-
Advanced multiscale computational mechanics for physiopathological behavior analysis of tissues and organsThe physiological functionalities of large biological structures are highly affected by the mechanics of living tissues which is, in turn, related to microstructural arrangement of histological constituents and biochemical environment at nanoscale. Present research activity aims to develop a novel tissue multiscale description, including also inelastic mechanisms, coupled with an advanced computational formulation under finite strain and large-displacement assumptions. As a result, an innovative in-silico tool for simulation of organs and large biological structures will be developed, allowing to predict pathology-related damage or pharmacological-related healing and providing novel diagnostic and clinical indications for highly patient-specific medical treatments.Led by: P. Wriggers, M. MarinoYear: 2015Funding: Alexander von Humboldt-Stiftung
-
Dynamic crack propagation using the XFEMImperfections in composite materials can occur at interfaces but also within the matrix material, particles or fibers. These imperfections often lead to cracks and thus are responsible for degradation and failure of these heterogeneous materials. In this project the attention turns to the dynamic crack propagation. Therefore a numerical approach by using the eXtended Finite Element Method (XFEM) to describe the problem within heterogeneous materials will be developed. The XFEM has proven to be adequate to handle cracks and heterogeneities in a precise geometrical and numerical framework.Led by: P. Wriggers, S. LöhnertTeam:Year: 2012
-
Mutiscale FEM approach for rubber friction on rough surfacesUnderstanding the frictional behaviour of elastomers on rough surfaces is of high practical importance in many industrial applications. For example the traction of a tire is directly linked to the material properties of the considered elastomer and the surface conditions of the road track. One goal of our studies is to gain a deeper understanding of the underlying contact physics at all length scales. Another aim is to determine a macroscopic coefficient of friction for varying material and surface properties and to validate the results with experimental data.Led by: P. WriggersTeam:Year: 2012
-
SFB 599 TP D1 – Functionalized middle ear prosthesesThe participating institutions in the sub-project D1 of the SFB 599 (Institute of Inorganic Chemistry, LUH, Helmholtz Centre for Infection Research, Ear, Nose and Throat Clinic, Hannover Medical School, IKM) have the aim to develop an optimized middle ear prosthesis. This is done through the use of newly developed biomaterials on the one hand and by using simulation techniques to optimize the design on the other hand. During the last funding period, the focus of the simulation was on the healthy ossicular chain. In the third period the contact between the implant and the tympanic membrane should be simulated. Polymer cushions will be used to create a tissue-friendly interface that enables a uniform loading of the eardrum.Led by: P. WriggersTeam:Year: 2012Funding: DFG im Rahmen des SFB 599
-
Investigation of the behavior of the crystalline lens accommodation by introducing femtosecond laser-induced (fs-laser) cut surfacesThis project is conducted in cooperation with the Laser Zentrum Hannover eV. With age, the ability of the human eye lens to adjust from the distant view of the near vision increases. There is still no satisfactory method of treatment for the so called pres-byopie. However, it was shown that it is possible to influence the flexibility of the lens by introducing micro-cuts with a femtosecond laser (fs-Lentotomie). The aim of this project is to develop a method which makes it possible to predict the changes of accommodation behavior of ophthalmic lenses after cutting using finite element analyses.Led by: S. BesdoYear: 2012Funding: DFG im Normalverfahren
-
SFB 599 TP R6 – Degradable OsteosyntheseWithin the framework of SFB 599 osteosynthesis systems for fracture stabilization out of magnesium alloys are being developed. The advantage of magnesium is that the body needs it for its metabolism and it degrades over time. Due to the mechanical properties and the degradation of magnesium alloys, it is necessary to adjust the implant design. First, the primary stability of implant-bone composite is investigated using finite element analysis, before the implants are tested on animals. In a second step, the degradation has to be integrated into the simulation. Therefore, different simulation methods have been developed and should be adapted to results from in vitro experiments. Furthermore, the magnesium degradation will be considered in the simulation of bone healing.Led by: P. WriggersTeam:Year: 2012Funding: DFG im Rahmen des SFB 599
-
Improvement of cardiovascular Implants and a FE-Framework for Degradation of Mg-AlloysA surgical option is to replace damaged myocardial tissue, e. g. after a heart attack, with tissue transplants. Problematic is the minor initial strength of these biological grafts to resist loads of the high pressure system. Therefore, scaffolds are developed to mechanically support these grafts. Until now, developed scaffolds do not achieve the required durability. With use of the finite element method, simulations are performed where the scaffolds are deformed according to the heart movement. This allows identifying highly strained regions within the implant that need design changes. Another approach to reduce stresses is preforming scaffolds according to the heart curvature preoperatively. Further, new scaffold designs are developed and tested. <br /> Scaffolds are made from magnesium alloys, which can be resorbed by the body. This degradation affects the mechanical behavior of the implants under load. There are FE simulations developed in which the magnesium degradation is considered.Led by: P. Wriggers, J. Lamon, S. BesdoTeam:Year: 2011Funding: DFG within IRTG 1627
-
Micromechanical Modelling of inelastic grain boundary effects in polycrystalline materialsThe research project focuses on the computational materials modelling of metals microstructure. Within the project, polycrystalline materials shall be micromechanically investigated by means of dislocation-based crystal plasticity. The goal is to gain a clearer understanding in the nonlocal behaviour and to obtain useful models for the prediction of the inelastic response, which become relevant in applications such as micro-manufactured structures.Led by: Britta HirschbergerTeam:Year: 2010Funding: Leibniz Universität Hannover via programme "Wege in die Forschung II"Duration: 1 year
-
Contiuum Mechanical Modelling of Self-Cleaning Surface MechanismsSome biological surfaces, like several plant leaves, exhibit remarkable self cleaning mechanism. These are called hydrophobic surfaces, where the water does not coat the surface but rather forms small droplets which then roll-off easily on inclined surfaces and sweep foreign pollutants, like dirt or germ particles, away from the surface. A continuum mechanical model suitable for computational multiscale analysis is therefore required for describing the interaction between the water droplet, the pollutant particle and the substrate surface. This model provides better understanding of basic droplet-substrate interaction characteristics such as contact angle, roll off angle and droplet deformation due to the microstructure of the substrate. The surface self-cleaning capabilities can be therefore improved by optimizing the artificial surface microstructure.Led by: R. A. SauerTeam:Year: 2009
-
MULTIPHYSICS COMPUTATIONAL HOMOGENIZATION METHODOLOGIESComputational homogenization techniques that are amenable to a multiscale implementation are being developed for multiphysics problems at the finite deformation regime. Applications include the estimation of the contact conductance for rough interfaces and the modeling of the coupled thermomechanical response of heterogeneous materials.Led by: P. Wriggers, I. TemizerYear: 2009
-
Numerical modeling of electrical contactsThe focus of this work is the investigation of the behavior in electrical contacts, where electrical, thermal and mechanical fields are coupled. Specifically, theoretical constitutive models for the electrical conductance and electrical wear phenomena are developed and implemented in a three dimensional finite element setting. Also a new relation for wear is proposed, where the amount of wear is coupled to the dissipation arising at the contact interface. </a></p>Led by: P. WriggersTeam:Year: 2009
-
FAILURE ANALYSIS - ERROR ESTIMATION FOR MULTISCALE METHODSThis project is concerned with the development of tools for error-estimation based adaptive multiscale failure analysis. In order to enable a more accurate mechanical analysis of composite aircraft substructures, existing discretisation error estimators will be improved to be used as indicators for mesh refinement. Additionally, physical error estimators will be developed to identify regions where higher-order material modelling is required.Led by: P. WriggersTeam:Year: 2009
-
Analysis of local friction between rubber and dry and wet surfacesA prediction of the friction behavior of a rubber compound sliding over a road surface is an important topic in tire industry. Within this project the parameters which mainly influence the friction between a single tread block and a rough surface are investigated. The relevant physical mechanism of contact between a tread block and a rough surface, both wet or dry has to be understood. To validate the model a large number of test rigs is investigated at the Institute of Dynamics and Vibration Research (IDS).Led by: P. Wriggers, R. A. SauerTeam:Year: 2009
-
ADAPTIVE MULTISCALE MODELING AND ANALYSIS OF HETEROGENEOUS MATERIALSAccurate computational analyses of a composite structure requires multiple levels of resolution: (i) a region where effective elastic properties are employed, (ii) a region where embedded micro-macro problems are solved, and (iii) a region where explicit microstructural evaluation is required. Development of such computational schemes for the adaptive multiscale analysis of heterogeneous materials is the main purpose of this project.Led by: P. Wriggers, I. TemizerYear: 2009
-
RAMWASS - Integrated Decision Support System for Risk Assessment and ManagementThe objective of the EU-project RAMWASS is to develop and validate a new decision support system (DSS) for the risk assessment and management for the prevention and/or reduction of the negative impacts caused by human activities on the water/sediment/soil system at river basin scale in fluvial ecosystems.Led by: P. WriggersTeam:Year: 2009
-
Coupled Contact of Lubricated Contact[Translate to Englisch:] In many engineering applications fluid lubricants are used to separate two solid bodies that rub against one another to minimize friction. Such devices are referred to as hydrodynamic bearings. There exist a large variety of bearings for translational and rotational movement. For engineers designing such bearing, computational methods can deliver useful information on its performance characteristics prior to its manufacturing. Within this project a three-dimensional finite element model is developed, that describes lubricated contact between two bodies with rough surfaces.Led by: P. WriggersTeam:Year: 2009
-
Einfluss inelastischer Effekte auf die Reibung in zyklischen ProzessenBei der Modellierung der Polreibung von Reifen ist eine große Anzahl einzelner Effekte zu berücksichtigen, insbesondere, dass sich Gummi mit ursprünglich einheitlichem Ausgangszustand nach einiger Verformung von Ort zu Ort sehr unterschiedlich verhalten kann. Die Ursache ist, dass die so genannte Gummi-Elastizität sehr beträchtliche inelastische Anteile aufweist, die von den vorangegangenen Lastzyklen, insbesondere von früheren Verformungsmaxima signifikant abhängen (Mullins-Effekt). Somit ist bei einer genauen Modellierung des Rollkontaktes unbedingt die Heterogenität des Vor-Verformungszustandes und ihr Einfluss auf die inelastischen Effekte zu beachten.Led by: D. BesdoYear: 2008
-
Frictional contact of elastomer materials on rough rigid surfacesThe purpose of this work is the derivation of a friction law for rubber materials on rough tracks by numerical investigations. Rubber friction includes a number of influences like hysteresis due to material damping, adhesional effects or thermomechanical coupling.Led by: P. WriggersTeam:Year: 2008
-
Simulating the microstructure of cement-based construction materialsIn this thesis three-dimensional computational homogenization of hardened cement paste (HCP) including micro-structural damage due to frost is introduced. Based on a computer-tomography at a resolution of 1µm a finite-element model of HCP is developed with different elastic and inelastic constitutive equations for the three parts unhydrated residual clinker, pores, and hydration products.Led by: P. Wriggers, S. LöhnertTeam:Year: 2008