nguyen & Nguyen-Xuan (2013) and Dimitri et al. (2014) to alleviate this prob-
lem successfully.

(a) (b) (c)

Figure 3.10: Von-Mises stresses (MPa) of beam structure in (a) mode I and (b) mode II

and (c) mode III.
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Figure 3.11: Macroscale displacement-force curve of beam structure in (a) mode I and (b)
mode II and (c) mode III.

3.3.3 Thermal conduction across the interface in the FEM

To establish cohesive zone model together with a micromechanically motivated thermal
flux-separation relation, the evolving thermal conduction across the crack interface
has to be takin into account. In a single cohesive element, see Figure 3.5, the nodal
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temperature vector is given by

θ̂c = (θ̂1c , θ̂
2
c , θ̂

3
c , θ̂

4
c , θ̂

5
c , θ̂

6
c )
T . (3.3.9)

The temperature jump across the interface is defined by

[|θ|] = Bθ
c θ̂c , (3.3.10)

with the aid of Bθ
c

Bθ
c =

[
N1 N2 N3 −N1 −N2 −N3

]T
. (3.3.11)

where shape functions are introduced in Equation (3.3.2). Linearization of Gθ
c in Equa-

tion (2.6.12) with respect to θ leads to the thermal stiffness matrix of the interface
phase Kθ

ce

Kθ
ce =

np∑

I=1

np∑

J=1

∫

Ωt

BθT
cI (1−Dθ

c )kcB
θ
cJ dv . (3.3.12)

and the thermal element residual rθce

rθce =

np∑

I=1

np∑

J=1

∫

Ωt

BθT
cI qc dv , (3.3.13)

where qc is given in Equation (2.5.16).

Patch test of thermal conduction across the interface
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Figure 3.12: Temperature distribution in patch test with respect to different thermal con-

ductivity of interface (a) 10000 (w/Mk) and (b) 1 (w/Mk) and (c) 0.01 (w/Mk).

The geometry of the thermal patch test across the interface is the identical to the pure
mechanical one, see Figure 3.6. The thermal conductivities of both prisms are assumed
to be 1.0 W/m.K. When the interface element with zero-thickness is utilized, no phys-
ical parameter can be defined for the thermal conductivity of the interface, therefore, a
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Figure 3.13: Temperature jump across the interface in patch test as a function of thermal

conductivity of interface.
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Figure 3.14: Thermal flux (W/mm2) in z direction in patch test with different thermal

conductivity of interface (a) 10000 (W/mm2K) and (b) 1 (W/mm2K) and (c)

0.01 (W/mm2K).

penalty parameter originating from contact mechanics represents the thermal conduc-
tivity of the interface. In this case, the infinitely large penalty parameter results in the
perfect thermal conduction across the interface. However, the infinitely large penalty
number leads to the ill-conditioning of the stiffness matrix. Hence, a sufficiently large
penalty number is chosen. Here, an artificial thermal conductivity of the interface is
applied intead of (1 − Dθ

c)kc in Equation (3.3.12) in the numerical simulation, so as
to solve the pure thermal conduction across the interface. Constant temperature of
1.0 ◦C is prescribed on the top surface. Figure 3.12 illustrates the temperature dis-
tribution and Figure 3.13 illustrates the temperature jump [|θ|] across the interface as
the thermal conductivity of the interface or equivalently the penalty parameter is in-
creased. It indicates that the infinitely large penalty parameter leads to the infinitely
small temperature jump across the interface. Moreover, Figure 3.14 presents not only
the existence of the uniform thermal flux qb of prisms in zz direction indicated by the
LC interface model in Subsection (2.5.3) but the issue that the thermal flux qb is also
reduced when the thermal conductivity of the interface is decreased.
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3.3.4 Diffusion across the interface in the FEM

Similar to the case of thermal conduction across interface, the nodal humidity vector
ŝc in the global coordinate system is written as

ŝc = (ŝ1c , ŝ
2
c , ŝ

3
c , ŝ

4
c , ŝ

5
c , ŝ

6
c)
T . (3.3.14)

With the aid of Bs
c

Bs
c =

[
N1 N2 N3 −N1 −N2 −N3

]T
, (3.3.15)

where shape functions are defined in Equation (3.3.2). The humidity diffusion across
the interface can be defined as

[|s|] = Bs
c ŝc . (3.3.16)

The linearization of Gs
c in Equation (2.6.18) with repsect to s yields the diffusion

tangent element stiffness matrix Ks
ce

Ks
ce =

np∑

I=1

np∑

J=1

∫

Ωt

BsT
cI (1 +M)dcB

s
cJ dv , (3.3.17)

and the diffusion element residual rsce

rsce =

np∑

I=1

np∑

J=1

∫

Ωt

BsT
cI jc dv , (3.3.18)

where jc is given in Equation (2.5.23).

Patch test of diffusion across imperfect interface

As the diffusivity of aggregate is much lower than the one of HCP, a patch test imi-
tating the case in concrete is established for the analysis of humidity diffusion across
the interface. The diffusivities of prisms are set to be 1.0cm2/h and 0.01cm2/h. The
constant humidity boundary condition is prescribed on the top surface. Concerning
different diffusivity of interface, the humidity distribution are shown in Figure 3.15.
Also, Figure 3.16 illustrates the humidity jump [|s|] as the diffusivity of interface rises,
resembling the thermal conduction result in Figure 3.13 .
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Figure 3.15: Humidity distribution in patch test with different diffusivity of interface ele-

ment (a) 10000 (m/s) and (b) 1 (m/s) and (c) 0.01 (m/s).
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Figure 3.16: Humidity jump cross the interface as a function of diffusivity of the interface.
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Chapter 4

Alkali-Silica Reaction

The existence of the chemical reaction between the alkali from the cement paste and
the silica from aggregates in the concrete, namely alkali-silica reaction (ASR), was first
pointed out by Holde in 1935, and then the harm of ASR to the concrete was found
by Stanton in 1940. The hydraulic structure “Parker Dam” was first diagnosed to
be affected by ASR in 1941. Later on, more concrete structures suffered from ASR
were continuously reported in different countries, thereby raising demands for reliable
approaches to reassess the extent of the reaction and to inhibit such reaction. In addi-
tion, since ASR is a long-term reaction, it is artificially accelerated in laboratories with
high temperature and high humidity. As a consequence of the development of modern
technologies, such as scanning electron microscope (SEM) and computed tomography
(CT), it enables to visualize the ASR induced failure of the concrete at the lower scale.
For instance, SEM images in Figure 4.1 display the ASR induced microcracks in two
concrete specimens, which was conducted by Bernardes at Universidade Estadual
Paulista Júlio de Mesquita Filho in Brazil.

Figure 4.1: SEM images presenting microcracks in two concrete samples subjected to ASR

(Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil).

55
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(a) (b) (c)
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Figure 4.2: Overall chemical mechanism of ASR (a) OH− from the pore solution in the

cement paste attacks siloxane networks in aggregates (b) production of the

amorphous gel (c) expansion of the gel in the presence of water.

4.1 Chemical mechanism of ASR

ASR, discovered in the 1940s, is a long-term chemical reaction and detrimental to the
concrete structure. ASR is characterized by the breakdown of the siloxane bonds (Si-
O) in poorly crystallized silica of aggregates, which is attacked by the hydroxyl ions
OH−1 in micropores from the cement paste. It leads to the formation of an amorphous
alkali-silica gel, which swells in the presence of the water and exerts pressure on the
surrounding material. Hence, it induces micro-and, eventually, macro-cracking of the
structure, see Ulm et al. (2000), Bažant & Steffens (2000) and Lemarchand

et al. (2005). As illustrated in Figure 4.2, the complex mechanism of ASR can be
generally summarized into two steps. In the first step, as shown in Figure 4.2(a), the
attacks of hydroxyl ions break the siloxane networks of aggregates, thereby yielding
the silicic acid

≡ Si−O− Si ≡ +R+ +OH− →

≡ Si−O− R ≡ +H−O− Si ≡ ,
(4.1.1)

where R+ denotes alkali ions (Na+ and K+). Due to the characteristics of weak acid,
the produced silicic acid immediately reacts with hydroxyl ions

≡ Si−O− H+ R+ +OH− → ≡ Si−O− R + H2O , (4.1.2)

producing the amorphous alkali-silica gel. As shown in Figures 4.2(b) and 4.2(c), the
second step is comprised of the production of the gel and the expansion of the gel by
absorption of free water

≡ Si−O− R + nH2O → ≡ Si−O− − (H2O)n + R+ , (4.1.3)

where n is the hydration number. The resulting expansion stress leads to the formation
of the failure of the concrete. Overall, three factors are indispensable for ASR:

• alkali content from the pore solution in the cement paste,
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• poorly crystallized silica in aggregates,

• moisture content.

Figure 4.3: Two-dimensional micro-CT images of concrete sample suffered from ASR at 2

and 74 days (University of California, Berkeley, 2013).

For illustrative purpose, two-and three-dimensional micro-CT images obtained at Uni-
versity of California, Berkeley, are displayed in Figures 4.3 and 4.4, which offer a limpid
manner to describe the ASR process in the concrete. For instance, Figure 4.3 illustrates
two-dimensional images obtained for the same cross-section of the concrete sample suf-
fered from ASR at 2 and 74 days respectively. As shown in Figure 4.3, no ASR occurred
at 2 days, while it was observed at 74 days when reactive aggregates dissolved (indi-
cated as DL), the neighbouring pores were filled with ASR gel (indicated as FL) and
microcracks were also filled with ASR gel (indicated as CR+DL).

Figure 4.4: Three-dimensional micro-CT images of concrete sample suffered from ASR at

1, 61, 74 and 136 days (University of California, Berkeley, 2013).

The three-dimensional volume rendered images offer a better insight into the phe-
nomenon of ASR, see Figure 4.4. At 2 days, one can observe the distribution of voids
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as well as gaps due to entrained air. At 61 days, the phenomenon that voids were filled,
aggregate dissolved and few cracks were formed in some defected aggregates, implies
the existence of ASR. At 74 days and 136 days, the dissolution of aggregates turned
stronger and cracks were propagated through the matrix, voids and some aggregates.
The closely related values of grey scale between gaps, cracks and ASR gel yields the dif-
ficulty in the three-dimensional segmentation. Thus, some features seem to disappear
on the image at 136 days.

4.1.1 Review of theoretical models of ASR

As mentioned before, two stages of the mechanism of ASR are summarized: the non-
instantaneous dissolution of the silica in aggregates and the instantaneous swelling of
the gel. During the dissolution stage, the hydroxyl ions OH− from the pore solution
in the HCP attack the amorphous or poorly crystalline silica in aggregates, thereby
breaking the siloxane bonds of silanol groups (Si-O). The phenomenon of the dissolu-
tion occuring at the interface between aggregates and the pore solution in the HCP
has already been well understood, see Lemarchand et al. (2005). At the second
stage, due to the hydrophilic property, the gel swells in the presence of water and ex-
erts pressures on the surrounding HCP, thus forming micro- and macro-cracking of the
concrete structure, yet it is still a challenging topic to thoroughly explain this stage.
However, a series of theoretical models have been developed to explain this mechanism
from different points of view. For instance, a micromechanical approach accounting for
topochemical and through-solution mechanisms was proposed by Lemarchand et al.

(2005). In detail, the topochemical mechanism assumed that the gel was generated at
sites of the dissolution of the silica, while through-solution mechanism proposed that
the gel was produced in porous locations. As explained in McGowan & Vivian

(1952), a solid layer was formed on the surface of the aggregate to absorb the water
from the pore solution in the HCP, and then the solid substance was transferred to
the gel. Multon et al. (2009) proposed that the gel was generated inside aggregates
after alkali and hydroxyl ions diffused into aggregates and broke silanol bonds. Then,
the gel permeated through the connected porous volume between aggregates and HCP,
hence, the gel was maintained inside aggregates and generated. As pointed out by
Idorn (2001), Garcia-Diaz et al. (2006) and Ichikawa & Miura (2007), the ag-
gregate was tightly packed by an insoluble rim, allowing the penetration of the alkaline
solution, rather than the viscous alkali-silica gel. Similarly, Haha et al. (2007) and
Dunant & Scrivener (2010) highlighted the predominant effect of the formation of
the gel in aggregates, thereby resulting in the damage in aggregates themselves and
subsequently in the surrounding cement paste. Ponce & Batic (2006) addressed
the overall conclusion that the different locations of the gel reported in Haha et al.

(2007), Multon et al. (2009) and Dunant & Scrivener (2010) can be explained
by types of aggregates. The experiment in Ponce & Batic (2006) captured that
cracking patterns of ASR-affected concrete rely on the mineralogical nature of ag-
gregates through petrographic examination with a stereobinocular and a polarizing
microscope. It was also observed that aggregates such as opal and vitreous volcanic
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rocks result in the formation of the gel at the interface between the aggregate and the
cement paste, thus causing cracks in the cement paste. On the other hand, mixed
mineralogy aggregates form cracks in both aggregates and cement paste. The general
review of theoretical models concerning the formation site of the ASR gel is listed in
Table 4.1.

Site of Gel Reference Description

Inside aggregates Idorn (2001), Garcia-

Diaz et al. (2006),
Haha (2006),Ichikawa
& Miura (2007),
Dunant & Scrivener

(2010)

gel was formed inside aggregates, thus
leading to the failure in aggregates
themselves and subsequently in the sur-
rounding cement paste

Thickness layer McGowan & Vivian

(1952), Multon et al.

(2009)

gel permeated through the connected
porous volume to form the gel layer
with certain thickness in the vicinity of
aggregates

Topomechanical Lemarchand et al.

(2005)
gel was generated at the interface be-
tween cement paste and aggregates,
where hydroxyl ions from the pore so-
lution in the cement paste attack the
poorly silica networks in aggregates.

Through-solution Dron & Brivot

(1993), Lemarchand

et al. (2005)

gel was formed in the porous space of
cement paste

Table 4.1: General review of theoretical models of ASR concerning the formation site of

the ASR gel.

4.1.2 Review of numerical models of ASR

During the last decade, a considerable number of numerical models have been devel-
oped to predict the ASR induced failure at different length-scales of concrete. Huang

& Pietruszczak (1996) established the correlation between the expansion strain due
to ASR and the mechanical degradation at the macroscale of the concrete, where the
expansion strain had a similar formulation with the thermal dilation strain. An ad-
vanced thermo-chemo-mechanical model was developed by Ulm et al. (2000) in the
framework of Biot’s theory, where the concrete was conceived as a two-phase mate-
rial including the expansive gel and the homogenized concrete skeleton. Moreover, the
volumetric expansion of the gel was evaluated as a function of the reaction kinetics,
which is influenced by the temperature. Comi et al. (2012) developed the model
based on Ulm et al. (2000), where not only temperature but also relative humid-
ity contribute to the extent of the reaction. In addition, the investigation on ASR
at the macroscale of the concrete was developed by Bangert et al. (2004), where
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the concrete was treated as a mixture of three superimposed constituents through the
theory of porous media: skeleton, pore liquid and pore gas. The model was based on
converting the mass of unreacted material into the mass of the reacted material in the
skeleton. Various analytical models based on empirical equations were also developed
to explain ASR at the mesoscale of the concrete, see Bažant & Steffens (2000)
and Multon et al. (2009). For instance, Bažant & Steffens (2000) proposed
that the chemical reaction kinetics was related to the diffusion process of the reac-
tants, leading to the subsequent fracture in the characteristic unit cell of the concrete
modeled with one spherical glass particle. Detailed numerical models at the mesoscale
were limited. Comby-Peyrot et al. (2009) introduced a three-dimensional meso-
scopic model, where aggregates were randomly distributed in the cement matrix. The
damage in the cement matrix was caused by the isotropic dilatation phenomenon in
the reactive aggregates induced by ASR. Dunant (2009) and Dunant & Scrivener

(2010) proposed a two-dimensional finite element/extended finite element framework
to qualitatively depict the ASR induced deterioration at the mesoscale of the concrete.
The growing gel pockets defined in aggregates triggered the damage to them, where the
geometry of gel swelling was represented by updating the enrichment function. Al-

naggar et al. (2013) adopted the framework of the lattice discrete particle model
(LDPM) to capture the ASR induced crack patterns at the mesoscale of the concrete.
The expansion of the gel occurred at the level of each individual aggregate particle.
Due to the lack of reliable microscale models and representations, no results have been
found at the microscale of the concrete with applications to ASR. A general review of
numerical models on ASR is described in Table 4.2. For more details, the reader is
referred to Haha et al. (2007), Pan et al. (2012) and references therein.
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Length scale Multiphysics References General Description

Macroscale Mechanical Charlwood (1994),
Thompson et al. (1994),
Pietruszczak (1996), Capra

& Sellier (2003), Herrador

et al. (2009)

Extensive work has been carried out to identify the ex-
pansion strain as a function of the stress tensor

Macroscale Chemo-mechanical Leger et al. (1996), Farage
et al. (2004), Fairbairn

et al. (2006), Saouma &

Perotti (2006), Multon

et al. (2009)

A nonlinear relation between the expansion strain of con-
crete and the chemical extent was adopted to construct a
model at the structural level

Macroscale Hydro-thermo-
chemo-mechanical

Huang & Pietruszczak

(1996), Ulm et al. (2000),
Comi et al. (2009), Bangert

et al. (2004), Comi et al.

(2012), Pesavento et al.

(2012)

Temperature and relative humidity contributed to the
chemical extent of ASR and the expansion strain, leading
to the failure of the concrete structure

Mesoscale Chemo-mechanical Bažant et al. (2000), Shin

(2009), Dunant (2009),
Dunant & Scrivener

(2010), Charpin &

Ehrlacher (2012), Comby-

Peyrot et al. (2009)

Randomly distributed aggregates were embedded in the
matrix to represent the mesoscale of the concrete. The
formation and expansion of ASR gel were described at
the level of each individual aggregate. Influences of aggre-
gates on the expansion strain and the subsequent damage
in the concrete were taken into account

Microscale Hydro-thermo-
chemo-mechanical

Current work It initializes the analysis of ASR at the microscale of HCP
and investigates the correlation between damage due to
ASR and chemical extent. The extent is influenced by the
temperature and the relative humidity. The ASR induced
damage at the microscale is upscaled to the mesoscale via
computational homogenization towards observable failure

Table 4.2: General review of numerical models of ASR.
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ASR is a complex chemical reaction and its mechanisms at the material level are still
in dispute. Some numerical models concerning ASR have already been successfully set
up at the macro- and meso-scale of the concrete. The objective of the present work is
to establish a multiscale computational framework for predicting ASR induced damage
where, for the first time to the best knowledge of the authors’. The analysis on ASR
is carried out at the microscale of the concrete and the ASR induced deterioration is
upscaled to the mesoscale. The general scope of the study is as follows:

• to investigate the contribution of the chemical extent of ASR to the expansion
strain of the gel at the micropore and the resulting deterioration of HCP,

• to obtain the correlation between the effective mesoscale damage due to ASR and
the chemical extent through computational homogenization,

• to carry out hydro-thermo-chemo-mechanical coupling based on a staggered method
at the mesoscale, where transient temperature and relative humidity are em-
ployed, thereby establishing a multiscale and multiphysics model to predict the
failure due to ASR.

4.2 Kinetics of ASR

ASR can be specifically modeled as a two-stage process, involving the dissolution of
the silica and the swelling of the gel. Dron & Brivot (1993) proposed that the
dissolution stage can be described by a first-order kinetic law, which was widely adopted
by Larive (1998), Ulm et al. (2000), Comi et al. (2009), Comi et al. (2012).
In addition, Larive (1998) verified the dependence of the chemical reaction kinetics
on the temperature and the relative humidity.

4.2.1 Chemical reaction kinetics

The aforementioned first-order kinetics law can be expressed as

t̃
dξ

dt
= 1− ξ , (4.2.1)

where t is the time, t̃ is the intrinsic time of the reaction and ξ ∈ [0, 1] is the chemical
extent, measuring the progression of the reaction: ξ = 0 is the beginning and ξ = 1 is
the end. For macroscopic experiments, ξ is defined by the ratio between the current
expansion strain and the terminal one of the concrete specimen. An explicit equation
of t̃ was proposed in Larive (1998)

t̃ = τch
1 + exp[−τlat/τch]

ξ + exp[−τlat/τch]
, (4.2.2)

where τlat is the latency time and τch is the characteristic time, corresponding to the ini-
tiation and the development period of ASR respectively. Larive (1998) addressed that
τlat and τch rely on the temperature and the relative humidity. If only the temperature
θ is taken into account, the dependence was proposed in the form

τlat(θ) = τlat(θ0)exp[Ulat(1/θ − 1/θ0)] , (4.2.3)
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τch(θ) = τch(θ0)exp[Uch(1/θ − 1/θ0)] , (4.2.4)

where θ0 = 38◦C is the reference temperature, and Ulat and Uth are the Arrhenius

activation energies (Uch = 5400 ± 500K and Ulat = 9400 ± 500K, see Ulm et al.

(2000)). The explicit equation of the chemical extent ξ for the isothermal case is
obtained by taking the integral of Equation (4.2.1):

ξ(t, θ) =
1− exp(−t/τch(θ))

1 + exp(−t/τch(θ) + τlat(θ)/τch(θ))
. (4.2.5)

In Figure 4.5, the S-shape curve illustrates the chemical extent under constant tem-
perature θ = 25◦C with respect to days, where the regions and physical meanings of
the latency time and the characteristic time are indicated. Overall, the S-shape curve
represents three stages of ASR: initiation, reaction and exhaustion.
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Figure 4.5: Latency time and characteristic time in the S-shape curve of chemical extent

under constant temperature.

4.2.2 Influence of temperature on chemical extent

It is well understood that ASR is thermally activated, according to either the Arrhen-

sius law or the experiment from Larive (1998), such that the higher the temperature
is, the faster the reaction is. Studies associated with the influence of the temperature
on the chemical extent ξ and the subsequent deterioration in the concrete have already
been reported, see Ulm et al. (2000) and Comi et al. (2012). Clearly, the chemical
extent ξ as an irreversible internal variable can be calculated based on various temper-
ature history inputs. Figure 4.6 present some examples of temperature variations with
time and the calculated chemical extent.

4.2.3 Influence of relative humidity on chemical extent

As indicated in Kurihara & Katawaki (1989) and Nilsson (1989), the influence of
the relative humidity on ASR is another significant concern. Here, water has two main
functions:
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Figure 4.6: (a) Various temperature histories with respect to days and (b) the calculated

chemical extent history under the imposed temperature variation.

• transport medium of the ionic species,

• reactant in the swelling of the amorphous gel.

Kurihara & Katawaki (1989) and Tomosawa et al. (1989) have indicated that
ASR can be inhibited if the relative humidity in the concrete is below certain threshold.
Nilsson (1989) explained that there is no ASR induced degradation when the relative
humidity drops below 0.8. Ludwig (1989) stated that the threshold quantity of the
relative humidity to initialize ASR is between 0.8 and 0.85 under a constant temper-
ature of 20 ◦C. Different threshold values found in the literature can be explained by
different experimental conditions and mixtures of the concrete. The experimental data
from Larive (1998) introduced the dependence of the latency time and the character-
istic time on the relative humidity, see Figure 4.7, where the threshold value of relative
humidity to activate the reaction is around 0.6. This observation is adopted in this con-
tribution. Larive (1998) provided the experimental data of the latency time and the
characteristic time with respect to saturation degree. Due to mechanisms of molecular
absorption/desorption, capillary condensation, surface tension and disjoining pressure,
a nonlinear relationship has been found between the saturation degree and the relative
humidity, which is complexly affected by the temperature, see Wu et al. (2012). In
this work, the effects of absorption and desorption are not taken into account. Satu-
ration degree is ideally replaced by the relative humidity. The discrete sampling data
with respect to the relative humidity from Larive (1998) can be approximated by the
continuous functions through

τi(θ, s) =

(

τi(θ0, 1) +
τi(θ0, 0)− τi(θ0, 1)

1 + a1,iexp[−
a2,i(1−2s)

s(1−s)
]

)

exp
[

Ui

(1

θ
−

1

θ0

)]

, i = (ch, lat) ,

(4.2.6)
where s is the relative humidity and subscribes i = (ch, lat) indicate the latency time
and the characteristic time, respectively. In addition, 0 and 1 in the dependence of
τi represent the beginning and the end of the chemical reaction. The dependence of
the chemical extent on the moisture content assumed in Equations (4.2.6) was first



4.2. KINETICS OF ASR 65

proposed in Comi et al. (2012). Coefficients of approximations are listed in Table
4.3 and the corresponding curves in Figure 4.7.
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i τ(θ0, 0)(Days) τ(θ0, 1)(Days) a1 a2

tlat 160 50 20 -18.5222

tch 100 20 1 -10.52

Table 4.3: Coefficients of approximations to take into account the effect of the relative

humidity on the latency time and the characteristic time.

Approximate curves in Figure 4.7 can be transferred into the expression of the chemical
extent ξ in Equation (4.2.5), so that the effect of the relative humidity on ASR be incor-
porated into the present framework. In order to capture the irreversible characteristics
of ASR while taking into account the effect of the relative humidity, Equations (4.2.5)
and (4.2.6) are utilized to calculate the chemical extent ξ, where the relative humidity
contributes to the latency time and the characteristic time through Equation (4.2.6).
Subsequently, the obtained time quantities are adopted to calculate the chemical extent
ξ through Equation (4.2.5). Examples of relative humidity histories with respect to
days and the corresponding results for the chemical extent ξ are shown in Figure 4.8.
Influences of the temperature and the relative humidity on the chemical extent ξ have
so far been investigated separately. In order to involve both influences simultaneously,
the combination of Equations (4.2.3), (4.2.4) and (4.2.6) are employed, see Figure 4.9,
where the latency time and the characteristic time are functions of the temperature
and the relative humidity. This establishes the basis of hydro-chemo-thermo coupling
in the present work.
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perature and the relative humidity.

4.2.4 Fundamentals and assumptions

In the laboratory, the reaction is often accelerated by enforcing high temperature and
large relative humidity, yet is still relatively slow. In Section 2.1, the obtained S-shape
curve originating from Equation (4.2.5) captures two important stages of ASR: the
initiation and the development periods, see Ludwig (1989) and Lemarchand et al.

(2005). The influences of the temperature and the relative humidity on the chemical
extent are analyzed in Sections 4.2.2 and 4.2.3. It is noted that the observation that
higher temperature and larger relative humidity cause larger expansion strain of the
concrete specimen induced by ASR can be found in Ludwig (1989) and Lemarchand

et al. (2005), but this issue is not taken into account in this work. Previous work
on the mechanisms of ASR was presented in Section 4.1.2. It is recalled that the ASR
mechanism is not fully resolved. The objective of the present work is to initiate the
investigation of the deterioration due to ASR at the microscale of HCP, and then to
build the link between the microscale and the mesoscale of the concrete. Before moving
further, some significant assumptions and simplifications need to be addressed:
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• Despite the presence of several proposes regarding ASR is according to the ex-
perimental observation, the present work concentrates on the through-solution
mechanism, see Lemarchand et al. (2005): gels are produced in micropores
of HCP, and they exert pressure uniformly on the surrounding material,

• Gel rapidly fills up the micropore of HCP once ASR starts, yet exerting no pres-
sure on the surrounding material at the beginning. In other words, the transition
from the dissolution stage to the swelling stage is not modeled,

• The expansion strain of the gel at the microscale is defined by the product of
the expansion coefficient of the gel and the chemical extent ξ. In addition, the
expansion coefficient of the gel is assumed to remain permanent during the chem-
ical reaction: it is independent of the temperature, relative humidity, time and
position,

• The expansion induced by ASR at the micro and macroscale is assumed to be
isotropic,

• The influences of reactivity types and the size of aggregates are not taken into
account, see Haha et al. (2007) and Dunant & Scrivener (2010),

• Mild damage is considered,

• Scalar multiscale variables are typically projected as constants from the upper to
the lower scales, as indicated in Yu & Fish (2002) and Temizer & Wriggers

(2010a). Complying with this observation, temperature and humidity mediated
chemical extent variable is projected uniformly into the micropores of represen-
tative volume element (RVE) at the microscale of HCP. Hence, the analysis of
the microscale does not require a full numerical coupling among all fields.

Based on assumptions mentioned above, a coupled hydro-thermo-chemo-mechanical
simulation framework for the mesoscale of concrete will be developed in the remaining
sections. For this purpose, each scale of concrete is treated next in an interactive
fashion.
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Chapter 5

Multiscale representation of
concrete

The characteristics of low costs and recyclability render concrete with broad applica-
tions in the area of civil engineering, such as dams, roads, skyscrapers and among oth-
ers. The concrete structures are subjected to various environmental attacks, e.g. frost
(Hain & Wriggers (2008a)), ASR (Ulm et al. (2000)) as well as mechanical over-
load (Denarié et al. (2006)), thereby leading to macrocracks and failure in concrete.
The resulting problems can be explained by the variation or the deterioration of the un-
derlying microstructure. For this reason, the development of a reliable analysis tool is
motivated towards better understanding of inherent microstructure of concrete. How-
ever, highly heterogeneous microstructures at different length-scales of concrete raise
difficulty in analyzing the performance of concrete. Specifically, at the macroscale, the
concrete is treated as a homogeneous material. One scale lower, the mesoscale, includes
a binding matrix, aggregates and pores with broad size distribution as well as interfa-
cial zones (ITZ) between aggregates and the matrix. At the microscale, it constitutes
the finest structural scale and is represented by the microstructure of HCP, consisting
of hydration products, unhydrated residual clinker and micropores. For more details
about the heterogeneity of concrete at different length-scales, the reader is referred to
Mehta & Monteiro (2001) and references therein.

Over the recent years, several multiscale models were developed to analyze the failure
in concrete suffering from various attacks. Hain & Wriggers (2008a) have evalu-
ated the damage due to frost in the HCP using a finite element model that is based on
the three-dimensional computer-tomography scans of HCP, and the obtained effective
damage was upscaled to the next scale of concrete via a computational homogenization
approach. Cusatis & Cedolin (2007) developed an equivalent macroscopic cohe-
sive law reflecting the meso-level failure mechanisms, where the investigation on the
fracture behavior at the lower scale was carried out through a lattice-type model. A
coupled macro-meso-micro model was described by Nguyen et al. (2012) to link the
micro-diffusive damage and the macro-crack in concrete, by incorporating a cohesive
zone model within an iterative FE2 approach. Eckardt & Könke (2008) adopted
the nonlocal damage model to present the initiation, propagation and coalescence of

69
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microcracks at the mesoscale and subsequent formation of macroscopic cracks. In ad-
dition, the adaptive domain decomposition method was used to analyze the multiscale
failure in concrete. Ghosh & Chaudhuri (2013) developed a multiscale failure model
for concrete, where the material far from the fracture process zone was described by the
homogenized elastic model, while a nonlinear model was used in the fracture process
zone. The fracture at the mesoscale was modeled by CZM in the context of an enriched
partition of unity meshfree method. Idiart et al. (2011) focused on the external sul-
fate attack on the concrete specimen at the meso-level, where zero-thickness interface
elements with fracture-based constitutive laws were adopted. Moreover, the influence
of discrete cracks on the transport of ions was explicitly taken into account.

This section starts from the introduction to approaches of generating randomly dis-
tributed aggregates embedded in the homogenized HCP as well as zero-thickness in-
terface elements between aggregates and HCP representing the ITZ. Then it addresses
the microstructure of the HCP obtained from micro-CT scan as well as the constitutive
law of each component in the HCP. This section ends up with an example illustrating
the ASR induced damage in the HCP.

5.1 Mesoscale of concrete

Figure 5.1 presents the scanning electron microscope (SEM) image of the cross-section
of a concrete sample, from which the HCP and aggregates are clearly observable. How-
ever, the thickness of the ITZ is quite small, such that the distinction between ITZ
and HCP has to be identified through SEM with higher resolution. To emphasize the
significance of the ITZ, an individual section will be constructed to provide more details
of the microstructure of the ITZ in Subsection 5.2.

Figure 5.1: SEM image of the cross-section of a concrete specimen (Mehta & Monteiro

(1993)).

As compared to HCP, aggregates predominantly determine the unit weight, stiffness
and stability of concrete. According to the size, aggregates can be generally classified
into two categories: fine and coarse. Aggregates with radius less than 4.75 mm, are
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generally referred to as fine, like sands. The converse are defined as coarse aggregates,
e.g. gravel, natural rock and slags, see Mehta & Monteiro (2001). Albeit the
dominant volume fraction in concrete, aggregates are commonly considered as inert
fillers due to stable microstructures. Conversely, by the existence of the diffusion of
components in the porous microstructure of the HCP, it leads to chemical reactions
and variations of its microstructure.

5.1.1 Representation of mesoscale

A significant task is to generate the mesoscale representation of concrete, which di-
rectly determines the accuracy and reliability of the numerical simulation. In Figure
5.2, some commonly adopted shapes of aggregates are displayed, and the distinction
of shapes can be explained by the type of aggregates from the perspective of manu-
facturing process. Aggregates with spherical shape were adopted e.g. in Wriggers

& Moftah (2006), Comby-Peyrot et al. (2009) and Snozzi et al. (2012). As
an extension of the spherical case, Häfner et al. (2006) developed aggregates with
elliptical shape, where various elliptical shapes were generated by varying parameters
of ellipsoid functions. Clearly, aggregates with polygonal shape, generated by means
of Delaunay tessellation, yield more accurate approximations of crushed aggregates,
see Wang et al. (1999) and Carol et al. (2001). However, the potential strong
stress concentrations at the sharp edges are of significant concern during numerical
simulations.

(a) (b) (c)

–

Figure 5.2: Commonly adopted shapes of aggregates embedded in the homogenized HCP

(a) Sphere and (b) Ellipse and (c) Polygon.

In this subsection, various approaches to realistically generate the mesoscale repre-
sentation of concrete are addressed, e.g. divide-and-place approach, distinct element
approach and take-and-place approach. In the context of divide-and-fill approach,
the whole domain is first divided into small domains, and then the resulting small
domains are filled with aggregates. However, the generation of large three dimen-
sional microstructures can be cumbersome, as pointed out in Schutter & Taerwe

(1993). With regard to the distinct element approach, the chosen aggregates are ran-
domly placed in a vertical direction onto the previously deposited aggregates cluster,
see Moftah (2005). In case of being in contact, the subsequent roll and slide of
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aggregates in order to obtain more stable positions is also allowed. This approach
is applicable to the case when more fine aggregates need to be generated. However,
the sophisticated algorithm raises diffusivity in implementing it. The details of the
take-and-place approach will be introduced in Subsection 5.1.2. As a consequence of
the development of computer technology and non-destructive imaging device like CT,
it yields the digital image output, presenting the material heterogeneity of concrete,
see Hain & Wriggers (2008a) and Main (2010). Among all approaches mentioned
above, clearly the geometry obtained from CT provides the best approximation of the
real concrete, however, the computational cost in the numerical simulation is giant.

5.1.2 Take-and-place approach

As described in Wriggers & Moftah (2006), the take-and-place approach employed
in the present work to generate aggregates with spherical shapes embedded in the
homogenized HCP, can be generally divided into two processes: take and place, see
Table 5.1 for the general algorithm andWriggers & Moftah (2006) for more details.
The size of aggregates are obtained from a sieve size curve displayed in Figure 5.3 which
is a certain aggregate size distribution yielding the optimal density and resembles the
original concrete itself. Figure 5.4 illustrates examples with different volume fractions
of aggregates embedded in the homogenized HCP.
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Figure 5.3: Aggregate size distribution curve.

5.1.3 Discretization technique

The construction of the mesh determines the quality with which the microstructures are
resolved and thereby influences the accuracy of numerical simulations. The heterogene-
ity of the material causes difficulty in meshing the three-dimensional microstructure.
Figure 5.5(a)1 and 5.5(a)2 present two prevailing meshing approaches: conforming and
nonconforming, see Zohdi & Wriggers (2005) for details. The meshing approach
referred to as conforming allows boundaries of elements to coincide with boundaries
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Take-process

1. Divide the sieve size curve of aggregates in Figure 5.3 into segments and define a random
number ς ∈ (0, 1) such that the size of the aggregate d = ds+1 + ς (ds − ds+1), where ds
and ds+1 indicate the upper and lower size limit of the segment.

2. Calculate the volume of the generated aggregate and subtract it from the volume of
aggregates within the segment.

3. Keep running step 2 until the volume of aggregates left to be generated is less than
4
3π
(
ds+1

2

)3
. Then move to the next segment and run aforementioned steps again.

Place-process

1. Random number is defined for the position of aggregates to be placed in the HCP.

2. Check whether place-process conditions are completely satisfied. For example, the
overlaps between aggregates or between aggregate and HCP boundary are not allowed.
Furthermore, Schlangen & Mier (1992) indicated that the thickness between two
adjacent aggregates can not be smaller than 0.1(d1 + d2)/2, where d1 and d2 are the size
of two different aggregates.

Table 5.1: Algorithm of take-and-place approach to generate the mesoscale representation

of concrete.

6
HHj���

z

x y
10% 30% 50% 60%

Figure 5.4: Mesoscale representations with different volume fractions of aggregates.

of the geometry, such that each element is assigned the material properties of either
the matrix or the particle, see Figure 5.5(a)1. As compared to hexahedral element, the
tetrahedral element is profitable for conforming meshing approach, thus circumvent-
ing the problem of strongly distorted elements, however, the generation of tetrahedral
elements is a challenging task. Alternatively, nonconforming meshing approach with
hexahedral elements offers the rapid mesh generation and yields less distorted elements,
see Figure 5.5(a)2. Considering the gauss point method as a particular nonconform-
ing meshing approach, with a focus on the interface elements between the matrix and
the particle, it assigns particle properties to integration points that lie in the particle,
and matrix properties to the remaining integration points, displayed in Figure 5.5(a)2,
where integration points at interface elements are not shown. More associated details
can be found in Löhnert (2004) and Zohdi & Wriggers (2005). Löhnert (2004)
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(b)(a)1 (a)2 (a)3

Figure 5.5: (a)1 Conforming meshing approach and (a)2 nonconforming meshing approach

and (a)3 hanging nodes approach, (only cross-sections of three-dimensional ge-

ometry are displayed) and (b) discretization the mesoscale representation of

concrete with the tetrahedral elements in the coarse mesh.

indicated that the jump in stiffness within the element still exists, thus leading to the
problems of a kink in the displacement field and the mesh dependency. With an inten-
tion of solving this problem, the hanging nodes method was developed to adopt smaller
elements close to the geometric boundaries to approximate the geometry, like a geo-
metrically adaptive method, see Figure 5.5(a)3, such that one element is only assigned
by one material property, see Löhnert (2004) for more details.

In this work, the mesostructure of concrete with the volume fraction of aggregates of
40% is generated. Then it is discretized through conforming meshing approach with
tetrahedral elements in the automatic mesh generator Cubit, see Figure 5.5(b) for the
discretization example with coarse mesh. This approach forces boundaries of elements
to coincide with boundaries of the geometry.

5.2 Interfacial transition zone between aggregates

and HCP

As described in Maso (1996), ITZ is referred to as the particular region in the HCP
with negligible thickness in the vicinity of aggregates. However, its property greatly
differs from both the HCP and aggregates. Figure 5.6(a) presents the backscattered
electron (BSE) image of concrete, where the aggregate is on the left and the white line
indicates the significant discrete boundary with the thickness of 20-50µm between the
ITZ and the HCP. The weak property of the ITZ is explained by its microstructure
with higher porosity, thereby resulting in the phenomenon that microcracks are pref-
erentially initiated at the ITZ. Figure 5.6(b) presents fracture paths lying along the
interface between the HCP and aggregates. Thus, lots of attention has been given to the
investigation on the microstructure of the ITZ. Monteiro et al. (1985) and Maso

(1996) hypothesized that there are two main components at the ITZ. First component
is a thin layer of about 2-3µm and is formed due to any reaction between aggregates
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(b)(a)

Figure 5.6: (a) BSE image of concrete (Scrivener et al. (2004)) and (b) microcracks

lying along the interface between HCP and aggregate (Wong et al. (2009)).

and the HCP. Since aggregates affect the original packing of the HCP, another highly
porous region of around 50µm exists in the HCP. Also, it was concluded that the
porosity of the microstructure of the ITZ can be reduced by lowering the water-cement
ratio wc. For more details about the microstructure of the ITZ, the reader is referred
to Monteiro et al. (1985), Maso (1996) and references therein.

5.2.1 Zero-thickness interface element

The mesoscale representation of concrete discussed in Subsection 5.1.1 is comprised of
randomly distributed aggregates and the homogenized HCP, without taking into ac-
count the ITZ. However, due to the significance of the ITZ, the next goal is to generate
the representation of the ITZ. As described in Subsection 5.1.3, the conforming meshing
approach was employed to discretize the mesostructure, such that boundaries of ele-
ments coincide with boundaries of the geometry. Concerning the thickness of the ITZ
compared to the dimension of concrete, it is profitable to consider the ITZ as a layer
with zero-thickness. Then interface elements with zero-thickness are inserted along all
aggregate-HCP element boundaries for the representation of the ITZ. An algorithm for
generating interface elements with zero-thickness is described in Figure 5.7 and Table
5.2. Figure 5.8 illustrates the undeformed interface elements between the HCP and
aggregates.

The biggest challenge in applying CZM into the FEM is to resolve the displacement
discontinuity, which can be overcome by using zero-thickness interface elements. Day

& Potts (1994) addressed that the zero-thickness interface element is profitable for
modeling the relative slip and opening/closing on predefined surfaces. However, during
numerical simulations, zero-thickness elements may result in the ill-conditioning of
the stiffness matrix and high stress gradients, when the stiffness of the zero-thickness
element is 100 times greater than Young’s modulus of the surrounding phase.
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Figure 5.7: Generation of interface elements with zero-thickness between aggregates and

the HCP for the representation of the ITZ.

1. Determine faces and nodes. Determine contacting triangular faces of two adjacent
tetrahedrons from the aggregate and the HCP and the nodal information of faces, see
Figure 5.7, where one contacting face with nodes of (n1, n2, n5) is shown.

2. Double nodes. Double nodes on contacting faces e.g. (n6, n7, n8) and replace original
nodes on contacting faces from aggregate tetrahedrons with new doubled nodes, see
Figure 5.7.

3. Establish interface element. Use original nodes and doubled nodes to establish interface
elements with zero-thickness, e.g. (n1, n2, n5, n6, n7, n8).

4. Check Det(J). If Det(J) of interface elements is smaller than zero, change the consequence
of nodes, e.g. (n1, n5, n2, n6, n8, n7), as seen in Figure 5.7. Otherwise, keep the original
consequence of nodes.

Table 5.2: Algorithm for generating interface elements with zero-thickness between aggre-

gates and the HCP.

5.2.2 Numerical example of unit cell

The next numerical example illustrates the behavior of the unit cell with zero-thickness
interface. The unit cell is constructed by one sphere with the radius of 3mm centrally
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Figure 5.8: Undeformed interface elements.

located in the matrix with dimensions of 10×10×10mm3 and zero-thickness interface
elements are placed between the sphere and the matrix. During numerical simulations,
the matrix and the sphere are assumed to behave elastically and interface elements are
driven by CZM. The mechanical parameters of the unit cell example can be found in
Table 5.3. Boundary conditions of tension, compression and shear are prescribed on
the unit cell. Deformed configurations are displayed in Figure 5.9, where the while
color indicate the debonding region. Furthermore, Figure 5.10 presents the stress σzz

of the unit cell subjected to different boundary conditions mentioned above.

Component Property Value

Matrix E 10000 (N/mm2)

Matrix ν 0.0 (-)

Sphere E 70000 (N/mm2)

Sphere ν 0.0 (-)

Interface ft 4.0 (N/mm2)

Interface Gf 0.005 (N/mm)

Interface Kp 4000 (N/mm3)

Table 5.3: Mechanical parameters adopted in the numerical example of the unit cell.

Figure 5.11 demonstrates influences of parameters on the macroscale stress-strain re-
lationship of the unit cell in uniaxial tension, e.g. tensile strength ft, fracture energy
Gf and Young’s modulus of the sphere. Among those curves, the common procedure
from perfectly bonded, partially debonded to completely debonded is captured, where
perfectly bonded is conducted by the case of no interface elements between the sphere
and the matrix, and completed bonded is achieved when aggregates are replaced by



78 CHAPTER 5. MULTISCALE REPRESENTATION OF CONCRETE

6
HHj���
z

x y

(a) (b) (c)

Figure 5.9: Deformations of the unit cell under various boundary conditions (a) tension

and (b) compression and (c) shear (white color indicates the debonding region).
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Figure 5.10: Stress σzz (MPa) of the unit cell under various boundary conditions (a)

tension and (b) compression and (c) shear.

voids, see the solid curve and the curve with the label of Voids in Figure 5.11(a). Also,
it indicates that larger tensile strength ft requires larger load to initialize the debonding
between the matrix and the sphere. For different fracture energy Gf , Figure 5.11(b)
describes that debondings occur under the identical tensile load, yet following differ-
ent softening curves. According to the influence of Young’s modulus of the sphere
demonstrated in Figure 5.11(c), the stiffer sphere needs less tensile load to induce the
debonding between the matrix and the sphere.

As an extention of numerical examples mentioned above, the effect of the sphere size
is investigated, as shown in Figure 5.12 for illustration of different radius of the sphere.
In addition to the radius of the sphere, the identical mechanical parameters of three
samples are adopted. Figure 5.13 illustrates macroscale stress-strain relationships with
respect to varying radius of the sphere in uniaxial tension. It can be clearly observed
that the peak stress, prior to softening, is directly proportional to the radius of the
sphere. Similarly, Petch (1953) indicated that the strength linearly increases with
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Figure 5.11: Macroscale stress-strain relationship of the unit cell in uniaxial tension influ-

enced by various parameters (a) fracture energy and (b) tensile energy and (c)

Young’s modulus of sphere.

6
HHj���
z

x y

(a) (b) (c)

Figure 5.12: Increasing the radius r of the sphere in the unit cell (a) r=2 mm and (b) r=3

mm and (c) r=4.5 mm.

the inverse square root of the particle size, as applicable to polycrystalline and fine
reinforced materials. Furthermore, in Figure 5.13, the phenomena of a transition from
snap-through to snap-back instability is also observed in the post-peak response as the



80 CHAPTER 5. MULTISCALE REPRESENTATION OF CONCRETE

radius of the sphere is increased. By the existence of the snap-back, a simple displace-
ment control is no longer profitable, and hence, an arc-length approach is adopted to
overcome the snap-back problem, see Subsection 3.1.2 for more details. Also, the hard-
ening behavior is captured when the radius of the sphere is reduced to a small value.
As such, it is concluded that the size of the sphere influences not only the strength of
the material, but also the stability of the interface crack.
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Figure 5.13: Macroscale stress-strain relationship of the unit cell with varying radius of

the sphere in uniaxial tension.

5.3 Microscale of hardened cement paste

HCP, as a finely pulverized material, develops the binding property during the hy-
dration process. In the cement, the cauterization above the temperature of sintering
yields 3CaO · SiO2 (C3S) and 2CaO · SiO2 (C2S). With an purpose of accelerating the
reaction, Al2O3 and Fe2O3 are added, such that by-products 3CaO · Al2O3 (C3A) and
4CaO · Al2O3 · Fe2O3 (C4AF) are also generated. However, the phases of C3S, C2S,
C4AF, and C3AF are intermediates, and in the presence of the water, the exother-
mic chemical-physical processes are initialized to yield the hydration product includ-
ing calcium-silicate-hydrate(CSH) and calcium hydroxide(CH). Ultimately, hydration
product, unhydrated residual klinker and micropores consist of the microstructure of
the HCP. For more details of the hydration process in the cement paste, the reader
is referred to Mehta & Monteiro (2001) and references therein. In the theory of
Powers (1962), the fractional volume of pores cp and of unhydrated residual clinker
cu are given by

cp =
wc − 0.36hd

wc + 0.32
, cu =

0.32(1− hd)

wc + 0.32
, (5.3.1)

where wc is the water-cement ratio and hd is the hydration degree.
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5.3.1 Representation of hardened cement paste

Over the past 20 years, several computer modeling packages were developed to simulate
the formation processes of the microstructure of the HCP. For instance, in Cemhyd3d,
developed at National Institute of Standards and Technology (NIST) in the U.S, the
microstructure of the HCP is divided into topological, geometrical, and physical uni-
form cells by using a cellular-automata approach, see Bentz (2000). The state of each
cell at new time step in the formation process relies on its state at old time step, the
states of next-neighbors and a random part. Owing to random-based rule, it distributes
the parts very evenly and has no capability to capture the accumulations of pores, as
described in Hain (2007). Hymostruc3D model was developed at Delft University of
Technology in Netherlands, for the simulation of the reaction process and of the forma-
tion of the microstructure in the hydrating Portland cement. Within this package, the
cement particles are modeled as digitized spheres randomly distributed in the domain,
and the hydrating cement grains are simulated as growing spheres. As the cement hy-
drates, the cement grains gradually dissolve and a porous layer of hydration products
is formed around the grain, see Ye et al. (2003) for more details. The introduction
to another similar so-called Mic package developed at École Polytechnique Fédérale
de Lausanne (EPFL) in Switzerland is described in Bishnoi & Scrivener (2009).

Unhydrated Residual

Hydration Product

Micropore6
HHj���
z

x y x

y6-

Figure 5.14: Three- and two-dimensional representations of HCP transferred from micro-

CT-scan of HCP.

As an alternative to approaches mentioned above, CT is a non-destructive evalua-
tion technique for producing three-dimensional images of a specimen through X-ray,
enabling to obtain the microstructure of the material and subsequently analyze the
mechanical behavior through numerical simulations. In the present work, a cement
specimen of length 1750µm was used to obtain the microstructural geometry of HCP
through three-dimensional micro-CT scans with a resolution of 1µm per voxel dimen-
sion. Due to this underlying voxel data structure, the natural element to use within
the finite element method to discretize the microstructure is an 8-node brick where
each element is assigned to a single material phase. This choice allows a straightfor-
ward transition from the micro-CT scan data to the numerical analysis stage, see Hain
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(2007) and Hain & Wriggers (2008b). Three- and two-dimensional representations
of HCP are displayed in Figure 5.14, where the gray parts are hydration products,
while white parts are micropores and black parts are unhydrated residual clicker. The
volume fraction of hydration products is 84%, the one of micropores is 14% and the one
of unhydrated is 2%. Although hydration products have the dominant volume fraction
in HCP, the micropore phase with a lower volume fraction also plays a significant role
in the performance of HCP. Note that as the resolution of the micro-CT scans is 1µm,
it only provides an approximation of the microstructural geometry, not being able to
capture the micropores whose diameters are less than 1µm.

5.3.2 Constitutive equation of each component in HCP

The present section introduces constitutive equations for three components in the HCP
as well as for the ASR gel only existing in micropores of the HCP.

5.3.3 Solid phase

Among other continuum damage models which can depict the failure of the HCP, the
simplified constitutive model developed in Hain & Wriggers (2008a) and Hain

& Wriggers (2008b) is employed in this work where damage was constrained to
the hydration products because of its high volume fraction in the HCP. Within this
simplified model, the mechanical strain ǫu is comprised of an elastic strain ǫel and a
crack strain ǫcr

ǫu := ǫel + ǫcr . (5.3.2)

The stress σ is split into the volumetric and deviatoric part in a classical manner

σ := Cvolκh trǫel1+ Ciso 2µhdevǫ
el , (5.3.3)

where Cvol ∈ [0; 1] and Ciso ∈ [0; 1] control the remaining stiffness of the volumetric and
the deviatoric part. κh and µh are the bulk modulus and shear modulus of the hydration
product. The occurrence of the damage is induced by the volumetric deformations, such
as the expansion of the gel. The update of damage works as follows: if |vol ǫel|> α at the
initial loading stage, Cvol ≈ 0 and Ciso = βiso. When |vol ǫel|6 α during the unloading
process, Cvol = βvol and Ciso = βiso. When the material is loaded again and if |vol ǫel|>
γα, Cvol ≈ 0 and Ciso = βiso. More details of this algorithm can be found inHain (2007)
and Hain & Wriggers (2008b) from which the damage parameters, determined
through experimental results, are adopted: [α, βiso, βvol, γ ] = [0.004, 0.05, 0.01, 0.50 ].
The unhydrated residual klinker is assumed to behave elastically. The undamaged
mechanical properties of hydration product and unhydrated residual klinker in HCP
are listed in Table 5.4.

5.3.4 Gel in micropores of HCP

The deterioration of concrete resulting from ASR is induced by the expansion of the
gel. Hence, the mechanical properties of the gel play a central role. The gel has a
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Part E (N/mm2) ν (−) κ (N/mm2)

Unhydrated residual clinker 132,700 [1] 0.30 [1] -

Hydration product 24,000 [1] 0.24 [1] -

Gel - 0.49997 [2] 25,000 [3]

Table 5.4: Mechanical properties of components in the HCP ( [1] for (Hain & Wriggers

(2008b)), [2] for Dunant (2009) and [3] for Phair et al. (2005))

complex structure that depends on the composition of HCP and on the types of the
aggregates. Moreover, due to its unstable chemical characteristics, the experimen-
tal determination of the gel properties is challenging. The observation that the gel
is chemically similar to calcium-silicate-hydrate (C-S-H) enables it to be conceived as
a nearly incompressible material with a Poisson’s ratio of 0.49997, see Dunant (2009).

x
y6-

Figure 5.15: Swelling of gel induced by ASR exerts isotropic pressure to surrounding ma-

trix.

Standard finite elements cannot appropriately handle incompressibility due to volu-
metric locking. Higher-order interpolations may suffer less from this problem, but
the displacement solution is still of low order accuracy, see Boerner & Wriggers

(2008), Wriggers (2008) and Müller-Hoeppe et al. (2009). In this work, the
classical Q1P0 method is employed where the displacement and pressure are the pri-
mary unknowns. The hydrostatic pressure Pg induced by the expansion of the gel in
the micropores (see Figure 5.15) is expressed by

Pg := κg( trǫ− A) = κg trǫ− κgβξ . (5.3.4)

where A = βξ denotes the expansion strain of the gel, β presents the expansion coef-
ficient of the gel, ξ is the chemical extent and κg is the bulk modulus of the gel. As
assumed before, the expansion strain of the gel A is proportional to the chemical extent
ξ. The mechanical properties of the gel are listed in Table 5.4.

5.3.5 ASR induced damage in HCP

Not only the difficulty in conducting the experiment at such small scale but also unsta-
ble chemical property of the gel yields that the expansion coefficient of the gel β is still
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Figure 5.16: (a)-(d) ASR induced damage distribution on a cross-section of HCP with

various chemical extent ξ and (e) material distribution on cross-section.

unknown. In Subsection 6.3.4, two-step homogenization approach, namely multiple
parameter identifications, is employed to obtain β. Here, an example with β of 0.002
is implemented, with the combination of the damage model defined in the hydration
products, where the stress-free boundary conditions are prescribed on the HCP, such
that only the expansion of the gel contributes to the damage in HCP. The distribution
and evolution of the ASR induced damage in HCP with respect to different extent ξ are
illustrated in Figure 5.16, where the damage occurs in the hydration products in the
vicinity of micropores triggered by the expansion of the gel in micropores. Ultimately,
the coalescence of the microscale damage leads to the formation of the macroscale fail-
ure in concrete.



Chapter 6

Computational homogenization to
ASR damage

6.1 Introduction

(a) (b) (c)

Figure 6.1: (a) Optical microscope image of fiber-reinforced ultra lightweight cement com-

posites with cenospheres (Wang et al. (2013)) and (b) SEM image of scaffold

from bovine cancellous bone (Bi et al. (2010)) and (c) microstructure of low-

carbon high-strength steel weld metal (Wan et al. (2012)).

The determinations of physical properties of materials from laboratory experiments,
e.g. Young’s modulus, thermal conductivity and diffusivity, rely on the assumption
that materials are homogeneous. However, as a matter of fact, most materials are
heterogeneous at one or another scale, where physical properties vary throughout their
microstructures. For this reason, the significance of a close view at microstructures
of materials is favourable to be highlighted. For instance, Figure 6.1(a) presents an
optical microscope image of fiber-reinforced ultra lightweight cement composites with
cenospheres, in order to enhance the thermal resistance and reduce the mass density.
Figure 6.1(b) illustrates the SEM image of the scaffold from bovine cancellous bone
with porous structures, as applicable to calcination, lyophilization, chemical treatment
and supercritical CO2. The microstructure of the low-carbon high-strength steel weld
metal obtained through electron backscattered diffraction analysis is displayed in Figure
6.1(c), where inclusions, repeated nucleation as well as fixed orientation relationships

85
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of acicular ferrite grains are observed. It is of great interest to determine the effective
or macroscale properties of materials from the knowledge of constitutive laws of het-
erogeneous components and their volume fractions. One efficient approach referred to
as homogenization was developed in the late 19th century, through which the hetero-
geneous material is replaced by the homogeneous material, see Figure 6.2.

Homogenization

Figure 6.2: Heterogeneous material replaced by homogeneous material.

The current section starts from the introduction to the analytical homogenization, and
then it focuses on the fundamental aspects of computational homogenization in the
context of mechanical, thermal and diffusion problems as well as the subsequent appli-
cation to the microstructure of the HCP. In the end, it concerns the way of obtaining
the effective damage of the HCP induced by ASR as a function of chemical extent ξ.

6.2 Analytical homogenization

Voigt (1889) and Reuss (1929) developed pioneering theories of analytical homog-
enization by employing simple approximations for the effective material properties of
inhomogeneous linear elastic materials. In the context of Voigt bound, the effective
modulus is obtained relying on the assumption of the uniform strain field in the mi-
crostructure, however, the local non-equilibrium leads to the kinetically inadmissible
problem for a general arbitrary microstructure. Thus, the effective modulus in the
Voigt bound is determined by the volume average of the material tensor

C
eff
Voigt = 〈C〉 , (6.2.1)

with the definition

〈•〉 =
1

|v|

∫

Bt

• dv , (6.2.2)

where v is the analysis volume. Conversely, the constant stress field in the microstruc-
ture was assumed in the Reuss bound, thereby resulting in the kinematically inad-
missible problem due to the imperfect bonding in the material. As a consequence, the
effective compliance is determined by the volume average of the compliance tensor

C
eff
Reuss = 〈C−1〉−1 . (6.2.3)
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Albeit imperfect assumptions in theVoigt andReuss bounds, Hill (1952) has proven
that the real effective material tensor is located within the bounds

C
eff
Voigt 6 C

eff 6 C
eff
Reuss . (6.2.4)

The broad bounds from Voigt and Reuss justify the need of developing alterna-
tives for tight bounds. For instance, the asymptotic Hashin-Shtrikman bound
(Hashin (1963)) based on variational principles, offers the tightest bound for the gen-
eral isotropic material without restrictions to the geometry of the microstructure, while
it is limited to a theoretical infinite size of the representative volume element. An alter-
native approximation of effective material properties for an ellipsoidal inclusion within
an infinite domain in the case of linear elasticity was developed by Eshelby (1957),
where the stress and the strain in the inclusion are uniform, implicitly depending on
the Eshelby’s tensor which describes the geometry of the inclusion. Also, it is crucial
to identify the analytical localization tensor by using various simplifications of the mi-
crostructure. For example, the Dilute method accounts for no interactions between
inclusions, thereby offering reasonable estimates for the case with small fractional vol-
umes. The drawback existing in the Dilute method can be overcome by initiating an
iterative homogenization, see Kanaun & Levin (2008). Furthermore, the assumption
of the weak interactions between inclusions for the approximation was proposed in the
Mori-Tanaka method, see Mori & Tanaka (1973).

6.3 Computational homogenization

The limitation that analytical estimates are only motivated by simple microstructual
geometries, is devoted to the need of developing the computational homogenization
approach. Specifically, computational homogenization has been developed to provide
arbitrarily refinable bounds and is widely used in the multi-scale analysis for heteroge-
neous materials. The fundamental underlying methodology of computational homoge-
nization is to characterize the macroscopic behavior of the heterogeneous material by
approximately identifying a statistically representative volume element (RVE), which
is a sample from the heterogeneous material when it is small enough compared to the
macrostructural dimensions, yet it includes sufficient statistical information about the
microstructure so as to accurately represent the response that the heterogeneous ma-
terial exhibits on the macroscale. Without this method, the computation cost is giant,
since one has to directly solves the fine scale representation of the whole domain, in-
cluding all heterogeneities.

As pointed out in Zohdi & Wriggers (2005), boundary conditions applied for compu-
tational homogenization have to fulfill the Hill’s criterion. For mechanical problem,
the satisfaction of the Hill’s criterion indicates the energy dissipation is preserved
while making the transition from the microscale to the macroscale. Table 6.1 presents
a summary of widely employed boundary conditions for computational homogenization
in the context of mechanical, thermal and diffusion problems respectively, as well as
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their corresponding Hill’s criterions in general. An ordering of the macroscopic elas-
tic property obtained via homogenization under pure displacement and pure traction
boundary conditions was clearly proven by Huet (1990), later extended to periodic
boundary condition, see Hazanov & Huet (1994).

Field Hill’s criterion Type of Boundary Conditions (BCs)

Mechanical 〈σ · ǫ〉 = 〈σ〉 · 〈ǫ〉 Linear displacement BCs, uniform traction
BCs and mechanical periodic BCs

Thermal −〈q · ∇θ〉 = −〈q〉 · 〈∇θ〉 Linear temperature BCs, uniform normal
thermal flux BCs and thermal periodic BCs

Diffusion −〈j · ∇s〉 = −〈j〉 · 〈∇s〉 Linear humidity BCs, uniform normal dif-
fusion flux BCs and diffusion periodic BCs

Table 6.1: A summary of widely employed BCs for computational homogenization for me-

chanical, thermal and diffusion problems.

(Sample 1)

(Sample 2)

(Sample 3)

(Sample 4)

Figure 6.3: Four statistical samples obtained from the microstructure of the material.

Theoretically, it is desirable to choose an RVE including entirely realistic information
of the microstructure, such that the obtained effective response is independent of the
type of boundary conditions, yet the computational cost is high. As such, realistically
the sample slightly smaller than the ideal RVE is chosen. By using a sufficient number
of samples, randomly obtained from the microstructure, it is capable of overcoming the
bias in the estimation due to different boundary conditions, see Figure 6.3. The specific
details can be found e.g. in Kanit et al. (2003), Zohdi & Wriggers (2005) and
references therein.

6.3.1 Computational thermal homogenization

During the past 20 years, the computational homogenization approach has been applied
for thermal problem. For instance, Asakuma et al. (2004) calculated the effective
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thermal conductivity of the metal hydride bed. It was also applied to open-cell metallic
foams by Laschet et al. (2009). Zhang et al. (2011a) obtained the effective
thermal conductivity of the granular assemblies based on the discrete element method.
In addition, a second-order thermal homogenization framework with higher-order fluxes
was proposed by Temizer & Wriggers (2010b) to capture absolute size effects when
the RVE size is not sufficiently small compared to a representative macrostructural
length scale. The goal of the present section is to apply the computational thermal
homogenization approach to identify the macroscopic thermal conductivity of the HCP,
with consideration of the effect of the relative humidity in micropores.

Theorem

Fourier’s law in Equation (2.6.8) is assumed to be valid for each component in the
HCP. Note that the subscripts in Equation (2.6.8) are removed in this section in order
to explain the general theorem for thermal homogenization. Table 6.2 describes three
widely adopted boundary conditions for thermal homogenization, e.g. linear temper-
ature BCs, uniform normal thermal flux BCs as well as thermal periodic BCs, which
have to fulfill the Hill’s criterion in order to support it on physical grounds. Ap-
pendix A presents the proof through the theorems of averaged thermal dissipation and
the thermal dissipation of the average. Note that the average dissipation is prescribed
concerning the temperature gradient and the normal flux only for a perfectly bonded
material with [|θ|] = 0, see Rosen & Hashin (1970) and Torquato (2002) for more
details.

1. Linear temperature BCs: θ = G0 · x on ∂Bt, with the coordinates x of the boundary
and 〈∇θ〉 = G0.

2. Uniform normal thermal flux BCs: q = Q0 · n, with q = q · n and 〈q〉 = Q0.

3. Thermal periodic BCs: θ+ − θ− = G0 · (x
+ − x−) (periodicity of the temperature) and

q+ = −q− (anti-periodicity of the normal thermal flux) with 〈q〉 = Q0.

Table 6.2: Three widely used boundary conditions for computational thermal homogeniza-

tion.

In the context of thermal homogenization procedure, effective thermal conductivity k̄
is determined by minimizing a least-square function

Π := [〈q〉 − q∗(〈∇θ〉)]2 → min , (6.3.1)

where an effective constitutive equation for isotropic thermal conduction is given by

q∗(〈∇θ〉) := −k̄〈∇θ〉 , (6.3.2)

with thermal flux q = (q1, q2, q3)
T . Differentiation of Equation (6.3.1) with respect to

k̄ yields
dΠ

dk̄

!
= 0 , (6.3.3)
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such that the isotropic effective thermal conductivity is obtained through

k̄ = −
〈q〉1〈∇θ〉1 + 〈q〉2〈∇θ〉2 + 〈q〉3〈∇θ〉3

〈∇θ〉21 + 〈∇θ〉22 + 〈∇θ〉23
. (6.3.4)

Comparison between numerical results and experiment

Material Thermal conductivity (W/mK)

Hydration product 1.015 (Wu et al. (2012))

Unhydrated clinker 1.55 (Bentz (2007))

Micropore 0.604 (Bentz (2007))

Table 6.3: Thermal conductivity of components in HCP.

As mentioned before, identifying an adequate RVE determines the accuracy and relia-
bility of computational thermal homogenization. The RVE with the size of 643µm3 in
the HCP was verified to satisfy the requirement of the Hill’s criterion, see Hain &

Wriggers (2008b). The linear temperature boundary condition, illustrated in Table
6.2, is employed to initialize the thermal homogenization for determining the effective
thermal conductivity of the HCP, where all the nodes lying on the boundary surface of
the RVE are imposed based on the constant tensor G0. Then 8000 randomly selected
RVEs of 643µm3 from the microstructure of the HCP are carried out, where the ther-
mal conductivity of components in the HCP are listed in Table 6.3. Table 6.4 shows
the mean value and the standard deviation of 8000 statistical tests. In Figure 6.4(a),
one can observe that the probability density of 8000 statistical tests is very close to the
Gaussian distribution.

Mean value (W/mK) Standard deviation (W/mK)

0.9568 0.0257

Table 6.4: Mean value and standard deviation of 8000 statistical tests for computational
thermal conductivity in HCP

Figure 6.4(b) displays the comparison between the computed mean value of 8000 sta-
tistical tests and the experimental data from Bentz (2007), where a thermal constants
analyzer, including a variety of transient plane source probes connected to a comput-
erized control unit, was used to measure the thermal conductivity of the cement paste
as a function of the hydration degree at 20 ◦C. All cement pastes were prepared us-
ing Cement and Concrete Reference Laboratory (CCRL) cement proficiency sample
with wc=0.4 and over saturated condition. In Figure 6.4(b), one can observe that the
hydration degree has a minor effect on the measured thermal conductivity and the
computed values with the hydration degree of 0.945 are generally in the same region
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Figure 6.4: (a) 8000 statistical tests distribution and Gaussian distribution (b) computed

effective thermal conductivity of HCP and experimental data of cement paste

(Bentz (2007) [1] and Abdelalim et al. (2007) [2]).

with the experimental data from Bentz (2007), particularly when the factor of the
standard deviation is considered. The computed values from Table 6.4 underestimate
the experimental data from Abdelalim et al. (2007), which used the photoacoustic
technique to measure the effective thermal conductivity of the HCP with wc=0.4 and
0.5, after the fresh cement paste was cured for one month under room temperature. It
is known that the pore width gets larger as the wc increases, thus leading to the lower
thermal conductivity, see Abdelalim et al. (2007), as triangles in Figure 6.4(b) in-
dicate. Since the type of HCP in the numerical simulation is different from the one
in Abdelalim et al. (2007), it is a possible reason why the computed results un-
derestimate the experiment data. Furthermore, the thermal conductivity of the HCP
is also sensitive to the water content in pores, as will be investigated next. Neverthe-
less, all computational results are of the same order of magnitude with experimental
observations.

Effect of humidity in micropores on thermal conductivity of HCP

Jeon (2003) pointed out the influence of the water content in micropores on the thermal
conductivity of the HCP, hence, it is crucial to take into account the role of the water
content in the computational thermal homogenization. Assuming that the micropore
is simply considered as a mixture of the water and the gaseous phase of the air, the
thermal conductivity of the microporeKm

pore can be determined by a modification of the
Reuss-Voigt type estimates, namely the Lichtenecker’s equation (Pavĺık et al.

(2009))

kmpore = Vairk
m
air + Vwaterk

m
water , (6.3.5)

where the superscript m ∈ [−1, 1] is the mode parameter, indicating the range from
the Reuss bound with m = −1 to the Voigt bound with m = 1. Vair and Vwater are
the volume fractions of the air and the water in micropores. kair and kwater are thermal
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conductivity of the air and the water, listed in Table 6.5.

Material Thermal conductivity (W/mK)

Water 0.604 (Bentz (2007))

Air 0.025 (Carson et al. (2004))

Table 6.5: Thermal conductivity of components in micropore.
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Figure 6.5: (a) Effective thermal conductivity of 150 statistical RVEs of HCP as a function

of the volume fraction of the water content in micropores and (b) comparison

between the computed effective thermal conductivity considering water effect

and experimental results (Jeon (2003)).

The values of (1.0, -1.0, 0.5, -0.5) for m in Equation (6.3.5) are selected respectively
and for each value of m, 150 statistical samples are chosen for computational thermal
homogenization, such that the effect of the water content in micropores is taken into
account, see Figure 6.5(a) for the computed results. Also, Figure 6.5(b) illustrates the
comparison between the computed results for m = 1 and the experimental data from
Jeon (2003). In this experiment, two-linear-parallel-probe (TLPP) method was used
to determine the thermal conductivity of the HCP with wc=0.35 and 0.4 under dry and
wet conditions respectively. Two probes were inserted into two parallel holes drilled
in the specimen, where one probe was used as a heating source and the other as a
temperature sensor. It was also assumed that the volume fraction of the water in the
pore is 0% for the dry condition and 100% for the wet condition. This never occurs in
reality, since hydrostatic pressure enables the release of the trapped air from the pores
and the hygroscopic range of saturation is up to 97%. Additionally, capillary saturation
and micropores with the radius smaller than 1µm are neglected. All reasons mentioned
above can seemingly explain the difference between experimental data and computed
values. Unfortunately, experimental data on the thermal conductivity of cement paste
between a dry state and a wet state is not available.
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Figure 6.6: Isothermal absorption-desorption (Baroghel-Bouny (2007)).

Mechanisms of the absorption and the desorption are very common in the porous ma-
terial, where a substance is absorbed or released by another substance. The isothermal
desorption and absorption curves for HCP with wc=0.45 from Baroghel-Bouny

(2007) are illustrated in Figure 6.6, which can be clarified by physical mechanisms,
e.g. molecular absorption/desorption, capillary condensation, surface tension and dis-
joining pressure, see Baroghel-Bouny (2007). In the experiment form Baroghel-

Bouny (2007), the saturated salt solution method was used where the specimens were
kept in the sealed cells under constant temperature. Here, the relative humidity was
kept constant by means of a saturated salt solution and the specimens were subjected
to step-by-step desorption and subsequent absorption processes. Furthermore, vari-
ous physically-based models have been developed to account for absorption/desorption
isotherms, in order to understand the physics of confined systems and to predict their
behavior, see Baroghel-Bouny (2007) and Rougelot et al. (2009). Water con-
tent of the HCP under the same relative humidity is higher at desorption isotherm
than the one at absorption isotherm, which is explained by the fact that the physical
and chemical structures of cement paste are changed due to partial collapse of pure
structure during first drying.

The relative saturation degree is defined as the current water content by the saturated
water content in Figure 6.6, which has the same physical meaning as the volume frac-
tion of the water used in previous computation steps. One can map the numerical
curve in Figure 6.5(b) from the volume fraction of the water to the relative humidity
through isothermal absorption curve, as the relative humidity is widely applied in the
chemical reaction models. Therefore, the mean value and the standard deviation of
150 statistical tests as a function of the relative humidity are obtained, see Figure 6.7,
and the approximations are obtained via

k̄(s)med =

3∑

i=0

amed
i si , k̄(s)dev =

3∑

i=0

adevi si , (6.3.6)
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Figure 6.7: Approximations of (a) mean value and (b) standard deviation, of effective

thermal conductivity of HCP with m = 1 as a function of relative humidity of

water in micropore.

where amed
i and adevi are approximation coefficients of the mean value and the standard

deviation listed in Table 6.6. As a consequence, one can directly upscale the effect of
relative humidity in the microscale to the mesoscale.

i 0 1 2 3

amed
i 0.80050 0.1985 -0.2860 0.2491

adevi 0.0804 -0.1008 0.1886 -0.1486

Table 6.6: Coefficients of approximation for effective thermal conductivity of HCP as a
function of relative humidity.

6.3.2 Window method

There are, however, cases where a direct application of the widely used boundary con-
ditions (BCs) listed in Table 6.1 may be unfavorable. For instance, when soft phases
or voids are present in the vicinity of the boundary, pure traction and periodic type
BCs may cause overly deformed meshes that are numerically undesirable, see Miehe

& Koch (2002). In fact, these BCs are simply not applicable when voids intersect the
boundary of the analysis domain. This leaves pure displacement type BCs as an option.
These, on the other hand, can significantly overestimate the macroscopic stiffness for
a given microstructural sample, see Zohdi & Wriggers (2005). A remedy to these
problems is to embed the sample into a frame of a homogeneous material following sim-
ilar ideas from analytical approaches. This window method was proposed in Babuška

et al. (1999), where the window frame material was chosen as the matrix, see Fig-
ure 6.8, also presenting an example of the RVE of the HCP embedded in the window
frame. Average stresses and strains were monitored in the entire extended domain and
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hence a correction factor was introduced in order to alleviate the effect of the frame.
The idea was later employed in Hain & Wriggers (2008b) where the frame mate-
rial was represented by the average stiffness of the microstructural constituents while
still monitoring average quantities in the sample only. Finally, this approach was fur-
ther developed towards a Self-Consistent model in Krabbenhøft et al. (2008)
wherein the frame material was iteratively updated until it matched the macroscopic
response obtained from the sample. See also Düster et al. (2012) for an application
to three-dimensional cellular microstructures as well as where the frame material is
representative of the original heterogeneous medium.

Window

x

y z

x y

6- 6
HHj���

�
�=

Figure 6.8: Window frame and a three-dimensional representation of an HCP sample from

micro-CT scan with 64 voxels per direction embedded in a window.

Experience with the window method indicates that it delivers faster convergence of
the macroscopic response with respect to BCs of pure displacement or traction type
as the microstructural sample size is increased, a procedure that is necessary to assess
the statistical representativeness of the sample. The variational background for this
observed optimal convergence behavior of the homogenization results with the win-
dow method can be found in Temizer et al. (2013). The emphasis is on the effects
of employing frames with finite width since the case of an infinite surrounding frame
medium corresponds to the classical Self-Consistent scheme. A detailed overview
of Self-Consistent methods is given in Kanaun & Levin (2008) and a recent
discussion of their generalizations in Benveniste (2008). These methods have classi-
cally been applied to particulate- or fiber-reinforced composites, although extensions to
more complicated heterogeneous media such as polycrystals have also been pursued, see
Jiang & Weng (2004). Presently, no restrictions are imposed on the microstructural
geometry however the presentation is limited to linear thermal conduction. The same
variational principles apply to other physical phenomena within a linear framework
in a straightforward fashion, in particular to diffusion or elasticity. An extension to
the analysis of the overall electromagnetics response of heterogeneous media does not
follow from this presentation yet it expected to be realizable with additional effort in
view of the applicability of classical micromechanics techniques to this physical regime,
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see Benveniste & Milton (2011).

Augmented ordering relationship

Let k̄LT, k̄UF, k̄PR denote the homogenized thermal conductivities under linear temper-
ature BCs, uniform normal thermal flux BCs and thermal periodic BCs obtained using
the window method respectively. Without the frame, it is well-known (Hazanov &

Huet (1994)) that the ordering relationship

k̄
(0)
UF 6 k̄

(0)
PR 6 k̄

(0)
LT , (6.3.7)

holds, where the superscript (•)(0) is used to denote that there is no frame and a 6 b
means b − a is positive semi-definite. On the other hand, it will be shown that the
window method subject to self-consistency delivers the augmented ordering relationship

k̄
(0)
UF 6 k̄UF 6 k̄PR 6 k̄LT 6 k̄

(0)
LT . (6.3.8)

Now, a signature of a statistically representative microstructural sample is that its re-
sponse is independent of the boundary conditions imposed. Therefore, the gap between
k̄
(0)
UF and k̄

(0)
LT is an indication of how well the sample represents the desired homoge-

nized response. Increasing sample size typically results in a diminishing gap. When
the gap is sufficiently small, the sample is deemed representative for computational
purposes. Since it is undesirable to use very large samples, the practical significance of
the augmented ordering relationship becomes apparent. The window method delivers
results that always fall between the two alternative BC results and therefore, similar to
periodic BCs, one expects it to deliver faster convergence with increasing sample size.
In this sense, the window method provides a tighter control over the sample size such
that it is eventually possible to use a smaller sample compared to the situation without
a frame, assuming linear temperature BCs or uniform normal thermal flux BCs are of
concern Where k̄

(0)
PR falls in Equation (6.3.8) will be commented upon.

The width of the frame appears to be a free variable and this was of concern in the
original work of Babuška et al. (1999) as well. Numerically, it is expected that
choosing the frame width is similar to choosing the sample size-for a given sample size,
one observes that k̄ saturates to a limit with increasing frame width. This expectation
is based on the well-known self-consistent scheme, where the frame is essentially an
infinite surrounding medium, which delivers a unique response independent of whether
linear temperature BCs or uniform normal thermal flux BCs are employed (Nemat-

Nasser & Hori (1999)). In fact, one can show that the augmented ordering com-
plemented by increasing frame width delivers a monotonic closure of the gap between
linear temperature BCs and uniform normal thermal flux BCs results:

k̄
(0)
UF 6 k̄

(1)
UF 6 k̄

(2)
UF 6 · · · 6 k̄W 6 · · · 6 k̄

(0)
LT 6 k̄

(1)
LT 6 k̄

(2)
LT . (6.3.9)

Here, increasing superscript indicates the results obtained under increasing frame width
and k̄W is the limit of the window method which corresponds the classical self-consistent
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scheme. The thorough derivations based on variational theories about the augmented
ordering relationship mentioned above can be found in Wu et al. (2012). Although
the presentation was pursued in a thermal context, the underlying variational basis is
applicable to linear elasticity and diffusion in a straightforward manner.

The next objective is to demonstrate the observations of the earlier discussions through
computations on two types of three-dimensional microstructures: (i) periodic mi-
crostructures where a unit cell corresponds to a sphere embedded in a matrix, and
(ii) random microstructures which are obtained through the CT-scan of hardened ce-
ment paste, see Figure 6.8.

Periodic media
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Figure 6.9: (a) Iterations under thermal periodic BCs with respect to various initial thermal

conductivities k (W/mK) assigned to the frame of 1 unit around a unit cell and

(b) influence of the frame width and number of unit cells per direction on the

macroscopic thermal conductivity under PR-BCs. Self-consistency is ensured.

For investigations in the periodic setting, the unit cell width is set to 10 units while the
diameter of the sphere is 9 units, corresponding to a volume fraction of approximately
0.38. The thermal conductivity of the sphere is 500 W/mK and the one of the matrix
is 1 W/mK. The unit cell is embedded within a homogeneous frame and various BCs
are directly prescribed on the frame to investigate the influence of the window method
on the macroscopic response. The number of Self-Consistency iterations vary
depending on the conductivity initially assigned to the frame material but is typically
less than four as summarized in Figure 6.9(a). The influence of the width of the frame
is also illustrated in Figure 6.9(b) based on thermal periodic BCs, where it is observed
that the results obtained with a frame converge to a limit with increasing frame width.
In this periodic setting, it is also observed that this limit is very close to the exact
result that is obtained with thermal periodic BCs directly on the unit cell. Clearly, for
a given frame width, increasing the number of unit cells in the periodic sample also
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drives the results closer to the exact result as expected, which is also shown in Figure
6.10(a) for the three types of BCs without a frame as well as with a fixed frame width
of 4 units. Finally, the results of Equations (6.3.8) and (6.3.9) are also demonstrated in
Figure 6.10(b), where strict ordering among different BCs as well as their convergence
to a common limit with increasing frame width are observed.
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Figure 6.10: (a) Comparison of the macroscopic response with and without a frame (fixed

width at 1 unit) under different BCs and increasing number of unit cells per

spatial direction of the sample and (b) the influence of the frame width under

different BCs with four unit cells per direction.

Random media

As an application to random media, HCP is considered. The microstructure originates
from a micro-CT scan although the assigned conductivities are artificial. The repre-
sentation of an HCP sample embedded in a frame is illustrated in Figure 6.8, which
is comprised of the unhydrated residual klinker, hydration product, micropores and
window frame, referring to Subsection 5.3 for the volume fractions of the components
in the HCP. The thermal conductivity of the klinker is set to 100 W/mK while the
others are set to 1 W/mK. In presenting the results, a single quantity k̄ is monitored
assuming macroscopic isotropy. This assumption is only satisfied for sufficiently large
samples and therefore leads to some deviation from the predicted ordering relations for
smaller sample sizes, the size referring to the number of voxels per spatial direction of
the sample. This is observed in Figure 6.8 on a sample with 20 voxels per direction.
Nevertheless, the response under different BCs approach each other with increasing
frame width can be found in Figure 6.11(a). In order to obtain a statistically represen-
tative sample, larger CT-scans have to be employed. To alleviate randomness effects,
150 samples are tested per sample size. If no frame is used, it is observed that the
linear temperature BCs and thermal periodic BCs results are close to each other but
they remain significantly far away from uniform normal thermal flux BCs predictions,
see Figure 6.11(b). This large gap casts a doubt on the quality of the macroscopic
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Figure 6.11: (a) The effect of the frame width on a single sample with 20 voxels per

direction subjected to different BCs and (b) the effect of the sample size is

demonstrated without a frame. 150 samples are tested and the results are

averaged to alleviate randomness effects.
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Figure 6.12: The effect of the sample size is demonstrated with a frame. 150 samples are

tested.

predictions since the types of BCs should not affect the response of a statistically rep-
resentative sample. When the same computations are carried out with a window, it
is observed that the gap is small even at small sample sizes, see Figure 6.12. Conse-
quently, one can state with confidence that the macroscopic conductivity is in the range
of 70 to 75 W/mK. Considering that the frame width is only 4 units and that only
two iterations were sufficient to ensure self-consistency, the additional cost of using the
window method is negligible with this observed advantage. This advantage translates
into a tighter control over the sample size when analyzing randomly heterogeneous
media.
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6.3.3 Computational diffusion homogenization

Also, computational homogenization approach was widely applied for diffusion prob-
lem. For example, the effective diffusivity of the stratum corneum via diffusion homog-
enization was obtained in Rim et al. (2007), which is the outermost layer of the skin,
acting as a barrier membrane against the penetration of molecules into and out of the
body. Krabbenhøft et al. (2008) calculated the effective diffusivity of the HCP
through computational homogenization approach, where the microstructure of the HCP
was obtained from three-dimensional CT images. Nilenius et al. (In press) applied
the computational homogenization approach to the three-dimensional mesoscale of con-
crete, consisting of cement paste, aggregates and ITZ, where ITZ anisotropy was taken
into account, thus leading to the dependence of the diffusivity tensor on the normal of
the aggregate surface.

Theorem

Fick’s law in Equation (2.6.15) is also assumed to be valid for each component of
the HCP. Table 6.7 displayed three widely adopted boundary conditions for diffusion
homogenization, e.g. linear humidity BCs, uniform normal diffusion flux BCs as well as
diffusion periodic BCs. These BCs are proven to ensure the Hill’s criterion through
average humidity gradient and average diffusion flux theorems, see Appendix A for
more details, which is only valid for the perfectly bonded material with [|s|] = 0.

1. Linear humidity BCs: s = W 0 · x on ∂Bt, with the coordinates x of the boundary and
〈∇s〉 = W 0.

2. Uniform normal diffusion flux BCs: j = J0 · n, with j := j · n and 〈j〉 = J0.

3. Diffusion periodic BCs: s+ − s− = W 0 · (x
+ − x−) (periodicity of the humidity) and

j+ = −j− (anti-periodicity of the diffusion normal flux) with 〈j〉 = J0.

Table 6.7: Three widely used boundary conditions for computational diffusion homogeniza-

tion.

In terms of the procedure of computational diffusion homogenization, effective diffu-
sivity d̄ for the isotropic case is determined by minimizing a least-square function

Π := [〈j〉 − j∗(〈∇s〉)]2 → min . (6.3.10)

in which the effective constitutive equation for diffusion is defined by

j∗(〈∇s〉) = −d̄〈∇s〉 . (6.3.11)

with diffusion flux j = (j1, j2, j3)
T . Differentiation of Equation (6.3.10) with respect

to d̄ leads to
dΠ

dd̄

!
= 0 . (6.3.12)
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Thus, the isotropic effective diffusivity is obtained through

d̄ = −
〈j〉1〈∇s〉1 + 〈j〉2〈∇s〉2 + 〈j〉3〈∇s〉3

〈∇s〉21 + 〈∇s〉22 + 〈∇s〉23
. (6.3.13)

Comparison between numerical results and experiment

The effect of the temperature on the diffusivity of cement paste has been proven through
experiments e.g. in Hancox (1968), Jooss & Reinhardt (2002) and Paviĺık &

Černý (2012). It justifies the need of incorporating the effect of the temperature into
diffusion homogenization for determining the effective diffusivity of HCP. Mills (1973)
provided the experimental discrete data reflecting the dependence of the diffusivity of
micropore dp in the HCP on the temperature, see Figure 6.13(a). It is approximated
by one polynomial curve, which is introduced in Table 6.8.
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Figure 6.13: (a) Diffusivity of micropore affected by temperature from experiment (Mills

(1973)) and the approximation and (b) comparison between computed effective

diffusivity of HCP and experiment (Hancox (1968)).

Material Diffusivity (10−9m2/s)

Hydration product 0.015 (Zhang et al. (2011b))

Unhydrated clinker 0.0 (Zhang et al. (2011b))

Micropore Dp = 1.1141 + 0.0378θ + 0.0004θ2 (Figure 6.13(a) )

Table 6.8: Diffusivity of components in HCP. Diffusivity of the micropore depends on tem-
perature.

150 statistical RVEs of 643µm3 from the microstructure of HCP are chosen for diffusion
homogenization under linear humidity boundary condition, see Figure 6.13(b) for the
computed effective diffusivity. The mean value and the standard deviation of 150
statistical tests as a function of the temperature are approximated via
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d̄(θ)med =

3∑

i=0

amed
i θi , d̄(θ)dev =

3∑

i=0

adevi θi , (6.3.14)

where amed
i and adevi are approximation coefficients of the mean value and the standard

deviation, which are listed in Table 6.9.

i 0 1 2 3

amed
i 0.20050 0.05 -0.20 0.241

adevi 0.104 0.102 0.166 -0.486

Table 6.9: Coefficients of approximation of effective diffusivity of HCP as a function of
temperature.

The obtained nonlinear correlation between the effective diffusivity of HCP and the
humidity in micropores can be upscaled to the next length-scale. The comparison
between the computed results and the experiment (Hancox (1968)) is displayed in
Figure 6.13(b). In the experiment, the drying of the cement paste specimens with
wc = 0.5 has placed in an air stream of velocity 10 cms−1, in the temperature range
21-40 ◦C, and at mean temperatures between 38.5 and 85 ◦C. Clearly, the numerical
results overestimate the experimental data, which can be explained by the different
cement paste specimens, wc and experimental conditions. Nevertheless, the results are
observed to be of the same order of magnitude.

6.3.4 Computational mechanical homogenization

In the linear elastic regime, computational homogenization scheme is well-established,
see Torquato (2002), Zohdi & Wriggers (2005) and references therein. The ef-
fective material matrix C̄ is introduced to map the volume average of strain and the
volume average of stress with the assumption of isotropy

〈σ〉 = C̄ : 〈ǫ〉 . (6.3.15)

In the nonlinear elastic regime, the existing problems of non-uniqueness of the solution
at finite deformations and the non-invertability of the stress-strain relation leads to the
need of more efforts on the investigations, e.g. isotropic damage with finite deformation
(Löhnert (2004)), anisotropic finite elastoplasticity (Miehe & Schotte (2007)) and
crystal plasticity (Lehmann (2013)).

Three widely adopted boundary conditions for mechanical homogenization are illus-
trated in Table 6.10, e.g linear displacement BCs, uniform normal traction BCs as well
as mechanical periodic BCs. Appendix A provides the specific proof of the satisfaction
of the Hill’s criterion of these boundary conditions through theorems of average strain
gradient and average stress for the perfectly bonded material with [|u|] = 0.
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1. Linear displacement BCs: u = ǫ0 · x on ∂Bt, with the coordinates x of the boundary
and 〈ǫ〉 = ǫ0.

2. Uniform normal traction BCs: t = σ0 · n, with t := σ · n and 〈σ〉 = σ0.

3. Mechanical periodic BCs: u+ − u− = ǫ0 · (x
+ − x−) (periodicity of the displacement)

and t+ = −t− (anti-periodicity of the normal traction with 〈ǫ〉 = ǫ0.

Table 6.10: Three widely used boundary conditions for computational mechanical homog-

enization.

Determination of ASR induced effective damage

6
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Figure 6.14: (a) Without the window method (micropores are not shown) and (b) with

the window method (micropores and window are not shown).

The motivation of this subsection is to obtain the effective damage induced by ASR
from the the microscale through homogenization approach, where the combination of
displacement BCs and window method is prescribed, such that the resulting effective
damage can be applied to the next length-scale. The widow width of 4µm is adopted
in this work, see Hain & Wriggers (2008b), and the distinctions of principle stress
in the RVE of HCP with and without window frame under displacement BCs of the
same quantity are respectively shown in Figure 6.14.

Once the size of the RVE and width of the window are determined, computational ho-
mogenization is carried out to obtain the effective chemical damageDc. It is determined
through the volume average of the isotropic damage variable defined in Subsection 5.3.3,
which is triggered by the expansion of the gel. It is computed by imposing a zero aver-
age strain on the famed sample. The expansion coefficient of the gel at the microscale
is still unknown, so that some reasonable values are tested to demonstrate the effective
damage with respect to days, see Figure 6.15(a), where the adopted correlation between
chemical extent and days originates from Figure 4.5. Note that the accumulated plastic
strain in the RVE due to gel expansion is much smaller than the total strain, see Figure



104 CHAPTER 6. COMPUTATIONAL HOMOGENIZATION TO ASR DAMAGE

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  50  100  150  200  250  300  350

Days (-)

E
ff
ec
ti
ve

D
am

ag
e
(-
) 0.005

0.01
0.013
0.018
0.02

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0  0.2  0.4  0.6  0.8  1

Chemical extent (-)

S
tr
ai
n
(-
)

Total strain
Plastic strain

(b)(a)

Figure 6.15: (a) Effective damage of RVE in HCP with different expansion coefficients of

the gel with respect to days and (b) total strain and plastic strain of HCP

under stress-free BCs.
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Figure 6.16: (a) Average volumetric and deviatoric stress under strain-free BCs and (b)

average volumetric and deviatoric strain under stress-free BCs on HCP.

6.15(b). Accordingly, it is reasonable to assume that the microscale plasticity mech-
anisms do not significantly affect the mesoscale mechanical damage. This conclusion
is expected since the chemical damage is predominantly due to gel expansion, which
induces mostly volumetric strain and stress throughout the HCP. Figure 6.16 display
a comparison of the average volumetric and deviatoric stresses in the microstructure
under strain-free BCs as well as a comparison of the average volumetric and deviatoric
strains under stress-free BCs. The deviatoric portions are responsible for plasticity and
they are seen to be much smaller than the volumetric ones. With the ability to upscale
the ASR induced damage, the overall homogenized mesoscale response is sought next.
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Two-step homogenization framework for parameter identification

The chemically unstable characteristics of the gel poses challenges in experimentally
measuring its mechanical properties. Alternatively, FE2-based homogenization can be
utilized to obtain parameters at the microscale which are not easily measured through
experiment, see Schmidt et al. (2012) for a recent example. In the context of FE2,
a coupled micro-macro simulation is carried out without the need for formulating an
explicit homogenized formulation. If the resulting macroscopic mechanical behavior
of the structure coincides with the experimental data, the parameters chosen at the
microscale are deemed satisfactory, seeYu & Fish (2002) and Schmidt et al. (2012).
In the present study, this method is not applicable due to its prohibitive computational
cost. Instead, a two-step homogenization procedure is applied in a reverse manner based
on the explicit homogenized mechanical response of HCP, with the goal of obtaining
the expansion coefficient of the gel at the microscale, see Figure 6.17.

First-step Homogenization

(getting HCP expansion strain)

Second-step Homogenization

(obtaining gel expansion coefficient)

HCP MatrixAggregate

Hydration

Product

Unhydrated Residual

Micropore (Gel)

Mesoscale Microscale of HCP

Figure 6.17: Framework of two-step homogenization for parameter identification: link be-

tween concrete and HCP, and link between HCP and micropores.

First step homogenization: HCP expansion strain determination

Experimentally, it is observed that the dimensions of a concrete specimen suffering from
ASR increase due to the swelling of the constituents, see Smaoui et al. (2004). The
ASR induced volumetric expansion strain of the concrete specimen under stress-free
conditions with respect to days is illustrated in Figures 6.17 and 6.18. The hypothesis
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of the swelling mechanism in ASR employed in this work is that all gels are evenly
produced and swell at the micropores of HCP. Consequently, the ASR induced expan-
sion occurs in the HCP matrix of the mesoscale, rather than in the aggregates, thereby
contributing to the macroscopic expansion of concrete. In the context of numerical im-
plementation, an additional term for the expansion strain due to ASR is incorporated
into the inelastic constitutive equation of HCP described in Subsection 2.4.1 and 2.4.2,
thus presenting that the concrete is suffering from ASR internally:

σ = (1−Du)C0 (ǫ− ǫpl −Mp1) , (6.3.16)

where Mp denotes the ASR induced expansion strain in the HCP. The objective of the
first step homogenization is to determine the value ofMp, so that the effective volumet-
ric expansion strain of concrete through computational homogenization approach only
triggered by the expansion mechanism of ASR can coincide with the experimental data
in Figure 6.18. The experiment from Figure 6.18 was carried out under stress-free con-
dition. Presently, the stress-free state is generated through strain-control to prescribe
BCs for homogenization. The hypothesis that the gel retains permanent characteris-
tics throughout the process renders it feasible to only concentrate on fitting the final
expansion strain as a simplified case, see the straight line in Figure 6.18, where the
chemical extent ξ is considered to be 1. The constant strain tensor ǫ0 defined by final
volumetric expansion strain in Figure 6.18 is applied to impose displacement BCs for
homogenization through u = ǫ0 ·x on ∂Bt, where x is the coordinates of nodes on ∂Bt.
Mp is sought, until the hydrostatic stress of concrete equals to zero at the end of the
reaction. This method is also adopted in the second step of homogenization.
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Figure 6.18: Volumetric strain due to ASR in the concrete specimen under stress-free

condition (Smaoui et al. (2004).

Second step homogenization: gel expansion coefficient determination

The second step of homogenization is to downscale to the microscale of HCP for deter-
mining the expansion coefficient of the gel. In this work, it is assumed that the swelling
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of the gel occurs at the micropores of HCP, which results in the expansion of the HCP
matrix and therefore of concrete. The expansion strain of the gel is modeled as pro-
portional to the chemical extent ξ: A = βξ, where A is the expansion strain of the gel,
and β is the microscale expansion coefficient of the gel, independent of time according
to earlier assumptions. The homogenization procedure explained in Subsection 6.3.4 is
applied on the RVE of HCP with a window frame, where theMp obtained from the first
step homogenization prescribes displacement BCs for homogenization, thus inducing
stress-free conditions. The step also concentrates on the end of the reaction, where
the chemical extent is equal to 1. β = 0.0025 is found to deliver negligible hydrostatic
stress at the end of the reaction. Performing stress-free BCs through strain-control BCs
for homogenization at the micro and mesoscale keeps the consistency in comparison to
the expansion experiment implemented under stress-free BCs in Figure 6.18.

The deterioration due to ASR from the microscale is not taken into account at the first
step homogenization, see Equation (6.3.16). However, it possibly affects the mechanical
property and the subsequent expansion behavior of the concrete specimen. Its effect is
investigated as follows. The obtained expansion coefficient β is adopted to calculate the
effective damage of HCP due to ASR through homogenization approach with respect
to extent, where strain-free BCs are prescribed. The chemical effective damage is the
incorporated into the inelastic constitutive equation of HCP to run the first step of
homogenization again. The next task is to evaluate whether the change of the old Mp

and the new Mp can be neglected. If not, it is necessary to carry out the second step
of homogenization with the new Mp again. Iterations are carried out until the change
of Mp from one step to the next step is small enough. The algorithm is summarized in
Table 6.11.

Statistical analysis associated with homogenization

The approximate RVE used in previous computation is only a randomly chosen sample
from a much larger micro-CT scan of HCP. Hence, it is indispensable to carry out
statistical tests to address the effect of randomness. For this purpose, 30 randomly
obtained RVEs from a micro-CT scan are tested. The resulting effective damage due
to the expansion of the gel with respect to days and chemical extent are shown in
Figure 6.19, respectively. The corresponding mean value and standard deviation of
the effective damage are calculated as a function of the chemical extent, see points in
Figure 6.20, via the polynomial expansions

Dc(ξ)med =

3∑

i=0

emed
i ξi , Dc(ξ)std =

3∑

i=0

estdi ξi . (6.3.17)

The coefficients of approximation are listed in Table 6.12. This correlation between
effective damage due to ASR the chemical extent can be directly upscaled to HCP at
the mesoscale of concrete. Since the chemical extent has been projected as a constant
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1. First step homogenization: The extra term Mp as the expansion strain of HCP due to
ASR is incorporated into the nonlinear constitutive equation of HCP at the mesoscale,
see Subsection 2.4.1 and 2.4.2.

a. Initial Step: σ = (1−Du)C0(ǫ− ǫpl − C01).

b. Other steps: σ = (1−Du −Dc)C0(ǫ− ǫpl −Mp1).

Run homogenization at the mesoscale, where ǫ0 from Figure 6.18 is adopted to impose
linear displacement BCs. The expansion strain Mp of HCP at the end of the reaction is
obtained until the hydrostatic of concrete equals to 0.

2. Second step homogenization: Run homogenization in the RVE of HCP, where the
obtained Mp from the first step homogenization is adopted to prescribe displacement
BCs. The expansion strain of the gel A is acquired until the hydrostatic stress of HCP at
the end of reaction is equal to 0. Thus the expansion coefficient of the gel β is obtained
through A = βξ, since ξ equals to 1.

3. Upscale damage: Run homogenization with the obtained β in the RVE of HCP under
strain-free BCs to calculate the effective ASR induced damage Dc of HCP with respect
to extent.

4. Check. Apply the sum of the damage from mechanical loading and chemical part to the
constitutive equation of HCP at the mesoscale and run step 1 again.

a. If the change of Mold
p and Mnew

p is small enough, stop computation.

b. If not, implement the step 2 again to get the new β. Then carry out the step 3 and
step 4 again, until the change of Mp from one step to the next step is small enough.

Table 6.11: Algorithm of two-step homogenization to obtain the expansion of the gel at

the microscale.
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Figure 6.19: Effective ASR induced damage with respect to (a) days and (b) extent ξ, for

30 statistical tests.

to the RVE, hydro-thermo-mechanical (remember) coupling does not manifest itself at
this scale. In order to reflect the observations that ASR is activated when the threshold
of relative humidity is achieved, see Subsection 4.2.3, and that ASR induced damage
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Figure 6.20: Approximations of (a) mean average and (b) standard deviation, of effective

damage of statistical tests.

i 0 1 2 3

emed
i 0.0809 -0.1737 0.1284 -0.0016

estdi 0.0344 -0.0581 0.0295 -0.0002

Table 6.12: Approximation coefficients of mean value and standard deviation of effective
damage of statistical tests with respect to chemical extent.

occurs at the mesoscale after the chemical extent reaches to 0.3, see Figure 6.20, full
coupling needs to be addressed at the mesoscale.
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Chapter 7

Computational simulation of effects
of the ITZ

Assuming the domain Bt with an interface layer between the sub-domains B+
t and B−

t ,
namely ITZ between aggregates and HCP in concrete, boundary conditions with re-
spect to mechanical, thermal and diffusion problems are prescribed on the surface of
the boundary, see Figure 2.3. The microstructure of ITZ with higher porosity leads to
its weak mechanical property. In this sense, at a relatively low stress level, ITZ may
fail, rather than HCP or aggregates, therefore, it is crucial to concern the role of ITZ
in the multiscale numerical simulation of concrete. For instance, in order to obtain a
better estimation of the elastic modulus of concrete, not only the cement paste and
aggregates, but also ITZ have already been considered in the numerical simulation, see
Ramesh et al. (1996) and Nadeau (2003) for two-dimensional and Lee & Park

(2008) for three-dimensional cases. Furthermore, interface elements with zero-thickness
are generated between HCP and aggregates as representatives of ITZ at the mesoscale
of concrete, which is explicitly motivated by CZM allowing for the nonlinear behav-
ior like debonding. This approach was widely utilized e.g. in Carol et al. (2001),
Häfner et al. (2006), Eckardt & Könke (2008), Snozzi et al. (2011) and
Snozzi et al. (2012), accounting for the influence of ITZ on macroscale performance
of concrete in terms of various types of load, e.g. static tension and compression as
well as dynamic tension and compression.

In addition to the analysis of ITZ from a mechanical point of view, the present work
also concerns the effects of the resulting debonding at the ITZ on the thermal con-
duction and humidity diffusion across the crack, see Figure 2.3 for the framework of
displacement jump [|u|], temperature jump [|θ|] and humidity jump [|s|] across the crack.
Willam et al. (2004) developed the thermo-mechanical cohesive model in interface
elements with zero-thickness between aggregate and cement paste in concrete exposed
to high temperature. In the interface elements, mechanical damage, thermal damage
as well as their interactions were defined, with the purpose of reflecting the thermal
resistance by the existence of the displacement jump at the interface. Furthermore,
if the separated bodies tend to contact under external force, the thermal conduction
flows through the contacting asperities of the rough surface. Hence, Zavarise et al.

111
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(1992) proposed a model to conduct a modified penalty formulation with a contact
law based on a thermo-plastic microscopic contact model, while taking into account
the effect of roughness in the simulation. Also, more applications can be found in, e.g.
polymer (Özdemir et al. (2010)), solders in electronics chip packages subjected to
active power cycling (Benabou et al. (2013)) and photovoltaics (Sapora & Paggi

(2014)).

As compared to the thermal problem, more investigations concerning the influences of
the crack or debonding on the diffusivity of concrete were conducted through not only
analytical but also numerical approaches. As described in Gérard & Marchand

(2000), an analytical approach was proposed to explain how the traversing cracks affect
the diffusion properties of ions in the saturated concrete. However, for the sake of sim-
plicity, cracks were assumed to be evenly distributed on a one- or two-dimensional grid
with uniform size. From a numerical point of view, Kamali-Bernard & Bernard

(2009) developed a three-dimensional tool to investigate the influence of the tensile
loading on the diffusivity of the mortar of wc = 0.4 with the aid of a numerical
platform called MuMoCC (Multi-scale Modelling of Computational Concrete). The
microstructure of the mortar was generated in CEMHYD3D and then the resulting
voxelized images were transferred to ABAQUS, therefore, the diffusivity at different
strains could be estimated. Bentz et al. (2013) conducted two-dimensional simula-
tions to estimate the influences of the cracking on the diffusivity of hydrating cement
pastes, but a single crack located directly above the steel reinforcement was assumed.

By now, a majority of previous works are concerned with either mechanical-diffusion
or mechanical-thermal coupling at the ITZ of concrete, which motivates the establish-
ment of mechanical-thermal-diffusion cohesive zone model in the present work, thereby
offering the overall investigations on the ITZ in concrete. Section 7.1 implements the
influences of various parameters on the macroscale mechanical behavior of concrete,
consisting of tensile strength, fracture energy, specimen size as well as random distri-
bution of aggregates. Also, a scalar damage parameter is defined in interface elements
in order to quantify how much they debond in tension and compression respectively. In
the following, a mechanical-thermal-diffusion cohesive zone model based on a staggered
approach is established, such that the influences of the debonding at the ITZ on the
thermal conduction and humidity diffusion across the cohesive crack can be numerically
depicted, see Section 7.3.

7.1 Numerical results in uniaxial tension

Before numerical simulations can be performed, it is crucial to review the mesostructure
of concrete, constituting randomly distributed aggregates with a volume fraction of 40%
embedded in the homogenized HCP with the dimension of 100×100×100mm3 as well
as zero-thickness interface elements exhibiting ITZ. Here, aggregates are assumed to
behave elastically, Mazars damage model (Mazars & Pijaudier-Cabot (1989)) is
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defined in the HCP and the interface elements are driven by CZM. In the following,
various parameters are tested to investigate their influences on the macroscale behavior
of concrete, including tensile strength, fracture energy, specimen size as well as random
distribution of aggregates. Concerning the uniaxial tensile boundary condition, the
lower surface of concrete is fixed and the displacement is prescribed at the upper
surface in zz direction. The qualitative comparison of the stress in zz direction between
perfectly bonded and imperfectly bonded are illustrated in Figure 7.1.

(MPa) (MPa)

(b)(a)

6
HHj���

z

x y

Figure 7.1: Stress in zz direction in uniaxial tension (a) perfectly bonded and (b) imper-

fectly bonded.

7.1.1 Damage distribution

Maso (1996) pointed out that a great amount of microcracks already exist at the ITZ
in concrete without deformation. As indicated in van Mier & Man (2009), when
a uniaxial tensile load is applied to concrete, the resulting fracture behavior can be
concluded with a three-stage process. The stable nucleation of microcracks is first
initialized at the ITZ between HCP and aggregates in a distributed manner, and then
these microcracks continue to grow and propagate as the tensile load increases. Finally,
the coalescence of microcracks forms the unstable macrocracks, thus leading to the
failure of concrete. Figure 7.2 presents the link of the computed damage distribution
and macroscale stress-strain relationship of concrete in uniaxial tension. From it, it is
observed that microcracks are developed first in a distributed manner, and then localize
into only one or two competing macrocracks in a realistic fashion that the direction
of the crack propagation is transverse to the direction of the load. Moreover, these
microcracks coalesce to form macrocracks after the peak stress, thereby yielding the
decrease of the ability of concrete to carry the load and the existence of failure in a
strongly localized manner. For the tensile case, quite few energy is required for the
initiation and growth of cracks, including pre-existing cracks at the ITZ and newly
formed cracks in the matrix, characterizing the brittle property of concrete in tension.
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Figure 7.2: Distribution and evolution of damage with respect to different tensile load

(from initiation, propagation and coalescence of microcracks).

7.1.2 Influence of parameters in CZM

With emphasis on the nonlinear phenomena only induced by the CZM, HCP is as-
sumed to behave elastically. Figure 7.3 illustrates the influences of tensile strength ft
and fracture energy Gf on the macroscale stress-strain relationship of concrete in uniax-
ial tension. One can observe the common procedure from perfectly bonded to partially
debonded, where the curves of perfectly bonded and completely debonded are obtained
by the simulations of the mesostructure without interface elements between HCP and
aggregates, as well as with aggregates replaced by voids respectively. Furthermore, the
case of larger tensile strength requires a larger load to initialize the debonding between
HCP and aggregates. For various fracture energy, it is observed that the debonding
occurs under identical tensile load, yet following different debonding trends.

As an extension of the example implemented above, Mazars damage model is applied
in the HCP and the influence of tensile strength on the macroscale stress-strain rela-
tionship of concrete in uniaxial tension is displayed in Figure 7.4(a). Here, the Line

Search approach in conjunction with the Newton-Raphson approach in Equation
(3.1.12) with a = 0.8 is utilized to solve the instability problem in the regime of the peak
stress. From Figure 7.4(a), one can capture the difference between perfectly bonded
and imperfectly bonded cases, yet they are getting closer when the tensile strength
is decreased. Mazars damage model used in the HCP, is capable of modeling the
strain-softening failure with a negative slope of stress-strain curve. However, as it is a
local damage model, the problem of the mesh dependency in the regime of softening is
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Figure 7.3: Influences of parameters in CZM on macroscale behavior of concrete with elastic

HCP in uniaxial tension (a) tensile strength and (b) fracture energy.

induced. In order to prove it, a homogeneous material formulated by Mazars damage
model in terms of different mesh sizes are tested, see Figure 7.4(b) for the illustration
of mesh dependency. Clearly, this problem becomes worse with an application to the
heterogeneous material. From a mathematical point of view, the loss of ellipticity of
the governing differential equations is induced by a negative tangent modulus, such
that the boundary value problem becomes ill-posed. The local damage model leads to
the strong localization of the damage in the weakened cross-section and pathological
sensitivity of the numerical results to the element size. Applying a non-local damage
model and a gradient damage approach overcomes the mesh dependency problem, see
Jirásek (2004) and Peerlings et al. (1998).
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7.1.3 Influence of specimen size
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Figure 7.5: (a) Illustration of geometries with one-dimensional size scaling and (b) the

resulting force-displacement relationship.

In the 16th century, Leonardo da Vinci and Galileo Galilei first pointed out an
inverse relationship between the length and strength of concrete sample, thereby high-
lighting the durability issue in the civil engineering. Later, extensive investigations were
conducted through the experiments (van Vliet & van Mier (2000)), phenomeno-
logical models (Bažant (1997)) as well as numerical approaches (Vořechovský &

Sadilék (2008)). The aim of this section is to analyze the effect of the specimen size
on the macroscale behavior of concrete. However, before that, simple numerical tests
are carried out taking into account the effect of dimensions in relation to CZM, see
Figure 7.5(a) for illustrations of geometries, where zero-thickness interface elements
driven by CZM are inserted between two bricks with the identical elastic properties.
Here, the dimension only increased in zz direction, is called one-dimensional size scal-
ing, see Main (2010). In uniaxial tension, the macroscale force-displacement curves
with respect to different lengths of the specimen are displayed in Figure 7.5(b), from
which both macroscale tensile strength and macroscale fracture energy are independent
of the length effect. However, as the length increases, the curve becomes steeper and
the snap-back phenomena trends to occur. Note that all geometries in Figure 7.5(a)
are discretized with a mesh of same size.

Over the past decades, a great amount of experiments were found to analyze the ef-
fects of the specimen size of concrete. For instance, the dependence of the macroscopic
fracture energy of the quasi-brittle material like concrete on the specimen size was de-
scribed, e.g in Adalla & Karihaloo (2004), Cedolin & Cusatis (2008), Bažant

& Yu (2011) and Tang et al. (2012). However, only a few of them addressed how the
macroscale fracture energy changes with the specimen size. On the other hand, van
Vliet & van Mier (2000) observed that the macroscale tensile strength of concrete
is reduced as the size increases in experiments. The well-known phenomenological size
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effect law (SEL) depicting the variations of fracture energy as a function of specimen
size was developed by Bažant, see Bažant (2000) and Bažant & Yu (2009). From
a numerical point of view, Man & Mier (2008) directly transferred the results from
X-ray scans of concrete into a three-dimensional lattice for constructing the mesoscale
geometry of concrete, such that the real shapes of aggregates could be included into the
lattice model, like oval-shaped or crushed aggregates. Then the 3-point bending tests
based on a three-dimensional beam lattice model were conducted in order to analyze
the effects of specimen size on the structural strength and fracture energy of concrete.
More numerical contributions can be found e.g. in Mier & Vliet (2003), Unger &

Eckardt (2011) and Elsanadedy et al. (2012). All the efforts mentioned above
address the conclusion that the size effect exists in concrete. However, various mi-
cromechanical mechanisms may contribute to the size effect, e.g. microcracks, process
zone length relative to structural size, heterogeneity among others, see Mier & Vliet

(2003).

Analyzing the size effect of concrete in a multiscale manner is the next aim, scaling
the size of HCP in x, y and z directions, yet the size and volume fraction of aggregates
are not varied, see Figure 7.6, namely three-dimensional size scaling. The effects of the
specimen size on the macroscale stress-strain relationship of concrete in uniaxial tension
are displayed in Figure 7.7, where both Mazars damage model and CZM are taken
into account. Albeit the existence of the mesh-dependency problem due to the local
damage model, it has minor influences on the peak stress, such that it is still feasible to
capture that the peak stress is decreased with the enlargement of the specimen size. It
qualitatively matches the observation from the experiment (van Vliet & van Mier

(2000)) and computational work (Unger & Eckardt (2011)).

7.1.4 Influence of random distribution of aggregates

The damage in the HCP of three concrete samples with different distributions of ag-
gregates in uniaxial tension are displayed in Figure 7.8, where the localization zones
of either one or two competing macrocracks are formed, explained by the shear forces

Scaling
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Figure 7.6: Three-dimensional size scaling of concrete.
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Figure 7.8: Damage in the HCP of three concrete samples with different distributions of

aggregates in uniaxial tension.

relying on the distributions of aggregates. Figure 7.9 illustrate the macroscale stress-
strain curves of three concrete samples in uniaxial tension, from that the macroscale
tensile strength and fracture energy are less dependent on the distribution of aggre-
gates. Therefore, it can be concluded that the statistical distribution of aggregates
have a negligible effect on the overall mechanical performance of concrete.

7.1.5 Debonding interface damage in uniaxial tension

As indicated before, the prescribed tensile load may result in the debonding at the ITZ
between HCP and aggregates. However, it is challenging to capture the interface failure
due to its quasi-brittle property, without the aid of SEM. Alternatively, a debonding
damage Dd

c is defined in the interface elements with the same formulation of thermal
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Figure 7.9: Macroscale stress-strain curves of three concrete samples with different distri-

butions of aggregates in uniaxial tension.

interface damage Dθ
c in Equation (2.5.18), quantifying the failure of the interface or

how much the interface elements debond. Figure 7.10 displays the debonding damage
Dd
c in the interface elements of three concrete samples with different distributions of

aggregates in uniaxial tension, from which one can observe that the debonding inter-
face damage Dd

c is initialized and then enhanced at the lower surfaces of aggregates as
the tensile load increases. Moreover, the distributions of aggregates greatly affect the
interface failure locally.

7.1.6 Parameter identification

The stress-strain curve from the experiment is measured relying on the assumption that
the material is homogeneous, hence, by using conventional experiments in laboratories,
it is challenging to obtain the material parameters defined in the constitutive laws of
heterogeneous components at the lower scale of concrete, e.g. parameters in CZM and
Mazars’s damage model. Alternatively, parameter identification is utilized with the
approach of fitting the numerical results to the experimental data. The experimental
set-up and data employed in Hordijk (1992) are demonstrated in Figure 7.11, where
the computed result of imperfectly bonded interface provides better approximation
of the experimental data than the one of perfectly bonded interface. The material
parameters of CZM and Mazars damage model are listed in Table 7.1.

7.2 Numerical results in uniaxial compression

In concrete, the characteristics of heterogeneity lead to failure with more complex
phenomena in compression than in tension, owing to splitting cracks, shear cracks and
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Figure 7.10: Debonding interface damage of three samples with different distributions of

aggregates in increasing uniaxial tension.
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Figure 7.11: (a)Experimental set-up in uniaxial tension adopted inHordijk (1992) and (b)

experimental data (Hordijk (1992)) fitted by numerical results of perfectly

bonded and imperfectly bonded interfaces.

others, see Vonk (1993). For instance, Read & Hegemier (1984) indicated that
shear cracks are formed through an array of “en echelon” splitting cracks. For this
reason, a considerable number of contributions have already been made to analyze
the mechanical behavior in compression from the view of experiments (Mier (1984)),
theoretical models (Stroeven (1973)) as well as numerical approaches (Snozzi et al.
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Parameter At Bt Ac Bc ft Gf κ0

Value 1.0 10000 1.0 10000 3.4 0.1 0.0001

Table 7.1: Obtained material parameters in Mazars damage model and CZM through

parameter identification for tensile test.

(2012)).
When the concrete is imposed by uniaxial compressive boundary condition, σzz of per-
fectly bonded and imperfectly bonded are illustrated in Figure 7.12. Moreover, Figure
7.13 presents the macroscale stress-strain curves of concrete in uniaxial compression
concerning the following cases, e.g. perfectly bonded with elastic matrix, perfectly
bonded with damage matrix, imperfectly bonded with damage matrix and aggregates
replaced by voids. In contrast to tensile tests, the significance of the interface is more
apparent in compression. More energy is needed for the formation and extension of
matrix cracks in compression than in tension. Therefore, concrete fails in a brittle
manner in tension yet is relatively tough in compression.

Not only the imperfect failure surface but also local characteristics yield that Mazars

damage model is not able to correctly describe the failure of concrete in compression.
Particularly for triaxial compression, it cannot be used at all. Assuming that the con-
crete is subjected to uniaxial load, the localization plane should be more or less parallel
to the direction of compressive load or with inclined direction, caused by the combina-
tion of splitting and shear stresses due to heterogeneities, see Stroeven (1973). Also,
Vonk (1993) addressed the influences of boundary conditions with or without hori-
zontal constraint. Increasing the length of the specimen is proven to not be a remedy
for obtaining the correct localization plane, see Figure 7.14.

Figure 7.15 displays the debonding interface damage of concrete in uniaxial compres-

(a)
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Figure 7.12: σzz (Mpa) in uniaxial compression (a) perfectly bonded and (b) imperfectly

bonded.
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Figure 7.14: Damage distribution of concrete in uniaxial compression with dimensions of

(a) 100× 100 × 100 mm3 and (b) 100× 100 × 200 mm3, (clipped by plane).

sion, where one can observe the debonding is induced and then enhanced at the upper
surface of aggregates as the load rises.

In this work, it is assumed that the tensile behavior of HCP is modeled by the Mazars

damage model. When it is under compressive load, Mazars damage model combined
with visco-plasticity model is employed for the description of the mechanical behavior.
The parameters of visco-plasticity are obtained from Hain (2007), see Table 7.2.
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Figure 7.15: Debonding interface damage in increasing uniaxial compression.

Parameter kf η ∆t

Value 48 8,240 0.0265

Table 7.2: Parameters in visco-plasticity model (Hain (2007)).

7.3 Mechanical-thermal-diffusion coupling for the

ITZ

As pointed out before, the debonding at the ITZ between HCP and aggregates could
affect thermal conduction and humidity diffusion in concrete. In order to describe
this phenomena, the traction-separation law in CZM combined with micromechani-
cally motivated thermal flux-separation relation and diffusion flux-separation relation
is established at interface elements.

7.3.1 Staggered method

The computational cost is huge for solving three-dimensional multiphysics problems.
For this reason, a staggered method is utilized allowing to solve the fields sequentially,
such that the size of the discretized problem is greatly reduced, see Zohdi (2004).
Within this method, each field is solved individually within the discretized time step,
allowing the unknowns of the corresponding field to be active. As long as each field is
solved, the corresponding unknowns are updated, which are employed for the next field.
In the following, the time step is incremented and the procedures mentioned above are
repeated. Usually staggering has the disadvantage of a small time step restriction in
view of its explicit nature. However, it has a significantly simpler algorithmic structure
compared to an implicit scheme due to the sequential solution of the coupled system
of field equations, see Erbts & Düster (2012).

The next objectivity is to apply the staggered method to the concrete with an intention
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Mechanical
Loading

Thermal

Diffusion

Figure 7.16: Framework of mechanical-thermal-diffusion coupling at interface.

1. Mechanical field. Assume components in the bulk phase to behave elastically and apply
CZM introduced in Subsection (3.3.2) in the interface phase to model debonding between
HCP and aggregates, for updating displacement un+1.

2. Thermal field. Apply Fourier’s law in Equation (2.6.8) in the bulk phase and the
relation of thermal flux qc and temperature jump [|θ|] in Equation (2.5.16) in the interface
phase, for updating temperature θn+1.

3. Diffusion field. Use Fick’s law in Equation (2.6.15) in the bulk phase and the relation
of diffusion flux jc and relative humidity jump [|s|] in Equation (2.5.23) in the interface
phase, for updating relative humidity sn+1.

4. Increase time step. Update all the field variables and set the time step forward to go
back to step 1.

Table 7.3: Algorithm of mechanical-thermal-diffusion coupling at interface based on stag-

gered method.

Components HCP Aggregate Interface

E (N/mm2) 2300 7000 -

ν (-) 0.21 0.2 -

ft (N/mm2) - - 3.4

Gf (N/mm) - - 0.1

Kp (N/mm3) - - 50000

Thermal conductivity (W/mK) 0.9586 2.828 100

Diffusivity (cm2/h) 1.4e-3 0.04e-3 1

Table 7.4: Material parameters of components adopted for mechanical-thermal-diffusion
coupling.
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of presenting how the debonding at ITZ yields the temperature jump [|θ|] and humidity
jump [|s|] across the crack interface, and subsequently affects the thermal conduction
and humidity diffusion in the bulk phase of concrete. The concrete is subjected to uni-
axial tension combined with a constant temperature and relative humidity prescribed
on the top surface of the concrete sample. The models of mechanical-thermal-diffusion
coupling are established in not only the bulk phase but also in the interface phase. For
the bulk phase, the interactions among fields are not taken into account, yet solving the
fields sequentially based on a staggered approach, as well as HCP and aggregates are
assumed to behave elastically. The framework of mechanical-thermal-diffusion coupling
in the interface phase is displayed in Figure 7.16, where mechanical-thermal cohesive
and mechanical-diffusion cohesive couplings are individually carried out with the aid of
a staggered method, namely no interactions between thermal and diffusion fields. One
can find the coupling algorithm in Table 7.3 and the material parameters in Table 7.4.
As mentioned before, penalty parameters are defined for thermal conductivity and dif-
fusivity of interface. The infinitely large penalty parameters yield the perfect thermal
conduction and diffusion across the interface. However, realistically sufficiently large
parameters are chosen explained by not only non-existence of a perfect interface but
also convergence problems due to large penalty parameters from a numerical point of
view, see Table 7.4.

7.3.2 Numerical thermal results

The debonding at the ITZ between HCP and aggregates induced by uniaxial tensile
load yields the temperature jump [|θ|] across the crack interface, thereby forming the
thermal resistance along the interface and reduction of thermal flux in concrete, see
Figure 7.17(a). The thermal interface damage is formed and then increased at the
lower surface of aggregates as the tensile load rises, corresponding to the debonding
interface damage, displayed in Figure 7.10. Thus, it results in the reduction of thermal
conduction in the whole concrete sample, particularly with a great reduction in the
regime where the interface elements strongly debond. If the concrete is subjected to
uniaxial compression, one can obtain the thermal interface damage and the reduction
of thermal conduction as well, see Figure 7.17(b).

7.3.3 Numerical diffusion results

Figure 7.18 illustrates no apparent influences of debonding on the diffusion flux of con-
crete, no matter how large the prescribed load is. It can be explained by the relative
low diffusivity of aggregates in contrast to HCP, see Table 7.4. Hence, it forms the
nature diffusion resistance between HCP and aggregates.

However, extensive experiments were conducted to present the phenomena that the dif-
fusivity of concrete is increased as the crack width rises, see Jeon (2003) and Wong

et al. (2009), which could be explained by the existence of cracks throughout concrete,
rather than only debonding between HCP and aggregates. Alternatively, assuming the
diffusivity of aggregates to be identical to the one of HCP, the problem mentioned
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Figure 7.17: (a11) Material distribution of cross section and (a21) thermal flux of perfectly

bonded and (a12)-(a13) thermal interface damage and (a22)-(a23) thermal flux

of imperfectly bonded and (b11) material distribution of cross section and (b21)

thermal flux of perfectly bonded and (b12)-(b13) thermal interface damage and

(b22)-(b23) thermal flux of imperfectly bonded, ((a) in tension and (b) in com-

pression, load is increased from upper to lower).

above is transferred to analyze the influence of crack on the diffusivity in homogenized
HCP. When the relatively large tensile load is prescribed on concrete, the diffusion flux
is increased, see Figure 7.19.
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Figure 7.18: (a) Material distribution of cross-section and (b) diffusion flux of perfectly

bonded and (c)-(d) diffusion flux of imperfectly bonded (uniaxial tensile load

increases from left to right).
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Figure 7.19: Diffusion flux of concrete subjected to (a) no load and (b) relatively large

load.
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Chapter 8

Multiscale Multiphysics Simulation
Results

8.1 Introduction

Mesoscale

Microscale

Thermal

Diffusion

ASR

Debonding

∂B+
t

∂B−

t

u
+ θ+

s+

u
− θ− s−

Figure 8.1: Framework of multiscale/multiphysics modeling in concrete.

Figure 8.1 demonstrates the framework of the multiscale/multiphysics model in con-
crete, constituting three main aspects: (I) multiscale ASR: by using instationary ther-
mal conduction and diffusion equations, the mesoscopic local values of the transient
temperature and relative humidity are obtained, which update the chemical extent ξ at
the material point of mesoscale. The resulting chemical extent can directly determine
the ASR induced damage at the microscale through the correlation between effective
damage of HCP and chemical extent. The couple problem is solved at the mesoscale
through a staggered method, yet it upscales the chemical damage from the microscale
during the process. (II) ITZ : the debonding at the ITZ between HCP and aggregates
induced by internal or external forces, yields the temperature jump and the humidity
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jump across the interface crack. (III) thermal and diffusion homogenization: computa-
tional thermal homogenization and diffusion homogenization are applied for HCP for
determining the effective thermal conductivity of HCP affected by humidity and the
effective diffusivity of HCP affected by temperature. Such effects could be incorpo-
rated in to the modeling temperature and humidity mediated chemical extent induced
by ASR.
The goal of the present section is to combine three aspects mentioned above, such
that it provides a reliable multiscale multiphysics model to describe the induced failure
in concrete. Assuming that the equilibrium for diffusion, thermal conduction and
mechanical problems has already been obtained at time tn, the procedure for searching
for the solutions at time tn+1 = tn + δt is described in Table 8.1.

1. Diffusion field. Use the Fick’s law in Equation (2.6.15) and the relationship between the
effective diffusivity of HCP and temperature in Equation (6.3.14) in the bulk phase, and
apply the relationship of diffusion flux jc and relative humidity jump [|s|] in Equation
(2.5.23) in the interface phase, for updating relative humidity sn+1.

2. Thermal field. Employ the Fourier’s law in Equation (2.6.8) and the relationship
between the effective conductivity of HCP and the humidity in Equation (6.3.6) in the
bulk phase, and use the relationship of thermal flux qc and temperature jump [|θ|] in
Equation (2.5.16) in the interface phase, for updating temperature θn+1.

3. Chemical extent. Use sn+1 and θn+1 to update the chemical extent ξn+1, see Subsections
4.2.2 and 4.2.3. Then apply the obtained chemical extent ξn+1 at the mesoscale to
determine the ASR induced damage at the microscale, through the correlation between
chemical extent and damage due to ASR, see Equation (6.3.17).

4. Mechanical field. In the bulk phase, the sum of the mechanical damage Du and the
chemical damage Dc combined with a visco-plastic model of the classical Perzyna-type
is used to describe the nonlinear behavior of HCP and aggregates are assumed to behave
elastically. For the interface phase, the debonding is modeled by the CZM introduced in
Subsection 3.3.2.

5. Increase time step. Update all the field variables and set the time step forward to go
back to step 1.

Table 8.1: Algorithm of multiscale/multiphysics modeling in concrete.

8.2 Numerical example

Two simple examples are tested in this section: (1) in uniaxial compression (2) in
stress-free. Mechanical properties of components at the mesoscale of concrete can be
found in Table 7.1 and 7.2 and 8.2. Thermal and diffusion properties of components
are listed in Table 8.3.

In the first example, the constant temperature 20 ◦C and relative humidity 1.0 are pre-
scribed on the top surface of the mesoscale representation of concrete. Furthermore,
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Components HCP Aggregate Interface

E (N/mm2) 2300 7000 -

ν (-) 0.21 0.2 -

ft (N/mm2) - - 3.4

Gf (N/mm) - - 0.1

Kp (N/mm3) - - 50000

Table 8.2: Mechanical properties of components at the mesoscale of concrete.

Component Capacity of heat Thermal conductivity Density Diffusivity

HCP 1000J/kgK [1] 1.4W/mK [1] 2120kg/m3 [1] 10−10m2/s [2]

Aggregate 2600J/kgK [4] 2.828W/mK [6] 2600kg/m3 [5] 1.85× 10−12m2/s [3]

Interface - 100W/mK - 10−12m2/s

Table 8.3: Thermal and diffusion properties of components at the mesoscale of concrete
([1] Hain (2007) [2] Zhang et al. (2011b) [3] Vasconcelos et al. (2011) [4]
Kodide (2010) [5] Bulletin (1999) and [6] Wu et al. (2012)).

the concrete is also under uniaxial compressive load. The multiscale simulation results
predict the deterioration due to ASR in compression as shown in Figure 8.2, where the
deterioration is constituted by the mechanical damage induced by external load and
the chemical damage due to ASR.

In the second example, the concrete sample is immersed into a vessel full of water
under the room temperature of 20 ◦C, as displayed in Figure 8.3. Thus, only relative
humidity is controlled, and it is a widely adopted in the laboratory for analyzing ASR.
Figure 8.4 illustrates the multiscale simulation results predict the deterioration due to
ASR in stress-free. This example present that ASR is a relative show reaction and
it only occurs in HCP. The evolution of the ASR induced damage follows the extent
of reaction. In other words, the chemical extent of ASR determines in which region
damage induced by ASR occurs more easily in concrete. Since the initial temperature
and relative humidity are not taking into account in concrete, temperature and relative
humidity mediated chemical extent evolves from lower to upper surface of concrete.
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(a) (b)

(c) (d)

Figure 8.2: Deterioration prediction through multiscale/multiphysics model in uniaxial

compression: (a) chemical extent in 50 days (b) damage in 50 days (c) chemical

extent in 300 days (d) damage in 300 days.

Water

20 ◦C

Figure 8.3: A concrete sample immersed into a vessel full of water.
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(a) (b)

(c) (d)

Figure 8.4: Deterioration prediction through multiscale/multiphysics model in stress-free:

(a) chemical extent in 50 days (b) damage in 50 days (c) chemical extent in 300

days (d) damage in 300 days.
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Chapter 9

Conclusions and outlook

This work established a reliable multiscale multiphysics model to analyze failure of
concrete due to alkali-silica reaction (ASR) and to the weak properties of the interfa-
cial transition zone (ITZ). The mesostructure of concrete consists of aggregates with
a random distribution embedded in a homogenized hardened cement paste (HCP) as
well as interface elements with zero-thickness as the representation of the ITZ. One
scale lower, the microscale constitutes the finest structural scale and is represented by
the microstructure of the HCP obtained from three-dimensional computed tomography
(CT) scans, which is comprised of hydration products, unhydrated residual clinker and
micropores.

Problems associated with ASR in concrete structures usually arise several years after
construction. This work constructed a multiscale model to predict the deterioration due
to ASR in concrete with the goal of accelerating the prediction of the extent of damage
in comparison to experimental procedures. Starting from the assumption that the gels
are evenly produced in micropores of the HCP and exert uniform pressure on the sur-
rounding material, the expansion coefficient of the gel at the microscale was obtained
through a two-step homogenization approach. Based on a correlation between the ef-
fective damage and the chemical extent, the simulation of ASR induced deterioration at
the mesoscale was carried out through a coupled diffusion-thermal-chemical-mechanical
framework in a staggered setting, yet upscaling the chemical damage quantity from the
microscale during the process.

Computational thermal homogenization with statistical tests was applied to obtain
the effective thermal conductivity of HCP, thus enabling to identify the macroscopic
thermal conductivity of concrete efficiently. Taking into account the variation of water
content in the micropores, a nonlinear relationship between the effective thermal con-
ductivity of HCP and the volume fraction of water content in micropores was obtained,
which was then mapped from the volume fraction of water content to the relative hu-
midity through the isothermal curve of absorption. Analogous to the thermal field,
applying computational diffusion homogenization with consideration of the effect of
temperature resulted in a nonlinear relationship between the effective diffusivity of
HCP and the temperature. This framework is inexpensive, fast, and not restricted
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by space and time, compared with the conventional experimental approach. The re-
sulting nonlinear relationships are of significant importance in modeling long term
temperature-controlled chemical reactions in concrete like ASR.

The window method, where the microstructural sample is embedded into a frame of a
homogeneous material, offered an alternative to classical boundary conditions in com-
putational homogenization. Experience with the window method, which is essentially
the self-consistent scheme but with a finite surrounding medium instead of an infi-
nite one, indicates that it delivers faster convergence of the macroscopic response with
respect to boundary conditions of pure essential or natural type as the microstruc-
tural sample size is increased to ensure statistical representativeness. In this work, the
variational background for this observed optimal convergence behavior of the homoge-
nization results with the window method is provided and the method is compared with
periodic boundary conditions that it closely resembles.

The microstructure of the ITZ with higher porosity yields its weak mechanical proper-
ties. In this work, a cohesive zone model (CZM) was used to describe the debonding at
the ITZ between HCP and aggregates. Also, the influence of various parameters on the
macroscale mechanical behavior of concrete was analyzed. The investigated parameters
were tensile strength, fracture energy, specimen size as well as random distribution of
aggregates. A scalar interface damage parameter was defined in the interface elements
in order to quantify how much they debond in tension and in compression respectively.
Apart from the mechanical problem, the influence of the interface crack on the thermal
conduction as well as humidity diffusion was also investigated. The traction-separation
law in CZM combined with micromechanically motivated thermal flux-separation re-
lation and diffusion flux-separation relation was established, thereby leading to the
temperature jump [|θ|] and humidity jump [|s|] across the cohesive crack. This study
built the fundamentals of mechanical-thermal and mechanical-diffusion couplings in
the interface elements.

This work was concluded with numerical examples combining ASR induced damage,
nonlinear effective thermal conductivity affected by humidity and effective diffusivity
as a function of temperature respectively, as well as a mechanical-thermal-diffusion co-
hesive model at the ITZ between aggregates and HCP. The developed framework offers
a reliable multiscale model to investigate failure induced by ASR and weak property
of the ITZ in concrete, which also can be applied to other closely related phenomena
such as Delayed Ettringite Formation (DEF) (Diamond (2000) or Alkali-Carbonate
Reaction (ACR) (Xu et al. (2002)). As follows, possible extensions of the presented
work are addressed:

• According to the review in Chapter 4, ASR is an extremely complex reaction in
concrete and only one of various possible mechanisms has been adopted in this
work, therefore, the multiscale model is limited in its ability to comprehensively
predict failure caused by ASR. For this reason, a comparison between the numer-
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ical simulations and experimental data has not been attempted. As indicated by
Haha (2006) and Dunant & Scrivener (2010), cracking through aggregates
induced by ASR is the predominant failure, see Figure 9.1. Thus, this mechanism
has to be taken into account in future work.

• The limitation of Mazars damage model adopted in this work, i.g. its inability
to correctly depict the failure in compression, determines the need of develop-
ing a more suitable damage model, see Pignatelli et al. (2013) and Kim &

Al-Rub (2011). Furthermore, in order to overcome the strong localization and
the mesh dependency problem induced by local damage, either non-local damage
or gradient damage approaches should be applied, see e.g. Jirásek (2004) and
Peerlings et al. (1998).

• CT scans of concrete providing the best approximation of the real concrete can
replace the spherical aggregates employed in this work.

Figure 9.1: Concrete specimen subjected to ASR with cracks through aggregates observed

at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
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Appendix A

Homogenization

A.1 Mechanical homogenizaiton

In order to apply a reliable mechanical homogenization, for a perfectly bonded material
with [|u|] = 0, the prescribed boundary conditions have to fulfill the Hill’s criterion

〈σ · ǫ〉
!
= 〈σ〉 · 〈ǫ〉 , (A.1.1)

describing the equivalence of averaged mechanical dissipation and the mechanical dis-
sipation of the averages. Therefore, the dissipation is preserved while making the
transition from the microscale to the macroscale. By using algebraic operations, it
gives

〈σ · ǫ〉 − 〈σ〉 · 〈ǫ〉 = 0
〈

(σ − 〈σ〉) · (ǫ− 〈ǫ〉)
〉

= 0

1

| v |

∫

Bt

(

σ − 〈σ〉
)

·
(

ǫ− 〈ǫ〉
)

dv = 0 .

(A.1.2)

A.1.1 Average strain theorem

The linear displacement boundary condition for mechanical homogenization is pre-
scribed to the boundary of the body ∂Bt with the aid of a constant strain tensor ǫ0

u = ǫ0 · x on ∂Bt . (A.1.3)
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Considering gradu = 1 or ∇x = 1, the average of strain can be given by

〈ǫ〉 =
1

| v |

∫

Bt

ǫ dv

=
1

| v |

∫

Bt

symgradu dv

=
1

| v |

∫

∂Bt

sym(u · n) da

=
ǫ0

| v |

∫

∂Bt

sym(x · n) da

=
ǫ0

| v |

∫

Bt

symgradx dv ,

(A.1.4)

leading to
〈ǫ〉 = ǫ0 , (A.1.5)

where sym(•) refers to the symmetrization with sym(•) :=
1

2
(•+ •T ). It proves that the

Hill’s criterion in Equation (A.1.2) is satisfied.

A.1.2 Average stress theorem

For the average stress theorem, a constant tensor σ0 is used to impose uniform traction
boundary condition to the boundary of the body ∂Bt.

t = σ0 · n on ∂Bt . (A.1.6)

With consideration of the Cauchy’s theorem, the average of the stress can be written
as

〈σ〉 =
1

| v |

∫

Bt

σ dv

=
1

| v |

∫

Bt

(σ + x⊗ divσ ) dv

=
1

| v |

∫

Bt

div(x⊗ σ ) dv

=
1

| v |

∫

∂Bt

x⊗ σ · n da

=
1

| v |

∫

∂Bt

x⊗ t da

=
σ0

| v |

∫

∂Bt

x⊗ n da

=
σ0

| v |

∫

Bt

gradx dv ,

(A.1.7)

which results in
〈σ〉 = σ0 , (A.1.8)

such that the satisfaction of the Hill’s criterion in Equation (A.1.2) has been proven.
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A.2 Thermal homogenization

In analogous to the mechanical problem, when the material is perfectly bonded with
[|θ|] = 0, the prescribed boundary conditions for thermal homogenization have to satisfy
the Hill’s criterion

〈q · ∇θ〉
!
= 〈q〉 · 〈∇θ〉 , (A.2.1)

which also can be written as

〈q · ∇θ〉 − 〈q〉 · 〈∇θ〉 = 0
〈

(q − 〈q〉) · (∇θ − 〈∇θ〉)
〉

= 0

1

| v |

∫

Bt

(

q − 〈q〉
)

·
(

∇θ − 〈∇θ〉
)

= 0 .

(A.2.2)

A.2.1 Average temperature gradient theorem

The linear temperature boundary condition for thermal homogenization is given by

θ = G0 · x on ∂Bt , (A.2.3)

using a constant G0 on the boundary of the body. Applying the algebraic operation of
the average 〈∇θ〉 results in

〈∇θ〉 =
1

| v |

∫

Bt

∇θ dv

=
1

| v |

∫

∂Bt

θn da

=
G0

| v |

∫

∂Bt

xn da

=
G0

| v |

∫

Bt

∇x dv ,

(A.2.4)

yielding
〈∇θ〉 = G0 . (A.2.5)

Thus, the Hill’s criterion for thermal homogenization introduced in Equation (A.2.2)
is satisfied trivially. Note that grad• and ∇• are equivalent.

A.2.2 Average thermal flux theorem

The uniform thermal flux boundary condition is prescribed through

n · q := n ·Q0 on ∂Bt , (A.2.6)

with the aid of a prescribed thermal flux constant Q0 on the boundary of the body.
The average 〈q〉 is given by
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〈q〉 =
1

| v |

∫

Bt

q dv

=
1

| v |

∫

Bt

(q + x⊗∇ · q) dv

=
1

| v |

∫

Bt

∇ · (x⊗ q) dv

=
1

| v |

∫

∂Bt

x⊗ qn da

=
Q0

| v |

∫

∂Bt

n⊗ x da

=
Q0

| v |

∫

Bt

∇x dv ,

(A.2.7)

which leads to

〈q〉 = Q0 . (A.2.8)

It proves that the Hill’s criterion in Equation (A.2.2) is satisfied, when the uniform
thermal flux boundary condition is used for thermal homogenization.

A.3 Diffusion homogenization

For applying a reliable diffusion homogenization, when the material is perfectly bonded
with [|s|] = 0, the prescribed boundary conditions have to ensure the Hill’s criterion

〈j · ∇s〉
!
= 〈j〉 · 〈∇s〉 . (A.3.1)

By using algebraic operations, it gives

〈j · ∇s〉 − 〈j〉 · 〈∇s〉 = 0
〈

(j − 〈j〉) · (∇s− 〈∇s〉)
〉

= 0

1

| v |

∫

Bt

(

j − 〈j〉
)

·
(

∇s− 〈∇s〉
)

= 0 .

(A.3.2)

A.3.1 Average humidity gradient theorem

The linear humidity boundary condition for diffusion homogenization is given by

s = W 0 · x on ∂Bt , (A.3.3)
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using a prescribed humidity constant W 0 on the boundary of the body. Algebraic
operation of the average 〈∇s〉 using ∇x=1 yields

〈∇s〉 =
1

| v |

∫

Bt

∇s dv

=
1

| v |

∫

∂Bt

sn da

=
W 0

| v |

∫

∂Bt

xn da

=
W 0

| v |

∫

Bt

∇x dv ,

(A.3.4)

and
〈∇s〉 = W 0 . (A.3.5)

Thus, the linear humidity boundary condition satisfies the Hill’s criterion in Equation
(A.3.2).

A.3.2 Average diffusion flux theorem

The uniform diffusion flux boundary condition is prescribed by

n · j := n · J0 on ∂Bt , (A.3.6)

with the aid of a prescribed diffusion flux constant J0 on the boundary. The average
〈j〉 is obtained through

〈q〉 =
1

| v |

∫

Bt

j dv

=
1

| v |

∫

Bt

(j + x⊗∇ · j) dv

=
1

| v |

∫

Bt

∇ · (x⊗ j) dv

=
1

| v |

∫

∂Bt

x⊗ jn da

=
J0

| v |

∫

∂Bt

n⊗ x da

=
J0

| v |

∫

Bt

∇x dv ,

(A.3.7)

indicating that the Hill’s criterion in Equation (A.3.2) in ensured, when the uniform
diffusion flux boundary condition is used for diffusion homogenization.
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Löhnert S. Computational homogenization of microheterogeneous materials at finite
strains including damage. Ph.D. thesis, Leibniz Universität Hannover, Hannover,
Germany (2004).

Ludwig U. Effects of environmental conditions on alkali-aggregate reaction and pre-
ventive measures. pages 583–596. Proceedings for 8th International Conference on
Alkali Aggregate Reaction in Concrete, Kyoto, Japan, 1989.



BIBLIOGRAPHY 155

Lundgren K. Modeling the effect of corrosion on bond in reinforced concrete. Mag-
azine of Concrete Research, 54 (2002): 165–173.

Main H.K. Analysis of 3D scale and size effects in numerical concrete. Ph.D. thesis,
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Temizer İ. & Wriggers P. A micromechanically motivated higher-order continuum
formulation of linear thermal conduction. Zeitschrift für Angewandte Mathematik
und Mechanik , 90 (2010b): 768–782.
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